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DETERMINATION OF VIBRATION OBJECT' COORDINATE

ON SURFACE OF EARTH

Problem of determination of vibrating object’s coordinates on Earth’s surface is considered for the case in which generated seismic
waves are measured with several probes. Analytical dependencies of vibrating object’s coordinates as functions of the probes’ coor-
dinates, relative delays of the wave front for different probes, and velocity of its propagation are obtained. Configurations involving
three and four probes are being investigated, calculations’ algorithms and codes are described, and accuracy of the coordinate’s

determination is studied.

Keywords: source of vibrations, system of coordinates, seismic wave, analytical dependencies.

Introduction

There exist a number of practical situations in
which an investigated object vibrates thus genera-
ting waves propagating inside an elastic medium;
these waves can be measured by probes in certain
coordinates. A task is stated of distinguishing bet-

ween the waves from different objects and determi-
nation of their locations and properties. As a me-
dium of propagation of the vibrations, there may
be air, water, earth’s crust, building-construction
materials, etc. Water and air conducts longitudi-
nal waves, whereas solid medium — longitudinal
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and transversal ones. Various machinery (including
movable), movements of a human or animal, breaks
in the earth’s crust or building constructions, pro-
cesses inside technical and living systems, and so
on — all of these may be considered as vibration
objects to be investigated.

As to us, we came out of a practical task to de-
termine the coordinates of a vibrating object (VO)
situated on the Earth’s surface, which generates
seismic waves propagating around it, and attain the
probes. At that, it is envisaged a possibility of plac-
ing several probes on the same surface and stand-
ing apart from the each other. These probes must
measure the waves, ge-nerated by the VO, and de-
termine the delays of the same wave front arriving
at the different probes.

Let us consider alternatives to above described
technique of measurement of seismic waves and
determination of the VO coordinates.

As known, there exist two types of seismic waves
traveling on Earth’s surface from a VO: SH-wa-
ves — horizontally polarized (Love’s waves), and
SV-waves — vertically polarized (Rayleigh’s waves)
[1-3]. SV-waves possess the following useful pro-
perties:

— acquires the biggest amount of energy from a
VO;

— propagates inside all types of soil;

—canbe measured withsimple probes, which per-
ceive only vertical soil vibrations and receive uni-
formly the waves coming from any direction.

Measurement of SH-waves opens additional
possibilities:

— determination the direction towards VO, since
the probes possess different sensitivity to SH-waves
coming from different directions;

— determination the distance to VO, since travel
velocity of SH-waves differs from that of SV-waves:
measurement of delays of the same front for diffe-
rent types of waves may be used for calculation of
distance to VO.

But the following problems associated with the
uses of these possibilities:

— SH-waves propagate not in all types of soil;

— application of lowered sensitivity of probes for
certain directions reduces whole sensitivity of the
system;

— possible difference in shapes of SH- and SV-
waves may cause difficulties in determination the
delays of the same front which measured by diffe-
rent probes;

— probes, possessing the above possibilities,
may be of complicated design, since they measures
the seismic waves, at least, by two sensors situated
under a certain angle relative to one another inside
a single case.

The mentioned problems in employing SH-
waves induce us to use SV-waves only, and to mea-
sure the relative delays of fronts at locations of re-
mote probes.

Here we consider the aspect of determination
of coordinates in supposition that other tasks are
fulfilled: the signals from probes is measured and
converted into digital form; synchronous arrival
of the signals to computer from different probes
is provided; the same front arrived from the VO to
different probes is distinguished, and their retarda-
tions relative to one another are determined.

Formulation of the problem

It is necessary to arrange probes in certain coordi-
nates of a plane, so that coordinates of any point
VO can be determined from difference between
distances of that point and probe for several pairs
of probes. This task can be clarified by follows:

— let us restrict ourselves by a case in which VO
and probes are situated in the same plane;

— difference of distances between the VO and the
pair of probes can be easily determined from: /) rela-
tive delays of the same wave front attaining these
probes ii) velocity of its propagation;

— VO can be placed in any point of the coordinate
plane (in practice, within the distance of sensitivity
of the probes). That is, we do not impose condi-
tions for arrangement of VO relative to the probes;

— it is necessary to create an algorithm for deter-
mination of the VO coordinates.

We will estimate the configurations of the probes’
system in accordance with the following criteria:

— number of probes (the lesser the better, since it
makes the realization less expensive);

— the distance between probes: the smaller they
are, the smaller the distortions in the transmission
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of the analog signal to the center where they are
processed;

— rate of the processing algorithms — to provide
real-time determination of movable objects’ coor-
dinates;

— minimal sensitivity to errors of measurements
of delays.

As an initial variant of the configuration to be
obtained, let us try to determine coordinates of VO
situated in arbitrary coordinates g (x,y) by using
three probes located in known coordinates d1
(x,,p)); d2 (x,,y,); d3 (x,,y,) (Fig. 1).

