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USING GIBBS SAMPLING TO ESTIMATE THE SOLUTION
OF THE UNPAIRED LEARNING PROBLEM

The article describes unpaired learning using Monte Carlo Markov Chain on the example of a stereo vision problem. The descrip-
tion includes the inference of the algorithm, the application of the stochastic gradient method, and some implementation details.
Multiple penalty functions are considered, and quantitative results are presented. The results of the experiments expose new in-
sights into weights for graphical models for stereo vision problems.
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Introduction

In machine learning tasks, there are situations
when it is difficult or impossible to obtain a trai-
ning sample consisting of pairs of observations and
corresponding hidden states. An example of such
a task is the style transfer: we can collect examples
of drawings by Ivan Aivazovsky and Salvador Dali;
however, it is difficult to redraw the paintings of
one of these artists as if another one drew them. In
such cases, it may be possible to state the problem
as the task of unpaired learning, the input data of
which are two sets: a set of observations and a set
of hidden states, and the observations may not cor-
respond to the hidden states.

The first work devoted to unpaired learning is
considered [1], where it is applied to image style
transfer using random fields. One of the most cited
works on this topic is [2], in which artificial neural
networks are used.

This article, as well as the work [1], is dedicated
to using the unpaired learning method to find pa-
rameters of a random field. The main differences
are using of Gibbs sampling [3] to evaluate expec-
ted values and using binocular stereo vision prob-
lem for the experiments.

The structure of the current work is as follows:
first, one of the possible tasks of unpaired learning
is stated, then the proposed algorithm for its ap-
proximate solution is described, and then we pro-
vide the description and results of experiments.

Statement of the Problem of
Unpaired Learning

This section provides basic definitions and one
of the possible formulations of the problem of
unpaired learning.

1. Random Field

We will call a grayscale image x that is # € N, pi-
xels high and w € N, pixels wide a mapping from a
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set T ={l,...,h} x{L,...,w}of pixels into the set of co-
lors C ={0,...,255}. The notation x(y, j ) = ¢ means
that the pixel located in row i/ and column j of im-
age x has color ¢ € C. On the set of pixels, we de-
fine a non-empty neighborhood structure I' = 2,
vel' = |y| =2. Let #' denote an unordered pair
{t,1"} eT of neighboring objects and denote the set
of all neighbors of an object tby N, ={t':¢t' €'},

Let us define a finite non-empty set K of labels.
The function k: T — K will be called labeling. The
fact that the labeling k maps an object # € T to a la-
bel ¢ € K will be denoted by k, = /.

We call an ordered pair (¢,k)eT xK a vertex,
and we call an unordered pair of {(#,k), (¢',k")}
vertices, where k € K,k'€ K, and 7' € T, an edge.
Let us introduce the function ¢ : C x K — R of ver-
tices’ weights and the function g : K* — R of edges’
weights. Let k£ be a random field [4] with the distri-
bution

1
p(k:g)_G( ) exp{Zg( 2 r } (1)

tt'el

where G(g) is the normalizing constant

G(g) =), eXp{ > gk, ,)}

kek™ kek”

Under known labeling k, the probability of im-
age x mapping a pixel 7 to a value x, equals
px, |ksq) = -expig(x,.k)},  (2)
O(k;q)

where Q(k; g) is the normalizing constant

(k Q)_ Z exp{zq(xm t }

xec’ teT

If the colors of pixels are independently distribu
ted, given the known labeling, image x has the dis-

tribution
-exp {Z q(x,.k,) }

teT

1
O(k;q)
Then the pair (k, x) is a conditional random field

[5] with the distribution
1

Z(k,x;q,8)

exp{Zq( x.k)+ Y gk, k, } (3)

teT 1'el’

p(k,x;q.8) = p(x|k;q) - p(k:g) =

where Z (k,x;9,2)=G(g)-Q(k;q) is the norma-
lizing constant.

2. Statement of the Problem of Estimating Pa-
rameters of Random Fields

Let us have a set of labelings k = (k',...,k"); the
weights ¢ and g and the images corresponding to
these labelings are unknown. We want to find the
weights g by maximizing the log-likelihood func-
tion. Its partial derivatives with respect to g(k,k")
for all k eK,k'e K, are [6]

a(w) Hp(kl’g) ZZ[E Enki=r]-

i=1 t1'el’

-n- Zp(k;g)-Z[k,zf/\k,,zﬂ'], 4)
kek” 1'el’
that is, the difference between the empirical

amount of the edges connecting specific labels and
the expected frequency of these edges multiplied by
n. Note that the log-likelihood function for such a
parameterization is concave [6], which allows find-
ing its maximum using convex optimization meth-
ods, and the existence of a gradient enables the
use of gradient methods. The difficulty is that the
computation of the expectation requires the sum-
mation of | K |”' small numbers. To overcome this
obstacle, we apply Gibbs sampling, which will be
discussed in the next subsection.

