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USING GAME THEORY

TO IMPROVE DRONE OPERATIONS

The integration of game theory into optimizing the selection of drone charging stations and scheduling their operations is a
revolutionary advance in unmanned vehicle logistics. Our research explores this frontier by emphasizing methodological
innovation through the use of payoff matrices and Nash equilibrium to address the complex and changing requirements
of drone operations. This research not only provides a strategic framework for resource optimization, but also highlights
new ways to apply game theory to critical areas such as adaptive routing and swarm intelligence in drone management.
By combining theoretical game models with practical applications of drones, we present a perspective that is poised to

redefine drone operational strategies, paving the way for future research in this area.
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Introduction

The integration of game theory into optimizing
drone charging station selection and scheduling
heralds a groundbreaking paradigm shift in un-
manned vehicle logistics. Our investigation delves
into this frontier with a focus on methodological
innovation, leveraging payoft matrices and Nash
equilibrium to intricately address the multifaceted
and evolving requirements of drone operations. By
implementing this approach, our study not only
furnishes a strategic framework for resource opti-
mization but also illuminates novel pathways for
the application of game theory in pivotal domains
like adaptive routing and swarm intelligence wi-
thin drone management. Through the fusion of
theoretical game models with practical drone ap-

plications, we present a perspective composed to
reshape the operational strategies of unmanned
aerial vehicles, laying the groundwork for future
research endeavors in the field.

Overview to Solutions
that Uses Game Theory in Drones

Game theory has been applied in various ways to
enhance the performance and efficiency of drone
operations. For instance, a survey by M. Zhou et al.
discusses the utilization of game theory and ma-
chine learning in wireless communication net-
works supported by UAVs [1]. The study highlights
how these tools can be used for resource allocation
and energy management in various fields such as
architecture, business delivery, military and civi-
lian theaters. While the survey explores the inte-
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gration of game theory and machine learning in
wireless communication networks supported by
UAVs, a potential gap could be a deeper explora-
tion of real-world implementation challenges and
the scalability of proposed solutions in practical
communication networks.

In another study, a game theory mechanism and
a nature-inspired algorithm were used to enable a
fully autonomous drone-swarm to perform coo-
perative mission-oriented operations [2]. The dro-
nes were modeled as intelligent agents with dy-
namic risk tolerance levels, and an auction-based
team formation was used for specific targets. A po-
tential gap could be a more extensive evaluation of
the scalability and robustness of the proposed co-
operative strategies in large-scale swarm missions.

Next research paper discusses the strategy of
drones’ intrusion detection based on game theory
[3]. The paper establishes a non-cooperative com-
plete information static game model, using game
theory to regard inertial measurement unit (IMU)
and GPS as the strategy object.

A different approach was taken in a study that
developed two game theoretical algorithms, one
competitive and another cooperative [4].

The competitive algorithm initiates strategic ga-
mes among individual drones and their neighbo-
ring counterparts, aiming to determine the Nash
Equilibrium. The cooperative algorithm establi-
shes electoral systems wherein drones can collec-
tively express their preferences for task allocations
among neighboring drones. The article [4] presents
two game theoretical algorithms for task alloca-
tion in drone swarms: one competitive and ano-
ther cooperative. There are a few areas where im-
provements can be made:

1. Improved Competitive Algorithm: The current
competitive algorithm searches for the Nash Equi-
librium among each drone and its neighbors. An
improvement could be to use a learning algorithm
that allows drones to adapt their strategies over
time based on the outcomes of previous games.
This could lead to more efficient task allocation as
drones learn to anticipate the strategies of their
neighbors.

2. Improved Cooperative Algorithm: The current
cooperative algorithm allows drones to vote on

their preferred task allocations for their neigh-
bors. An improvement could be to use a consensus
algorithm that ensures all drones agree on the task
allocation. This could prevent situations where a
drone is assigned a task that it is not well-suited for.