Measured data from the probes are used for de-
termination of relative delays in arrival of the same
wave front, for example, t,,,1, — to 2" and 3"
probes relative to 1st one, T,; — to 3" probe relative
to 2" one. Distances to VO with x, y coordinates,
from each of the probes can be determined by for-
mulae known from the course of analytical geo-
metry, for example [4]:

X, =\/(x—x1)2 +(y-»)%
X, =J-x)+G-n) (D)

X, =J(x=x) + (- 3).

Let us denote V' being velocity of propagation of
the waves; then the following dependences will be
true for chosen VO:

X, =X, =1,V,
X,-X,=1,V, (2)
X;—X,=1,V.

After substituting into relationships (2) values
for distances X1, X2, and X3 expressed through
the known coordinates of probes and unknown
coordinates of VO, it becomes possible to find the
unknown coordinates. Each of the equations (2)
is a hyperbola equation, i.e. geometric locus of
points, difference of distances from which to two
given points (coordinates of the pair of probes) is
constant (as known from the analytical geometry
course). Intersection of the two hyperbolas drawn
for different pairs of probes gives us possible VO
coordinates.
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Fig. 1. On-plane arrangement of probes d1, d2, d3, measu-
ring the same wave front from g (x,y). X, X,, and X, — dis-
tances from VO to the probes
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Fig. 2. Determination of direction towards VO: O, — middle
of segment connecting probes d1(x,,y,) and d2(x,,y,). Angle
Q, determines direction towards VO relative to perpendicu-
lar D (directrix) drawn from point O,. Angle B1 determines
direction of directrix D relative to meridian M

Existing approaches

Determination of direction towards source of vibra-
tions using two probes

In works [5, 6] a supposition of flat front is made
as to wave propagating from a VO towards a pair
of probes situated remotely. Such a supposition is
the more admissible (calculation error is lesser),
the lesser the angle of the pair of probes seen from
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Fig. 3. Determination coordinates g(x,y) as the points of
intersection of the two lines, which are determined in man-
ner according Fig. 2.

VO. The error also reduces if direction towards VO

approaches to directrix D. The corresponding geo-

metrical arrangements are depicted in Fig. 2 and 3.
From Fig. 2, we obtain the following ratio:

T,V
J& =) + (-3,

with T, — being relative delay of the wave front
at the probes, V' — velocity of the wave, i.e., the
numerator equals length of the triangle’s cathet
opposing to angle a, (triangle’s hypotenuse is the
distance between probes). As to such a determina-
tion of the direction, we should make the following
notations:

— when calculating, the sign of t,, is important,
since the direction symmetric relative to directrix
D yields the same angle value but of reversed sign;

— VO situated symmetrically relative to the line
between probes, yields equal delays; thus, it is
impossible to distinguish the side of this line the
wave comes from. Only preliminary knowledge of
the half-plane, where the VO can be located, will
eliminate ambiguity;

— more accuracy in determination of the direc-
tion towards VO can be achieved if we draw the
hyperbola according to corresponding equation
from (2). In this case, one of the asymptotes of
this hyperbola coincides with the direction towards

a, = arcsin

VO, defined by a manner depicted in Fig. 2. We
tested this statement by modeling on a computer,
although it is probably possible to confirm their
identity by equivalent transformations of the rel-
evant analytical expressions.

Equation of line directed towards VO, if we is-
sue from: /) coordinates of point O (x.y); ii)
direction vy, =a, + B, relative to the meridian,
y=—tgy, xx+ (y, + x, x1gy,). Similar pair of probes
in different coordinates gives us another
line directed towards the same VO (Fig. 3):
y=—tgy, - x+(y, +x, xtgy ,). Intersection of these
two lines determines the VO coordinates:

Y= Yo ¥ X187, =y —xtgy, :
tgy, —1gv,
xRy, -y -
tgy, —tgy,

Drawbacks of the above considered approach:

— inaccuracies in determining coordinates due
to the roughness of the model (supposition of flat
front of wave);

— ambiguity in the determination of VO coordi-
nates — necessity of preliminary define of an area
containing VO;

— long distance between locations of pairs of the
probes — a processing center acquires information
from remote probes; it means that measurements
can be distorted. From the other point of view, the
long distance between the probes’ pairs possess a
positive side as to remote VO — the longer is dis-
tance the bigger is angle, at which the direction
lines intersect one another; this means that sensi-
tivity to inaccuracy of measurements is lesser.

Usually, the above-described scheme is used
for determination of coordinates of a shot whose
sound is received by pairs of probes, and directions
toward it relative to the meridian are transferred to
a center in which the coordinates of VO should be
determined.

t
TEN gy, + y, + xtgy,.

y:

Optimization procedure for solving
the system of equations

In work [7], it is suggested to give a general solu-
tion to the task of determination of VO coordinates
provided that /) number of probes is arbitrary; if)
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the coordinates to be determined are situated not
only 2D but also 3D.