Now we want to estimate the weights g using the
maximum likelihood method given the set of im-
agesx = (x',x°,...,x"). To achieve this goal, we de-
cided to modify the EM algorithm of unsupervised
learning [7]. Let us begin with the equality

| : p(x'kq'g)
an(x 7 Z‘sz > p(x kg’ g)

[In plk; )+ In p(x'k:¢") ~In plk|x' 5q7,2) |-

We use the g that was found with the help of em-
pirical material ¥ by maximizing the log-likelihood
function. Therefore, the summand

Z”: > p(x'.k;q’,2)

TE D P 9)
will stay constant. To increase the second term, it is
enough to find such ¢”/*' that
p(x'. kg’ g)
i=1 keK” Zk I p(x k’,q -& )

<i 3 p(x'.k;q’, )

i=l kekT Zk’eKT p(xisk’;qjsg)

“In p(k; g)

‘In p(x'

In p(x' [ksq"™), (5)
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if it exists. If it does not exist, the problem is solved.
Shannon’s lemma implies [8]
 p(¥ kg’ )
D PELKG Q)
_ p( kg’ 9)
D PEKG Q)

In p(k|x';q’, g) <

J+l

In p(k|';q"", 2),

meaning that the third summand will not decrease
after replacing ¢ with ¢*' within the logarithm.
Hence, we have

In] [ p(x';q") <] p(x':¢"").
i=1 i=1

Therefore, one can perform step-by-step search
for new ¢!, j e N, and thus improve the value of
the likelihood function. The value of ¢° can be cho-
sen arbitrarily (for example, ¢° = 0).

Let us consider a partial case of the problem (5)
as the maximization problem

Jj+l € areg max N P(xl:k;_qj >g) .
Sk Zlsz D PLKSG Q)

‘In p(x' |k; £). (6)

For convenience, let

P(xi,k;qj,g) (7)
v PESK5 G, 8)

We need a gradient of the expression that needs

to be maximized in (6). The partial derivative of its

i-th summand with respect to f(c, /) foreachce C
and /€ K is calculated by the formula

o (e m;”(' :q',2) Inp(x'[f /) =

= Y plk|x':q’.g)-u' (k). ®)

kekT

plk|x' k;q’,g) =
| >

where

u' (k)= [x =cnk, =01-|T|

teT
Z p(c' |k ) [c"=cnk, =1]
c'eC
Finding ¢ and g using the maximum likelihood

estimation is an intractable optimization problem
in general case because it requires the summation
of a vast number of small numbers. However, both
functions are concave, which theoretically allows
gradient optimization. In the next part of the work,

stochastic gradient descent is described, which al-
lows us to partially overcome the described difficul-
ties and obtain acceptable results in practice.

Let us formulate the problem of unpaired learn-
ing of parameters of a random field in the context
of this work. We have sets T of pixels, ' = 27 of
neighbors, K of labels, and C of colors. We know
that images x and corresponding labelings k& have
a statistical relationship, which is described by the
formula (3), labelings have a distribution of the
form (1), and the probability of an image to map
a pixel to a specific color given the known labeling
has the form (2). The input is a collection & of la-
belings and a collection X of images, which do not
have to correspond to each other. We need to find
estimates of parameters ¢ and g.

Finding Estimates of Parameters of
Random Fields

Calculating gradients of logarithms of probabil-
ity functions of random fields is an intractable
problem because it requires the summation of too
many small numbers. Therefore, we use a stochas-
tic gradient — random variable, expected value of
which equals the actual value of the gradient. Since
the gradients we are interested in are mathematical
expectations of certain functions, the Monte Carlo
method can be applied.
1. Stochastic Gradient Method
We will sketch the application of the stochastic
gradient method to tasks described in the current
work. Let values from a finite set U be given proba-
bilities p: U — [0; 1], and suppose the gradient u of
some concave continuous function, which we want
to maximize, can be represented as an expectation
u(s) = p(s")-v(s,s"), )
s'eU
where v is some known function. Let us apply the
Monte Carlo method to calculate the estimate #(s)
of the gradient u at the point s € U: we generate m
independent values 5 =(s',...,s”) with the distri-
bution p and calculate their average value

ii(s) = zv(ss)

We apply this estlmate as in the usual gradient
method: given such a sequence a' eR,, i e N, that
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lima' =0,

lim) a' =oo,

i—0 =0

we choose an arbitrary s’ € U and compute [9]

+a’ -a(s™) (10)
for any step i € N,. Choosing the number of steps is
out of the scope of this paper.