3. Multi-Agent Reinforcement Learning: A new
approach could be to use multi-agent reinforce-
ment learning for task allocation. In this approach,
each drone would be a learning agent that tries to
maximize its own reward. The reward function
could be designed to encourage efficient task allo-
cation across the swarm.

Real-world implementation challenges. Imple-
menting game theory-based strategies in actual
drone operations presents several challenges and
limitations. These challenges are due to practical
constraints and the complexity of real-world en-
vironments. Below are key factors to consider:

1. Communication constraints:

» Bandwidth limitations: Drones need to con-
stantly communicate their positions and intended
moves. Limited bandwidth may prevent this com-
munication, especially in remote or densely popu-
lated areas.

= Latency issues: Real-time decision-making
requires low-latency communication. Delays in
transmitting and receiving data can lead to outdat-
ed information, impacting the effectiveness of the
strategy.

= Signal interference: In urban environments
or areas with high electromagnetic activity, signal
interference can disrupt communication between
drones.

2. Environmental Uncertainties:

= Weather conditions: Variables such as wind,
rain, and fog can significantly affect drone perfor-
mance and behavior. Game theory models need to
account for these unpredictable factors, which can
be challenging.

= Dynamic obstacles: Moving obstacles (e.g.,
birds, other aircraft) are not always predictable,
making it difficult to incorporate them reliably into
strategic models.

» Varying terrain: Over diverse terrains, the
drones’ operational capabilities might differ, re-
quiring adaptive strategies that can cope with these
changes.
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Using Game Theory

Game theory can significantly optimize the selec-
tion of charging stations and the scheduling of
charging times for drones. Here’s an example to il-
lustrate this:

Consider a scenario where we have multiple
drones (D1, D2, D3), and multiple charging sta-
tions (S1, S2, S3). Each drone has different charg-
ing needs based on their battery status and the
tasks they need to perform. Each charging station
has different capacities and current loads.

In this scenario, each drone can be considered as
a player in the game. Their objective is to maximize
their own benefit, which in this case is to get
charged as quickly as possible. The charging sta-
tions can also be considered as players who want to
maximize their utilization.

Now, let’s say D1 and D2 both need to charge
and both are closest to S1. If both drones go to S1,
they might have to wait, which is not optimal.
Using game theory, D1 and D2 can consider the
benefit of going to a further station (S2 or S3) to
avoid waiting. If the benefit of saving time out-
weighs the cost of traveling further, one of the
drones might choose to go to a different station.
This decision-making process can be modeled as
a game where each drone is trying to maximize
its benefit.

Similarly, for scheduling charging times, consi-
der a scenario where D1 needs a lot of charge but
can wait and D2 needs less charge but is in a hurry.
In this case, it might be beneficial for D1 to let D2
charge first. This can be modeled as a game where
the drones cooperate to achieve the best overall
outcome.

By modeling these scenarios as games, it’s pos-
sible to find an equilibrium where all drones get
charged according to their needs, and the charging

The payoff matrix for each drone

D s1 s2 $3
D1 (2,1,3) (1,2,3) (3,2,1)
D2 (1,2,3) (2,1,3) (3,1,2)
D3 (3,.2,1) (3,1,2) (1,2,3)

stations are utilized efficiently. This approach can
lead to a more efficient use of resources and better
performance of the drone fleet.

Let’s consider a scenario with three drones (D1,
D2, D3) and three charging stations (S1, S2, S3).
Each drone has three strategies: go to S1, go to S2,
or go to S3. The payoft for each drone is the amo-
unt of time saved by choosing a particular station.
The payoff matrix is presented in Table:

In this matrix, the first number in each cell is
the payoft for D1, the second number is the payoff
for D2, and the third number is the payoff for D3.
For example, if D1 goes to S1, D2 goes to S2, and
D3 goes to S3, then D1 saves 2 units of time, D2
saves 1 unit of time, and D3 saves 3 units of time.

Now, let’s find the Nash Equilibrium, which is a
set of strategies where no player can benefit from
unilaterally changing their strategy.