Dependences (1) and (2) from previous section
are generalized as follows:

R, =\/(xi _x)+(yi _y)2+(zi_z)2;
R —R =1V,

(1%)
(2%)
where R is distance from VO to i-th probe; x,, y,
z,are 3D coordinates of i-th probe; x, y, z — coor-
dinates of VOi; T, — delays between comings to
probes i and j of a certain wave front; V' — velocity
of the wave.

In [7] it is proposed i) to take the number of
probes to be more than minimally needed, ii) to
determine unknown VO coordinates by selecting
their values in a manner that minimizes the func-

tional:
m-1 m
o= > (R-R-V-1,),

i=1 j=i+l
with m being number of probes.

The described approach possesses follows draw-
backs:

— it supposes excessive number of probes thus
increasing the expenses on hardware;

— the optimizing involves a selection algorithm
which is time-consuming for real time processing,
especially in determination of movable objects’
coordinates.

We shall try to resolve equation systems similar
to (1) and (2) by analytical manner with the use of
minimal number of probes.

Three-probe configuration

It is obvious that two probes are insufficient for
determination of delays between the fronts, since
only one equation similar to (2) can be formulated;
this means that the location can only be confined
with a corresponding hyperbola.

Intersection of two hyperbolas takes place, in
general case, in 4 points. To select one point from
the four, 3" equation is needed: each of the obtai-
ned solutions of the selected two equations must be
verified — if it meets the 3rd equation. But a ques-
tion rises: if the 3™ equation allows isolation of only
one point.

- 10 Y

5

- —10

Fig. 4. Hyperbolas drawn for two different pairs of probes
situated along x axis — the curves are symmetric relative to
this axis

A case, in which all 3 probes are arranged along
a single line, is more obvious (Fig. 4).

In this case, all hyperbolas, related to a certain
pair of probes, do intersect in points symmetric re-
lative to the line connecting the probes. This mean
that it is impossible to distinguish in which of the
two points the VO is localized. Furthermore, any
number of probes placed on a single line not allows
us to determine real location of VO. Therefore,
three probes must not be placed along the same
line.

A
) 2(x.»)

p /,/. f

vl /
J/// ffg dl:f, 0 ]
0 O0—>
d2(-c 0) 0 / x

d3 (0-h)

Fig. 5. Arrangement of probes in apexes of equilateral triangle
with apexes’ coordinates d1 (c¢,0), d2 ( -¢,0), d3 (0, -h) for
determination coordinates of any point g (x,y) on the plane
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In supposition that three probes located out of a
single line are sufficient for unambiguous determi-
nation of the VO coordinates, we have formed an
algorithm for the following VO configuration. We
arranged, on the coordinate plane, a system of 3
probes placed in triangle’s tops (Fig. 5). To simplify
the calculations, we accepted the following condi-
tions. The probes are placed on tops of equilateral
triangle (d1, d2, d3) with side 2-c. The coordinate
axes are oriented as follows: /) OX axis coincides
with one of the sides of triangle; i/) the coordinate
center located in central point of that side. In the
chosen coordinate system, probes are located with
coordinates d1 (c¢,0); d2 (-¢,0); d3 (0, -h), where
h=c¢3"72,

In our notations, distances from an arbitrary
point g (x,y) to the probes, on a plane are expressed
by the following equations:

gl=y(x—0)’+y% (3)
g2=y(x+c) +y% (4)
g3=x*+(y+h). (5

Differences between each pair of the distances
are determined, in real conditions, by measuring
delays of the same wave front received by different
probes. The delays and the difference of distances
can be related by the following dependences:

g2—g1=’[12~V; (6)
g3-gl=1,V; (7)
g3_g2:'[23‘V7 (8)

where t,,,1,;, T,; — time delays in receiving the
wave front by probes 1—2,1—3,2 >3 respec-
tively; V' — wave velocity. In so doing, negative va-
lues of the delays are indicatives of reversed direc-
tion from which the wave front arrives as compared
with that pointed by the arrow. Let us denote:
T, V=2-a; 1, V=2-d, 1, V=2-b. Then equations
(6 +8) can be written in the form:

\/(x+c)2+y2 —\/(x—c)2+y2 =2-a; (9)
JE+(y+h) —J(x—c) +y* =2-d; (10)

J+(+h)Y —J(x—c) +y> =2-b. (1)

To model the functioning of system of coordi-
nates determination, we shall preset coordinates
(x,y) and determine the values of a, b, d from equa-

tions (9) to (11). Our algorithm must determine
the coordinates (x,y) on the basis of preset values
ofa, b, d, that is, it must resolve a problem reversed
to that mentioned in the previous sentence. As the
algorithm’s results, there must be coordinates cor-
responding to those preset for calculation of pa-
rameters a, b, d. If we succeed in achieving such
a correspondence for any point of the coordinate
plane, then our algorithm can be employed for de-
termination of VO coordinates basing on measure-
ments of delays.