2. Gibbs Sampling

We need to generate values from a known dis-
tribution to estimate the gradient. In our case, this
task is difficult because images can consist of thou-
sands, millions, or hundreds of millions of pixels.
To overcome this problem, we use Gibbs sampling
[3]. Let us consider its application in the example
of labeling sampling with known distribution (1)

G(lg)-exp{z gk, k, )} for a known

S[ _ si—l

pk;g) =

1'el’

mapping g. Let us choose an arbitrary labeling
k:T — K and an arbitrary pixel € T. Hence the
labels in all neighboring pixels are known, it is pos-
sible to calculate the distribution of a label:

ool 300

t'eN,

Zexp{ > g(f,k,,)}

rek t'eN,

p(kt|kf” t,eNx;g)_

Sample a label from this distribution and write
the value to k. The procedure of calculating the
distribution, generating the label, and modifying
the labeling should be performed for each pixel
t € T. We will call this sequence of actions the itera-
tion of Gibbs sampling. One needs to use the labe-
ling k obtained after the previous iteration at each
iteration.

3. Application of Stochastic Gradient Method

To find g, we need to generate random labelings
with known probabilities p(k; &), j € N,,, where g
is the value of parameter g at step j of the stochastic
gradient method, to evaluate the partial derivatives
4).

To solve problem (6) we need to evaluate par-
tial derivatives (8) for a known collection X, known
mapping g (which is the solution to the problem

(5)), and known mapping ¢. This requires sampling
of random labelings with probabilities p(k|x';q’,
2). In this paper, we consider the case X = (x'), that
is, recognition of a single image x' given a collec-
tion k. Only f varies when we solve the problem
(6). Hence, if there is only one image x', the mul-
tiplier Y, p(x',k’.q’,g) can be carried out from

k'ek”
within the argmax because it does not depend on f
and it does not affect the result. Now, to find q’ .

jeN,, it is enough to solve the problem ¢’" =

€ max z plk,x';q’,g) - In p(x' |k f) approxi-

SRR

mately using the stochastic gradient method (10).

Binocular Stereo vision Problem

The section is devoted to several possible formula-
tions of the problem of binocular stereo vision [10]
and experimental checks of the described approach
to unpaired learning.

1. Bayesian Recognition Problem

Bayesian recognition problem [11; 8] is finding
such an answer d from the finite set D7 of possible
answers for the input signal x that for a given loss
function w: D" x K7 — R is the solution of the op-
timization problem

d" € argmin Z w(d, k) p(x,k). (11)
d:T>D q:7->D

If D= Kand w(d, d") =[d # d'], we have a prob-

lemd* eargmin > p(x,k)-[d =k]= max p(x d).

d:T>K  T>K
To state a more relevant problem, consider a
case D = Kand
w(d,d") =Y [d, #d; ]
tel
The solution to the problem with such loss func-

tion requires the calculation of marginal distribu-
tions of labels for each pixel [12]

d eargmm Z p(x,k)- Z d, = k

(12)

d:T=>K Tk teT
:argmaxz Z plx, k)= (13)
d:T->K  ter i: Td—ﬂ(

= d, eargmax Z p(x.k).
d:T->K Tk
k=d,

Finding marginal probabilities of labels £ € K for
each pixel ¢ e T requires computation of 7'|-| K |
sums, each containing | K [ numbers.
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a—Baml b — Bam?2
d — Poster e — Sawtooth f— Venus

Fig. 1. Images of depth maps from the dataset |14], which were used to estimate g

Let us look at one more loss function because it
leads to interesting results: for the function
w(d,k) = (d—k), (14)
if D is a convex closure of the set K (and thus con-
tinuous), the solution of the Bayesian recognition
problem is the conditional expectation [12; 8]

d" eargmin ) p(x.k)-D(d, —k) =

d:T2D b T K =T

* Z]{:T

« P ky-k
=d = -
Z.{-;T—u\' p(x, k)

2. Experimental Results

In the experiments, we used a computer with a
central processor Intel Core 17-8550U (4 cores, 8
threads, clock frequency 1,8 GHz) and a graph-
ics processor Nvidia GeForce MX150 (maximum
clock frequency 1,5 GHz, 3 computing units, 2 GB
of RAM). Parallel computing on graphics proces-
sors was used with single-precision floating-point
numbers (32-bit float) and CUDA technology [ 13].

