Fundamental Problems
in Computer Science

dyHAaMeHTanbHi MpobaemMu
Computer Science

https://doi.org/10.15407csc.2024.02.003
UDC 004.932

A.O. SMIRNOY, PhD Student, Senior Researcher, International Research and Training
Center for Information Technologies and Systems of the NAS and MES of Ukraine.
40, Akademika Glushkova Avenue, Kyiv 03187, Ukraine,

ORCID: https://orcid.org/0009-0002-6509-4135,

tonysmn97@gmail.com

DYNAMIC MAP MANAGEMENT
FOR GAUSSIAN SPLATTING SLAM

Map representation and management for Simultaneous Localization and Mapping (SLAM) systems is at the core of
such algorithms. Being able to efficiently construct new KeyFrames (KF), remove redundant ones, and constructing
covisibility graphs has a direct impact on the performance and accuracy of SLAM. In this work, we outline the algo-
rithm for maintaining a dynamic map and its management for the SLAM algorithm based on Gaussian Splatting as
the environment representation. Gaussian Splatting allows for high-fidelity photorealistic environment reconstruction
using differentiable rasterization and can perform in real-time making it a great candidate for map representation in
SLAM. Its end-to-end nature and gradient-based optimization significantly simplify map optimization, camera poses
estimation, and KeyFrame management.

Keywords: radiance fields, scientific computing, slam, bundle adjustment, gaussian splatting, differentiable rendering.

Introduction on the camera setup are divided into monocular

(single camera), stereo (two-camera setup), and
Simultaneous Localization and Mapping [5] is an ,lti-camera setup.

algorithm that performs reconstruction of the This work uses a monocular camera setup as it

environmenjt using input data fr'om SENsors on an g the most challenging (due to ambiguities) yet

agent and simultaneously localizes that agent in ¢ appealing in terms of its applicability.

the map. . . . Besides images as input data, the only known
SLAM algorithms are used for robotic navi- parameters we require are the camera’s intrinsics:

gation and mapping [8] and augmented reality ex- £5c,] length f _, principal point C_, and lens dis-
periences. Depending on the requirements and tortion coefficients q. v

operational constraints sensors from which the In this setup, input data at each time-step
input data is retrieved vary significantly and thus i 55 image

the approaches to solving the problem. However,

cameras are one of the most appealing types of I, € R%™,

sensors as they are extremely cheap and easily

available. Algorithms that utilize only cameras are ~ where C is the number of channels in the image,
known as Visual SLAM [8], [1] and depending ~ W and H are its width and height.

Cite: Smirnov A.O. Dynamic Map Management for Gaussian Splatting SLAM. Control Systems and Computers,
2024, 2, 3—17. https://doi.org/10.15407/csc.2024.02.003

© Bupasernp B]I «Akagemmnepioguka» HAH Ykpainu, 2024. Crarts ony6/1ikoBaHa Ha yMOBaX BiIKPUTOTO JOCTYITY
3a ninensieto CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

ISSN 2706-8145, Control systems and computers, 2024, No. 2 3

A.O. Smirnov

Frame F, at time-step ¢ is a bundle of current
image I, and a current camera pose estimate 7.

It is used primarily to refine camera pose T,
before proceeding to the next frame at timestep
t + 1. However, we cannot build a map of the envi-
ronment by storing every frame as it is computa-
tionally intractable, especially during global map
optimization. Therefore, we maintain a list of Key
Frames KF, which are constructed from frames
F, and contain its camera pose T, image I, and a
time step ¢ at which it was created. A map is then a
set of Key Frames that optimally represent the en-
vironment.

KeyFrame creation requires careful choices
as it directly impacts the size of the map and there-
fore the computational complexity of certain ope-
rations with it such as Global Bundle-Adjustment
(GBA) or Loop-Closure (LC). Optimal KeyFrame
creation algorithms distribute KeyFrames in the
space such that the map does not contain redun-
dant KeyFrames yet the camera pose estimation is
still able to accurately recover poses.

To perform fast local Bundle-Adjustment [2]
on the most recently added KeyFrames and to
make choices on new KeyFrame creation we main-
tain a covisibility graph which consists of K most
recent KeyFrames that observe the same part of
the environment, plus several additional randomly
selected KeyFrames.

Besides KeyFrames, the map consists of Gaus-
sians which are observed by each KeyFrame. The
number of Gaussians grows with each new Key-
Frame, therefore it is important to insert new
KeyFrames only when required, avoiding unne-
cessary ones that would impact the performance
of the SLAM system.