The algorithm for determination of VO coordi-
nates is composed from next steps:

a) coming out from values of a, b, d, the pair of
equations — (9, 10), (9, 11), or (10, 11) — should
be chosen for being resolved relative to x, y. The
pair must be selected in such a manner that the
corresponding hyperbolas intersect under the angle
the most close to the right one. In this case, inac-
curacies of measuring parameters a, b, d, exert a
minimal impact to the result;

b) resolving the system of selected pair of equa-
tions and obtaining, in a general case, 4 pairs of
their solutions. Equivalent transformations of
equations (9+11) lead to the following radicals-

free equation: ,

x> =a’+y* -\, where A= 2a =, (9%
c —a
m-x>+n-y +p-x-y+s-x+q-y+r= 0, (10%)
where m=c* -4d*;, n=3c"-4d*;, p=2hc; s=
=2c(4d* + F,)); q=2hF;r=F —4c’d"*; F, =’ —
-2d>.

Mx* + Ny’ —Pxy+Sx+Qy+R=0, (11%)
where M =c¢* —4b*; N =3¢* —4b>; P =2hc; S = 2c-
(4b* +F)); Q=2hF,; R=F,’ —4c¢’b*; F, =c* - 2b’

To determine the unknown coordinates x, y, we
resolve the system of the two selected equations by
the substitution technique. After that, we obtain
equation of 4" degree relative to one of the un-

known variables, for example y:
A-y'+B-y'+C-y"+D-y+E=0. (12)
Coefficients of this equation depend of the se-
lected pair: (97, 107); (97, 117); or (10°, 117). In a
general case, equation of 4™ degree gives 4 roots.
Two of them may be complex numbers but two
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others must be real ones if initial parameters a, b, d
are calculated on the basis of real VO coordinates,
since there exists a real point of intersection of the
corresponding hyperbolas. The second unknown
variable — x should be determined for each of the
determined real solutions y (existence of real value
X is substantiated likewise to value of y — by real
existence of intersection point of the hyperbolas).
So, we obtain 4 variants of the VO coordinates
according to the pair of chosen equations. Solu-
tions of equation of 4% degree can be expressed
analytically [8] — this is the highest degree of a
polynomial of general form that can be resolved in
radicals [9] — equation of a higher degree can be
resolved only by numerical methods (by successive
approximations), which are more time-consuming
[10].

¢) elimination the solutions which do not meet
3 equation that was not used ((11), (10), or (9),
see item a)). Substitution of roots obtained in item
b) into the previously unused equation must trans-
form it into an identity if the pair of coordinates
is “right”. However, because the calculations pos-
sess an error, it is worthwhile to calculate a diffe-
rence between RHS and LHS of 3" (for verifying)
equation, and solution with the minimal difference
should be considered as a real one.

As a result of conducted experiments, areas on
the coordinate plane were allocated for which the
program, formed in accordance with the above-
described algorithm, showed inability to point out
the preset coordinates. Fig. 6 shows hyperbolas
drawn for various pairs of probes situated on apexes
of triangle in coordinates corresponding to Fig. 5
with values ¢ = 10, h=c-/3 =17,321. Parameters
of equations (9 +11) are determined for VO located
in coordinates x = 25, y = 20: a = 15,3113, d =
=19,9202, b = 4,6089. As seen from Fig. 6, the
three hyperbolas intersect not only in the point with
chosen coordinates, but also in point with coor-
dinates x = 13,7, y = 9,6 (program, formed accor-
ding to our algorithm was not able to distinguish
between these solutions).

When investigating other points of coordinate
plane, we come to the following conclusion. Ambi-
guity and incorrectness of the algorithm show
themselves in wide strips of the coordinate values

F 3

30

}!

Fig. 6. Three hyperbolas (9 +11) were built in such a man-
ner that to have intersection in one point. But, as it turned
out, all three lines are intersected also in another point for
some predefined points

adjacent to the semi-lines with starting points in
apexes of the triangle (where the probes are placed)
and which are elongations of its sides. Determina-
tion of coordinates of VO, located in other areas of
the coordinate plane is accomplished correctly. The
ambiguity emerges in connection with shortening
of the distance between symmetric branches of the
hyperbolas, when VO approaches to the semi-line,
which is the elongating the triangle’s side (Fig. 6).
Two other hyperbolas, which pass through a point
preset, are also passing through the other point,
adjacent to the preset one, but residing on another,
symmetric, branch of the narrow hyperbola.

Additional information on order in which the
wave front arrives to the probes, in most cases, does
not allow us to eliminate the incorrect solution.
This is seen, in particular, from Fig. 6: the order of
arriving the wave’s front is the same for 2 points of
intersection of all the three hyperbolas.