(15)

Let us define two imagesx, :7 —Candx, : T —>C
finite se K < {0} xZ of possible labels (we will also
call them disparities) and neighborhood structure
= %t,t’}ef: [|e—2' : =1} }

For 6 e R, let weights g be given by g(/, /', 0)=
=1+0:-[¢=¢].

For a certain m e N, and the finite set p=(f,....

m

B,...) let weights ¢ be definedby ¢ (x,.k,:f) =D B -
ety —x it +k) | =) |+
+ﬁ mtl " DX](.() _xg(" +kr) [ >m:|-:

that is, we assign a weight for each difference be-
tween the intensities of the corresponding pixels
x,(#) and x,(1+k ). A separate weight B, is used for
the differences exceeding m.

The value of g was evaluated from data provided
by Middlebury College [14]. We used the follow-
ing scenes to take labelings from: Barnl (Fig. 1,a),
Barn2 (Fig. 1,b), Bull (Fig. 1,¢), Poster (Fig. 1,d),
Sawtooth (Fig. 1,e), and Venus (Fig. 1,/).

m+
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b — Second iteration: different labels are
grouped, but the changes are quite frequent:
1.8-10* transitions instead of the required
I5=2-103‘

noise

¢ — Iteration 42: a lot of black pixels (label
0) because pixels in the images usually
correspond to the objects with the same

d —Iteration 47 (last)

distance from the camera

Fig. 2. Examples of generated labelings g

a—Left image

Fig. 3. Tsukuba Stereo pair from the dataset [14]

The dataset contains real-valued labelings with
an accuracy of 1/8 part of a pixel, so the values
were rounded, which reduced the number of la-
bels in the set K to 21. The computation of pa-
rameters g was performed using 47 steps of the
stochastic gradient method (10) with steps’ lengths

, 1 ; 10
ad=——i=1l,ad =——, i >22.
VR N

For each iteration / of the gradient method, we
used 100+ average values for applying the Monte
Carlo method. We sampled w+A+10-i images of
size w=500 by A=200 pixels to compute each ave-

| v = i1 R
‘ |
o ff s
» - . s

b —Right image

c¢— Disparity map

rage value. The procedure took six hours for 47 ite-
rations. The result is 8 ~ —34,54.

Note that hundredths matter. Therefore, round-
ing to tenths was unacceptable. For example,
0 ~ —34,63, black images were generated (relative
error of 100), and at © =—34,59, the results were
almost perfect (relative error of 0,5 %). Visualiza-
tion of some labelings is shown in Fig. 2. There are
a lot of black pixels, which correspond to the label
0. Since the form of the function g does not depend
on the specific values of the neighboring labels, we
are only interested in the amount of neighboring
pixels that have different labels.
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a — Maximization
marginal distributions:
failure rate is 48%. MSE is
15.83

Fig. 4. Second iteration: outlines of some objects are visible

a — Maximization
marginal distributions:
failure rate is 21%. MSE is
3.49

Fig. 5. Third iteration: objects are much cleaner

of b — Average: failure rate is ¢
82%. MSE is 4 84

of B = verage: failure rate is ¢
59%. MSE is 3.10

1

— One of the sampled
images

. R ,
: — One of the sampled
images

! i Ny e ! ¥
a — Maximization of & — Average: failure rateis ¢ — One of the sampled
marginal distributions: 39%. MSE is 2.04 images

failure rate is 14%. MSE is

1,98

Fig. 6. Iteration 89: the disparity map is ready except for a few segments

We used the Tsukuba stereo pair (Fig. 3) to esti-
mate ¢g. The number of labels is |K| =21, as for the
evaluation of g. The parameter B contains 64 ele-
ments. The computation of ¢ was performed using
88 steps of the stochastic gradient method (10) with

10 e N

steps’ lengths ' = ———————, i )
pe e [G-n/10]+1"

For each iteration of the gradient method, the
Gibbs sampler has generated Rw+ h)/2|+iima-
ges of size w=384 by h=288 pixels to obtain 100+i
average values for applying the Monte Carlo met-
hod.