If D1 goes to S1, D2 goes to S2, and D3 goes to
§3, none of the drones can increase their payoft by
unilaterally changing their strategy. So, (S1, S2, S3)
is a Nash Equilibrium.

Similarly, if D1 goes to S2, D2 goes to S3, and D3
goes to S1, none of the drones can increase their
payoff by unilaterally changing their strategy. So,
(S2, S3, S1) is also a Nash Equilibrium.

Therefore, this game has multiple Nash Equilib-
rium: (S1, S2, S3) and (S2, S3, S1). In both cases, the
drones choose different charging stations, which ma-
ximizes the total time saved and avoids any wai-
ting time at the stations. This is an example of how
game theory can help optimize drone charging.

Mathematical Representation

Let’s mathematically represent game theory. We can
employ the concept of payoff matrices and Nash
Equilibrium. Here’s a detailed description. The payoff
matrix represents the benefit each drone gets from
choosing a particular charging station. The benefit
is quantified as the amount of time saved by choos-
ing that station.

A Nash Equilibrium in this context is a set of
strategies (choices of charging stations) where no
drone can increase its payoft by unilaterally chan-
ging its strategy, given the strategies of the other
drones.
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The Nash Equilibrium can be calculated as fol-
lows:

1. Identify the payoff for each drone based on
their and others’ station choices.

2. Determine if a unilateral change of strategy
increases the payoff for any drone.

3. If no drone can increase its payoff by chan-
ging its strategy alone, the current set of strategies
is a Nash Equilibrium.

Scenario 1: D1->S1, D2->S2, D3->S3

Payoffs: D1=2, D2=1, D3=3

No drone can increase its payoff by changing
its station alone. So, (S1, S2, $3) is a Nash Equi-
librium.

Scenario 1: D1->S1, D2->S2, D3->S3

Payoffs: D1=1, D2=1, D3=1

No drone can increase its payoff by changing its
station alone. So, (52, $3, S1) is also a Nash Equil-
ibrium.

In both scenarios, the distribution of drones to
charging stations reaches a state where any unilat-
eral change by a drone would not lead to an im-
provement in its payoff. This characteristic defines
the Nash Equilibrium for each scenario. This ana-
lysis correctly identifies the Nash Equilibrium
based on the given payoftf matrix, showcasing an
application of game theory in optimizing drone
charging station selection.

We considered the use of game theory to opti-
mize the choice of charging stations and schedule
charging times for unmanned vehicles.

We also considered a scenario where we have
several drones (D1, D2, D3), and several charging
stations (S1, S2, S3). Each drone has different
charging needs, depending on the state of the
battery and the tasks it has to perform. It was de-
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BUKOPVICTAHHSA TEOPII ITP /11 TTIOKPAIIIEHHA OTIEPALIIN IPOHIB

Berym. ¥V wmift crarTi BOCTiIKYETbCA B3aEMOfiA MDX Teopiero irop i 6esminmorHmkamu. InTerpania Teopii irop B
OITMMI3alio BMOOPY Ta IVIAHYBAHHS 3aPSAAHUX CTAHIII /I APOHIB CBIAYUTH IIPO HOBATOPCHKY 3MIHY IapafurmMu
B JIOTICTHUII] 6e3MiTOTHNX TpaHCIOPTHMX 3acobiB. Haltre gocmifykeHHsI 3armmnOMIOEThCA B L€l pyOiK, 30cepemKyo-
YJCh Ha METOMIO/IOTIYHMX iHHOBAIliAX, BUKOPUCTOBYIOUM MAaTpMIli BUTpaIliB i piBHOBary Hemra f1a ckiagHOro
BUpilIeHHA 0araTOrpaHHMX i MIHIMBMX BUMOT [JO eKCIUTyaTalil 6e3miIoTHUKIB. 3anpoBapKy0un Leil mifxif,
HaIlle OCTi/PKeHHA He /TUIIe 3abes3Iedye CTpaTeridyHy OCHOBY /A ONTUMI3allil pecypciB, a it BUCBIT/IIOE HOBI IIIA-
XI 3aCTOCYBaHHA Teopil irop y KmouoBux cdepax, TaKuX AK afalTUBHA MapIIPyTU3allis Ta iHTeNIeKT poiB y Kepy-
BaHHI pOHaMu. 3aBJAKM OENHAHHIO TEOPETUYHNUX irPOBUX MOJeell i3 MPaKTUYHMM 3aCTOCYBaHHAM JIPOHIB MU
[IPEJICTAB/ISIEMO [IEPCIIEKTUBY, CIPSIMOBAHY Ha 3MiHY ONEpALiifHUX CTpaTeriil 6esIiIOTHNX TaNTbHUX alapaTis,
3aK/Iafaloyyl OCHOBY I MalOyTHIX JOCTIFHUIIPKUX CIPOO Y Liilt ramysi.