It may be supposed that any 3-probe configura-
tion contain the areas of ambiguity. We do not have
exact theoretical and experimental substantiations
of this assertion. But it is quite believable, since the
factor of ambiguity — too sharp angles between the
sides of triangle, with the probes in his apexes, is
impossible to increase simultaneously for all the
angles of triangle.

So, the 3-probe configuration may be employed
for monitoring certain areas, but not the whole sur-
rounding area. It is probable that it is possible to
control the ambiguity areas by selecting the mutual
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ek o= | d1(c,b)
| I

11 v x

d4(-c,-b) d3(c,-b)

Fig. 7. The probes are placed in rectangle’s apexes with
coordinates: d1 (¢,b), d2 (-c,b), d3 (c,-b), d4 (-c,-b) for de-
termination of coordinates of any point g (x,y) on the plane

arrangement of the probes as well by their general
placement in a coordinate plane.

Four-probe configuration

With a goal to use a minimal number of the probes,
let us consider the configuration involving 4 probes
situated in one plane; we will determine the VO
coordinates in the same plane.

Variant with 4 probes, two pairs of which are far
from each other, and which is described earlier,
does not satisfy us, since:

a) it does not meet the condition of compact-
ness;

b) it is supposed that it is known the half-planes
with VO;

¢) it employs approximate models of wave’s
propagation from VO, which are admissible at large
distances but give essential errors near to probes.

Let us conduct our study in accordance with
the same scheme as for the 3 probes: we select a
convenient coordinate system and the probes’
arrangementtoobtainsimpledependencessimilarto
(9+11). The corresponding configuration of probes
is shown in Fig. 7.

Let us write dependences, for distances between
g (x,y) and the probes, which is similar to (9 +11)
ones. Here we restrict ourselves by pairs of probes
situated in sides of the rectangle; we exclude two
still possible equations for the pairs of probes situ-
ated in the rectangle’s diagonals (we leave it for fur-

ther investigations).

g2—g1=\/(x+c)2+(y—b)2 -

13
—\/()c—c)er(y—b)2 =aq, ; )
g3—gl=\/(x—c) +(y+b) - (14)
—\/(x—c)2+(y—b)2 =a;
g4—g3:\/(x+c)2+(y+b)2— (15)

_\/(x—c)2 +(y+b)’ =a,.

To determine the VO coordinates, we use the
algorithm described earlier for 3 probes with taking
into account features of the given configuration.
We shall select the pair of equations dependently
of quadrant number (I + IV) in which VO is situa-
ted. The general approach is to choose 2 equations
from (13+16) — to provide minimal results’ de-
pendence of inaccurate measurements. This aim
can be reached, if the corresponding hyperbolas
intersect under an angle closest to the 90°. Since
it was difficult to ensure such a condition, we ado-
pted a simplified method: a couple of equations
will be chosen depending on the quadrant (I+1V
in Fig. 7), where VO is located. The quadrant is de-
termined from a signs of distance differences from
VO to a pair of probes. It is sufficient to analyze
one of the pairs of values a, a, or a,, a,, as is di-
rectly seen from Fig.7: Ig — a, >0, a, >0; 1lg —
a,<0, a, >0; Illg — a, <0, a, <0; IVqg — a,>0,
a, <0. So, for the VO placed in quadrant I, we have
to choice equations (13) and (14) for determina-
tion the four possible coordinates. One of the un-
used equations, for example (15) is used to select
one of the 4th solutions obtained at the previous
stage. According to this example, equations were
selected for each of the quadrants: Ig — (13)&(14)
—(15); g — (13)&(16)—(15); Illg — (15)&(16)
—(13); IVg — (16)&(14)—(13).

Just as in the previous paragraph for a configura-
tion of 3 sensors, we will get rid of radicals in equa-
tions of (13—16) by their equivalent transforma-
tions. As a result, we obtain two pairs of equations
for horizontal and vertical sides of the rectangle
are of a same structure but with different values of
coefficient:
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 for equations (14), (16) (the vertical sides):
M-y’ =N-x*+Q-x+R=0, where M =16b> —4a>;
N=4a’; 0=8ca’;R=a'-4a’ (b’ +c*);

+Q, i = 1 for equation (14), and

—Q, i = 3 for equation (16);

« for equations (13), (15) (the horizontal sides):
mx* —ny’> +qy+r=0, where m=16¢> —4ajz; n=
—40,,9 8ba’sr=a'~4a’(c’ +b);

+q, j=0for equatlon (13) and

—q, j =2 for equation (15).

To find the unknown coordinates x, y, we solve a
system of two equations chosen depending on the
quadrant in which the VO is situated (4 variants
of conjunction of these equations are possible). It
would be convenient to express x from equation
(13)/(15) with further substitution into equation
(14) /(16), or vice versa — to express y from (14) /(16)
with successive substitution into (13)/(15); we have
chosen the first variant of substitution. In so do-
ing, we obtained the equation (12) of 4" degree
relative to y: Ay* + By’ +C-y* + D-y+E=0.