The first iteration took 102 seconds and gener-
ated a black image, the second lasted 177 seconds
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a — Maximization

marginal distributions: 38%. MSE is 2.02 images
failure rate is 15%, MSE is

2.06

Fig. 7. Iteration 125: no significant changes are observed

(Fig. 4), and the third took 200 seconds (Fig. 5).
The entire procedure took almost 15 hours for 89
iterations (Fig. 6). Additionally, 36 iterations were
performed for 12,5 hours. These iterations slightly
improved the result visually (Fig. 7). In the figures
4—7, one can see the visualization of maximiza-
tion of estimates of marginal distributions for each
pixel (13), estimates of expected values of labels for
each pixel (15), and one of the generated images
that were used to construct the corresponding es-
timates. The figures show that the sampling results
(Fig. 4,c, 5,¢c, 6,c, and 7,c) look noisy. However,
an image of the most frequent labels in each pixel
(Fig. 4,a, 5,a, 6,a, and 7,a) formed a fairly clear
idea of distances to objects. Visualizations of aver-
age values (Fig. 4,b, 5,b, 6,b, and 7,b) look blurry.
However, some objects can also be seen on them.

For quantitative comparison of the results, we
use average values of loss functions (12) and (14),
which we call failure rate and MSE (mean squared
error) respectively. To calculate the failure rate for
the average image, we round the values of the aver-
age image. We ignore the regions that correspond
to black pixels on the ground truth disparity map
(Fig. 3,c) for a fair comparison because they in-
dicate missing information. In our experiments,
maximizing marginal probabilities produced label-
ings with lower failure rates than the average im-
ages. MSE is lower for the average images on the
early iterations. This corresponds to the penalty
functions used.

The value of the parameter f is shown graphi-
cally in Fig. 8. Note that . often has the form

of & — Average: failure rate is c¢—

%

One of the sampled

B,=-b-i+c or B,=-b-i’+c for certain beR
and ¢ € R. It can be seen from the graph that the
extremum is not at point 0, but at point 1, and
even the value of B, is greater than the value of .

This contradicts the widespread practice of us-
ing squared difference or absolute value of inten-
sities as B,. The estimate of parameter [,;, which
matches all color differences that are greater than
62, is -5,56.

Conclusions

Unpaired learning of parameters of random fields
is a theoretically grounded and practically helpful
approach in pattern recognition. With the develop-
ment of parallel computing on GPUs, Gibbs sam-
pling becomes an increasingly attractive tool for
working with random fields.

The experiments showed results that were previ-
ously unknown to the authors: function (Fig. 8) of
vertex weights may not have the maximum weight
at the point where the color difference of the corre-
sponding pixels is zero, and at the point where the
pixels are slightly different. It can be interpreted
as follows: the camera receives images slightly dis-
torted by noise and discreteness of the sensor per-
ception, so the probability that the corresponding
pixels of two images of a stereo pair have the same
color is lower than the probability that their colors
are slightly different. This is a fascinating fact for
further research.

Also, the experiments showed us fairly expected
results: maximizing marginal probabilities pro-
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Parameter f*
b [

N .
MM
0 5 10 15 20 25 30 35 40 45 50 55 60
Index i (difference |x1(¢)-x2(f+4;)|) of parameter 3

o040

5-0-0-5--8 P
bl s & B e o & & o o o

Fig. 8. The plot of

duced labeling with lower failure rates than the av-
erage images because this approach was designed
to solve a Bayesian problem with this penalty func-
tion. Though, the average images do not always have
lower MSE. A lower convergence speed of averag-
ing may explain this compared to maximizing mar-
ginal probabilities. One of the essential drawbacks

of the used approaches is their operation time.
Therefore, using them in combination with fast al-
gorithms may be feasible. For example, the result of
training (mappings q and g) can be submitted to the
input of an algorithm that iteratively calculates the
approximation to the solution of the problems (11)
(for example, [15—17]).
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BUKOPUCTAHHA CEMITTTIOBAHHS 3A TTEB30M
JJIA OUIHKU PO3B'A3KY 3AJAYI HECITAPEHOI'O HABYAHHA