Mera ctarrTi. [JaHe HOCTif)KeHH CIPsIMOBaHe Ha 3aCTOCYBAaHHs IPUHINIIIB Teopil irop B onTuMisaniio Bubopy
Ta IJTAaHYBaHHA 3apANHMUX CTaHIiN And gpoHiB. [Ipefcrapiena TyT KOHIeNTyalbHa OCHOBA PO3TIAJAE IPOHM He
IIPOCTO SK He3a/IeKHIX areHTiB, a AK aJallTVBHI, CIII/IbHI 06’€KTH, 1[0 OPIEHTYIOTLCA B CKIAJTHOMY CepPeIOBUII.

Mertopu. Teopis irop, piBHOBara Hemra, MaTeMaTidHe IpefCTaBICHHS, aHAIi3.

PesynpraTtn. PesynbraTui 1bOro BOCHiJKeHHA IIOKa3yIOTh, [0 PO3IOJLI JPOHIB O 3apsANHUX CTAHLIN JOCATAE
CTaHy, Jie >KOfIeH JPOH He MOyKe 30i/IbIINTY CBill BUTpAIL, OfHOCTOPOHHBO 3MiHMBIIN CBOIO cTparerito. L1 xapak-
TepUCTUKA BU3HAa4Ya€ piBHOBary Heia [ KOXXHOTO BUNAKY, AKMIT pO3IIAHYTO Y Liit cTarTi. HaBemenuit ananis
IIpaBU/IbHO BY3Haya€ piBHOBary Helra Ha 0cHOBI 3alaHOi MaTpuIli BUTpallliB, JEMOHCTPYIOUNM 3aCTOCYBaHHA TeOPil
irop m1a ontuMisanii BM6opy 3apAHMX CTAaHILIN IS JPOHIB.

BucHoBKU. AHasti3 BUKOPUCTAHHs Teopil irop /i onTuMisarii BUOOpy 3apsAHUX CTAHIN i IVIAHYBaHHS IS
0e3MMiTOTHNX amapaTiB [jaB OaraTOHAMIHI Pe3yNIbTaTy, BUKOPUCTOBYIOUM KOHIIEIIII0 MATPUIb BUTPAIILY Ta PiB-
Hosaru Hema. ITpofleMOHCTPOBaHO CYCTeMAaTUYHMIL TifIXifl O IPUITHATTA pillleHb, AKUI BpaXOBY€E pi3HOMaHiTHI
noTpedu 3apsAmKaHHA OKPEMUX IPOHIB 1 JOCTYIHI pecypcu 3apsfHIUX CTaHIii. 3a JOIIOMOIOI0 1{bOTO METORY BU-
3Ha4eHo piBHOBary Helra, Konm >KofieH IpOH He MOK€ OJHOCTOPOHHBO IOKPAIMUTHU CBiif BUTpaIll, IO BKa3ye Ha
OIITMMA/IbHIIT PO3IOALUT BUOOPY 3apsIAHUX CTAHIIiN MK JPOHAMIL
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