Values of coefficients of this equation depend
on the selected pair of entry equations. For each
quadrant, we get own variants of the values of the
coefficients of the equation (12), but the structure
of expressions for coefficients A, B, C, D, E remains
unchanged.

A=F*B=2F-H, C=2F-G+H-0Q%-n/m;
D=2G-H+Qq/m; E=G +Q/m;
F=M-N-n/mH=N-q/m;G=R+r-N/m.

The simple expression for coefficients of equa-
tion of 4™ degree is achieved due to symmetric,
relative to the coordinate axes, arrangement of
probes on apexes of the rectangle. Other variants of
the probes’ arrangement lead to more complicated
expressions.

After that, we apply the general scheme of re-
solving the 4" degree equation, and solutions being
obtained (four, in general case) should be verified
with one of the unemployed equations according to
the algorithmic scheme described in previous item

As a result of experimental calculations being
conducted, the following specific features of the
developed program are elucidated:

= 4 horizontal half-straight y = b and y = -b out
of the rectangle’s sides (where x > ¢; x < -¢) and 4

vertical half-straight x = ¢ and x = -c out of the rec-
tangle’s sides (where y > b; y <-b), represent a mul-
titude of VO coordinates that can not be processed
by the general algorithm. This peculiarity is con-
nected with equalizing to zero the m-coefficient
in equations (13) and (15), or M-coefficient —
in (14) and (16). To take into account this peculia-
rity, special branch is inserted into the algorithm,
in which values x or y are calculated in a simplified
manner with adopting a known value of y (¢ or -c)
orx (bor -b).

= within the area of x = -0,05 to 0,05 and y =
=-0,05 to 0,05, the algorithm does not determine
the correct values of coordinates (4"-degree equa-
tion has no solutions), that is why it was taken the
zero coordinates for the VO between these borders.
Cause of this phenomenon, possibly, is associated
with erroneous calculations, and needs to be inves-
tigated additionally (since, in theory, any equation
of 4™ degree possesses 4 roots, possibly, complex
ones). If the area of uncertainty has to be shrinked,
the calculations accuracy should be improved.

There is no exist other points of coordinate plane,
whose coordinates are determined incorrectly as
compared with the preset ones — for which the
inter-probe distance is used as a parameter of the
algorithm. Therefore, the configuration, in which
the probes are placed on apexes of the rectangle,
can be used for unambiguous determination of
coordinates of VO, situated in any points of the
plane.

A deviation from the rectangular form, in our
estimate, will lead to complication of the algo-
rithm and add more sensitivity to measurement
errors. Square is the best variant as to relation-
ships between its sides — errors of measurements
from the short sides restrict the general accuracy
in determination of coordinates. The rectangular
form can be used in the cases in which complica-
tions emerge when placing the probes along sides
of a square. Symmetric trapezoid widens, to some
extent, flexibility in the probes arrangement and,
by our estimations, introduces a minor complica-
tion into the calculations (this needs to be investi-
gated additionally).

Transition from the chosen local coordinate sys-
tem to any other (global) one is possible with a help
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of formulae of coordinates transformation known
from the course of analytical geometry, for example
[4]: % , .
= x(':osa ysino+gq, ; (17)
Y =xsmo+ycosa+gq,
where X, Y are VO coordinates in the global coor-
dinate system; x, y — coordinates of VO in the lo-
cal coordinate system; g , q, — coordinates of the
beginning of the axes of the local coordinate system
relative to the global one; oo — angle of turning of
axes of the local system relative to the global one.

Investigation of the algorithm'’s
sensitivity to errors in measure-
ments of delays

For any point, residing in a plane, and two given
points in a certain coordinates, a hyperbola can
be found, i.e. line that includes all the points for
which the difference of distances is the same as
for the given point. This means that the system
of two equations, chosen amongst (13 +16) with
parameters ai, i = 0...3, which correspond to a
real coordinate on the plane in which (coor-
dinate) the corresponding hyperbolas inter-
sect, must obligatory have a real solution
(that is, two real ones, since only even num-
ber of complex roots must exist). With arbit-
rary values of parameters a, i = 0 to 3, the real
roots, theoretically, may be absent. That is why
we discard such roots (we leave the technique
of employing the complex roots for further
investigations).

The case, in which errors of measurements
(and the digitalization as well) lead to minor
deviations of the parameters corresponding to a
certain VO coordinate, is the most probable. We
have simulated such deviations: certain VO coor-
dinates were preset, differences of distances a,,
a, were determined (we restricted ourselves by
experiments with rectangle ¢c=b), and we intro-
duced errors in distance differences before the
calculation is being accomplished.