Beryn. ¥V 3apavyax MaliMHHOTO HaBYaHHSI BUHMKAIOTh CUTYallii, KOJM CKJIaAHO a00 HEMOXJIMBO OTPUMMATU HaBYAJIbHY
BUOIPKY, 1110 CKJIAJA€ThC 3 TTap CIIOCTEPEKEHb i BIAMOBIIHUX iM MMPUXOBaHMX CTAHIB JOCIIIKYBaHUX 00'€KTiB. [1pHuKIamomMm
Takoi 3a/1ayi € 3aja4a MepeHoCcy CTUJIIO OJHOIO MaJIlOHKY Ha iHIIMWI: MU MOXEMO 3i0paTu MpUKJIaad MaltoHKiB IBaHa
AitBazoBcbkoro Ta CanmbBamopa Jlaji, mpoTe CKJIaIHO MepeMaTioBaTH KapTUHU OMHOTO 3 IIUX MUTIB Y CTWJII iHIIOTO. Y
TaKMX BUTIAIKAX € MOXJIMBICTh TOCTABUTH 3a/1a4y HECTIAPEHOTO HAaBYAHHSI, BXiTHUMU JTaHUMU SIKOI CITyTYIOTh IBa HAbopH:
Habip criocTepekeHb i Habip MPUXOBAHUX CTaHiB, MPUUYOMY CITOCTEPEXKEHHS MOXYTh HE BiIOBiZaTH CTaHAM.

MeTta. MeTolo poOOTH € TOOYI0BA Ta eKCIIepUMEHTaIbHA TIePeBipKa aJIrOPUTMY HECITapeHOro HaBYaHHS, 0COOJIUBICTIO
SKOTO € BAKOPUCTaHHs ceMILTIoBaHHs 3a [16630M. Takuii miaxin Haxae IMpoKi MOXIMBOCTI 1J1 IapajieIbHUX OOUMCIIEHD,
1110 A€ 3MOTY 3iiCHIOBATU EKCIIEPUMEHTAIbHY MEPEeBipKY 3a 10TToMOoroto TexHoJorii CUDA, sika yMOXJIMBITIOE BAKOHAHHST
napajeJbHUX 00UMCceHb Ha TpadiyHUX TTpoLiecopax.

Pe3ynbratn. EKcniepuMeHTHM Bi3yaJlbHO TMOKa3aJu JOLUIBHICTh 3allpOMOHOBAHOTO MiAXOAY Ta HaAaJIu YMCEIbHI
MOKa3HUKMU, SIKi BKA3ylOThb Ha KOPEKTHICTh BUKOPUCTAHHS HaBeJEHWX METOMAIB MiHiMi3allii MaTeMaTUYHUX OYiKyBaHb
MeBHUX 1TpadiB, TAKUX SIK cCyMa KBaJapaTiB BiIXWUJIEHb i KiJIbKiCTb HEBIpHO PO3Ii3HaHUX TiKcesiB. Takox B pe3ysbrarti
HecInapeHOro HaBYaHHs OyJIO BUSIBJIEHO, 11O JUISl HABEACHUX AaHUX (DYHKIIisl BariB, siKa BiAMOBia€ iHTEHCUBHOCTI LIyMY
Ha 300paXKeHHi, J0csrae ONTUMYMY He B HYJIi, a B ONUHMULII.

Mertomu. 1151 po3B’sA3aHHs 3a1a4i OyJI0 BUKOPUCTAHO CEMILTIOBAHHS 3a [16630M i CTOXaCTMYHUIA rPaNicHTHUIA METOL.
J1s1 eKcriepMMeHTaJIbHOI MepeBipky Oyn0 BUKOpucTaHO TexHojoriio CUDA mapanenbHUX OOYMCIEHb Ha TrpadiuHux
npoiiecopax.

Bucnosku. ExcriepyMeHTH TOKa3anu AOLUIbHICTh BUKOPUCTAHHSA CeMIUTIOBaHH 3a [16630M y 3aayax HECIIAPEHOTO
HaBUYaHHS mapamMeTpiB rpadoBux Mmozeneit. [TorouHa peasizalisi morpedye 6araTo yacy st 00poOeHHs 300pakeHHs, aJjie
Ma€ 3HaYHWI TTOTEHIIiaJ IS TapaieabHux oourciers Ha CPU, GPU, FPGA a6o iHIIIOMy TIPUCTPOi UM MepeXi TIPUCTPOIB,
1110 103BOJIUTH 3HAYHO MPUCKOPUTH ii 3 PO3BUTKOM OOUMCITIOBAIbHOI TEXHIKM.

Karouosi caoea: necnapene naguanns, cemnaosanns 3a Ii663om, Monme-Kapao aanuyroe Mapkosa, cmepeobauenns.
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