For the VO distances within 4-c from the origin
(rectangle’s center), error of 0,01:c lead to coor-
dinate value mistake of 0,06-c, i.e., it increases

by 6 times. If the distance equals to 8¢, the same
error of 0,01-c gives the mistake of 0,5-c, that is, it
increases by 50 times. Therefore, the bigger the dis-
tance from probes, the lesser the accuracy of deter-
mination of coordinates — the remote VO becomes
more sensitive to inaccuracy of measurements. This
fact may be explained if we take into account that,
at larger distances from the probes, angles of the
hyperbolas’ intersection become sharper, hence,
minor changes in location of each hyperbola leads
to considerable deviations of the intersection point.
The measurements were conducted in units ¢ — the
half-length of side of the square with probes placed
in its apexes. This means that elongation of ¢ will
lead to elongation the real distance of VO, for the
set accuracy.

Based on the fact that the values a, i =0...3, can
not physically exceed 2-:¢ (2:b) — the maximum
difference in distances between probes, we believe
that there has been an error in measurements and
reduce such a measurement to 2-c (2-b).

Conclusions

To determine the coordinates of the source (VO),
which create waves propagated in an elastic envi-
ronment along the plane, at least 4 probes which
are placed in known coordinates are required. De-
lays in the receipt of the same front of the wave on
these probes, as well as the known speed of propa-
gation of elastic waves allow determining the coor-
dinates of the VO. The algorithm is described and
computer program has been created that calcu-
lates unknown VO coordinates for any point on
the plane. The fastest and most accurate method
of calculation is implemented: /) analytical solu-
tions of the system of nonlinear equations, which
accurately describe the geometry of the plane and
the propagation of waves, are used (errors in calcu-
lations arise only due to the limited bitness of the
presentation of data); ii) placing probes on the tops
of the rectangle, symmetrical relative to coordinate
axes, is used to simplify equations. The computer
program can also be used to study the accuracy
of determining the coordinates of the VO depen-
ding on the errors of measurements. It turned out
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that measurement errors have different effects on
coordinate determination errors; it is depending
on the distance to the source. This influence can
be reduced by increasing the distance between the
probes — the accuracy of the calculation results is
influenced by the ratio of distances between the
probes and distance to VO. The theoretical expla-
nation of the measurement results is quite simple:
the intersection of lines (hyperboles), which deter-
mine the coordinates of the VO at long distances,
occurs at a more acute angle.

As a result of experiments with three probes,
there were areas of ambiguous determination of
the coordinates of the VO. Such configurations
can also be used, taking into account the limita-
tions of areas in which the coordinates of VO are
determined unambiguously. Configurations with 4
sensors with a more general placement of probes
(for example, at the tops of the correct trapezoid)
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BHU3HAYEHHA KOOPAMHAT OB’€KTA, 11O BIEPYE HA ITOBEPXHI 3EMJII

Beryn. Posrsimaethest 3amavya BU3HaUe€HHS KOOPIMHAT 00'€KTa, 110 BiOpye Ha moBepxHi 3emJi (BO), Ha ocHOBI 3aTprMOK
¢ poHTY TOPOIKeHOI HUM XBWJII Ha JaTYMKAX, 11O ii PeeCTpyIoTh. 3amavya po3B’I3yeThCS ST BUTIAAKY, KOJIM TaTINKH Ta
00’€KT pO3MillleHO Ha TIJIOIIMHI, @ TAKOX BiIOMi KOOPAMHATHU JaTYMKIiB Ta IIBUAKOCTI MOLIUPEHHS XBUJIb.

Merta crarTti. AHaII3 BiJOMUX ITiIXOAIB Ta OOIPYHTYBaHHsS aJropuUTMy JUisi BU3HAYeHHs1 KoopauHaT BO Ha ocHOBi
iHdopmallii mpo XBuUJi, sIKi BiH nopomxye. KputepisiMmu o0paHO MPOCTOTY CUCTEMM PeeCTpallii, BUAKICTb i TOYHICTh
po3paxyHKiB. Pe3yabraty po3paxyHKiB repeadayaeTbcsi BAKOPUCTOBYBATH B CUCTEMI JJIsl iieHTU(iKallii Ta BU3HAYESHHS
KOOPIMHAT PYXOMUX 00’€KTIB Ha TTOBEPXHi 3eMIIi.

Metoau. Y po60oTi OyJI0 BUKOPUCTAaHO MaTeMaTUYHI METOIM PO3B'I3aHHS CUCTEM HEeTiHIHUX PiBHSIHB Ta KOMIT FOTepHE
MOJIETIOBaHHS.

Pesyasrar. OTpriMaHO TOUYHI aHATITUYHI BUpa3u 1J1s1 KooparHaT BO B 3a1€5KHOCTI Bil KOOpAMHAT AaTYMKIB, BITHOCHUX
3aTPUMOK (DPOHTY XBWJII Ha Pi3HUX JaTyMKaX i IIBMIKOCTI MOIIMPEHHST XBWiIi. Ha 1iii 0CHOBi CTBOpEHO KOMIT'IOTEPHY
nporpamy. 3a ii JTOOMOTOI0 AOC/iI)KEHO TOUHICTh BU3HAYEHHS KOOPJAMHAT 3aJI€XKHO Bijl MOXUOOK MPU BUMipax 3aTPUMOK.

BucnoBku. 17151 BU3HaueHHsI KoopauHat BO, siKi MO prooThes B IDIONIMHI, IOTPiOHO HIOHANMEHTIIe YOTUPU JaTIUKH,
SIKi PEECTPYIOTh BiTHOCHI 3aTpUMKM (DPOHTY XBWJIi Ha Pi3HUX AaTyuKax. Tpu JaT4YMKy He 3a0e3MeuyroTh OJHO3HAYHOCTI
BU3HaueHHs1 KoopauHat BO, 110 posraiioBaHi B MEBHUX 00JACTSIX IUIOIIMHM BiAHOCHO JATYMKiB. 151 CMMETPUYHO
PO3MILLIEHUX JaTYMKIB OTPUMAHO TPOCTi aHATITUYHI 3aJIeXKHOCTI; TIPU JOBIIbHOMY PO3MIllleHHI JaTYMKiB aHAJTITUYHI
BUPa3U KOOPAMHAT BUSIBJISIIOTHCS CYTTEBO CKIAMHIILIMMU.
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Po3paxyHKM KoopAuHAT 4yepe3 aHaJiTUUHI 3aJIexKHOCTI nependadaloTb 0OUMCICHHS eJleMeHTapHuX (PyHKII (yepes
TPOMIiKHI 3MiHHI B JIEKiJIbKa €TalliB) Ta OLIHKY BapiaHTiB po3B’s3KiB. KilbKicTh pO3B’sI3KiB BU3HAYAETHCS CTYIIEHEM
ajnredpaiuHOTO PiBHSIHHS BiITHOCHO OHI€ET 3MiHHOI MIC/Is MiACTAHOBKM BUPA3iB AJIs iHILIMX HeBigoMuXx. s po3riassHyTol
MoOfeJli OTpUMAaHO PiBHSAHHS 4-TO CTyINeHs — 16 HaWBMIIWI CTYIiHb DPIiBHSHHS, IJIS SIKOTO DPO3B’SI3KM MOKJIMBO
OTpUMATU B aHAJITUYHOMY BUIJIsALi. Jisl CKIAaHIILIMX BUIAAKIB, HAMPUKJIIAA, KOJIU MOTPIOHO BUM3HAYaTU KOOPAMHATHU
BO B mipocTopi, ocTaTouHe piBHSHHS BiTHOCHO OIHI€T 3MiHHOI Ma€ 6-11 CTYIiHb, a OTXKe He Ma€ aHATITUIHOTO PO3B’SI3KY.
Moro noTpi6HO GyIe po3B’sI3yBaTH YMCEIbHO, epedupaioun BapiaHTH. YnceIbHUIl alropuT™ moTpebye Ginblie vacy i
He 3a0e31evye «adCOMOTHOI» TOYHOCTI — MOro HEOOXiIHO 3YMUHSTU MPU JOCITHEHHI MOTPIOHOI TOUHOCTI pe3ysbrary.
[Tpu BUKOpUCTAaHHI aHATITUYHUX 3aJIEXKHOCTEN, OTPUMAHUX HA OCHOBI TOUHUX T€OMETPUYHUX CHiBBIIHOIIEHb, TOXUOKU
B pO3paxyHKax BUHUKAIOTh JIUIIIE Yepe3 OOMeXEHY PO3PSIAHICTb MPEACTABICHHS TaHUX.

Ha TouHicTh pe3ynbrartiB po3paxyHkiB (KoopauHaT BO) BruiMBae TOYHICTh BXiIHUX JaHUX. Y POOOTI AOCTiIKEHO
3aJIeXKHICTh TOYHOCTI BU3HAYEHHS Pi3HULII BiAcTaHel Bin gaTyukiB 10 BO Ha TOYHiCTh BUSHAUEHHS] KOOpAMHAT. Bruius
MoxuOOK BUMIpiB 3aTPUMOK Ha MOXMOKM y BU3HauYeHHi KoopauHaT BO 3asiexaTs Bill BicTaHi JaTUYMKIB A0 JXepesia: YuM
BOHA OiJIbIIIA, TUM OLBIINIA 1Iei1 BIUIMB.

Karouoei caosa: dicepeno sibpauiit, cucmema KoopouHam, peecmpauis QpoHmy ceilcmiuHi Xeuni, AHANIMUYHI 3a1eIHCHOCI.
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