Recently, neural volumetric representations
have become a popular choice for environment re-
construction [6, 7] due to their ability to represent
the environment with high quality having unified
object representation and utilizing differentiable
rendering and gradient-based optimization me-
thods that make easily parallelizable leading to ef-
ficient implementations on GPUs. However, while
some of them encode the environment implicitly,
using the weight of the neural network, Gaussian
Splatting algorithm [3] has the advantage of expli-

cit representation using 3D anisotropic Gaussians.
Additionally, while others use ray marching for
the image formation process, it uses differentiable
rasterization which significantly improves the per-
formance and therefore is a great candidate for
map representation in SLAM algorithms.

In the next section, we give a brief overview
of the Gaussian Splatting algorithm. Afterward,
each step of map management using Gaussians is
described in detail.

Gaussian Splatting

SLAM system in this work uses Gaussian Splat-
ting for the environment representation [3]. Such
choice allows for high-fidelity environment recon-
struction using differentiable rasterization and gra-
dient-based methods for parameter optimization.

Each Gaussian G, is defined by its mean p.and
covariance ¥, which define its position and orien-
tation in the space. Additionally, color ¢, and opa-
city a, are defined. Contrary to the original Gaus-
sian Splatting algorithm, which defines color via
spherical harmonics, here color is defined as a sim-
ple RGB vector both for simplicity and perfor-
mance. By using RGB vector, we disregard view-
dependent effects, such as reflectance.

To render an image using Gaussian Splatting,
we perform rasterization and compute colors for
each pixel in the image as follows:

C(x,y):ZCiail:[(l—ai). (1)
j=1

i=1

We iterate over N Gaussians and splat their 2D
representations to compute the final color. Since
their positions are known, there is no need to
skip empty spaces, making it very efficient.

Before rasterizing Gaussians, we must trans-
form them from the world frame to the camera
frame using world-to-camera transformation T,
for a given camera pose T;:

M, =T (TWCui)’
T =JWI W',

(2)

where m, is the projective transformation given
camera intrinsics K, W is the rotational compo-

4 ISSN 2706-8145, CncteMn kepyBaHHA Ta KOMIT'I0TepH, 2024, N° 2

Dynamic Map Management for Gaussian Splatting SLAM

nent of T, . and] is the Jacobian of the linear
approximation of the projective transformation.

Similarly, we can render an uncertainty ima-
ge, which for each pixel sets a value u € [0, 1], spe-
cifying how reliable this pixel is:

i—1

N
Ux,)= a]]0-a). (3)

=1 j=1

A value close to 0 means that the pixel is unre-
liable, while 1 means that it reliable. This informa-
tion can then be used to weight loss term during
camera pose optimization or Bundle-Adjustment.

Additionally, given a set of Gaussians G; we
want to know what Gaussians are visible and par-
ticipated in the image formation during rendering
for a given camera pose T, To do that, we com-
pute Boolean visibility vector, where i-th value is
set to true for G; Gaussian if that Gaussian par-
ticipates in rendering and accumulated transmit-
tance is <0.5 during front-to-back splatting. This
means we discard occluded Gaussians if the pixel
opacity is already >0.5.

During map optimization, Gaussians are split
or pruned depending on several criteria, which al-
lows more precise environment representation
and filters out unreliable Gaussians that violate
multi-view consistency.

Finally, a loss is a simple L2 loss between the
target Frame image |; and a rendered image I. Af-
terwards, a gradient is computed w.r.t. Gaussian
parameters or camera poses and Adam optimizer
[4] is used to update them.”

Dynamic Mapping

The goal of the Mapping stage is to create a map
of the environment given ordered in the time se-
quence of images. We start the process by initia-
lizing the map with a KeyFrame that has an iden-
tity pose.

Since in the monocular RGB scenario, the
depth for each frame is not available, we initialize
Gaussians randomly in front of the KeyFrame,
by back-projecting pixels from the image plane
and assigning random noise in [t ,t,] range.

near’ " far

We then randomly subsample those Gaussians and

compute scales for each of them by taking the
mean distance to 3 closest neighbors as in [3]. Co-
lors are initialized from respective pixel values.

We then perform initial optimization for 500
iterations to allow Gaussians to properly repre-
sent the image from that camera pose, even if
the depth is incorrect.

KeyFrame Insertion

As new Frames arrive, the system tracks and
updates its camera pose using them until it re-
quests for a new KeyFrame to be inserted in the
map. Only KeyFrame insertion allows the map to
grow and adds new Gaussians to previously un-
seen regions. So when a new KeyFrame is reques-
ted it is usually due to a lack of Gaussians in that
region. However, there are several criteria that
may trigger KeyFrame insertion:

However, several criteria may trigger KeyFra-
me insertion:

e Time check: if the map contains less than
K KeyFrames (uninitialized) and the last Key-
Frame was added more than 5 timesteps ago.

e Distance check: if the distance between the
current Frame and the last KeyFrame is bigger
than some distance threshold. Distance is com-
puted as follows:

t=(Tywe Ter)[[1.2.3], 4],

(4)
D=|t

>

where Tj . is the world-to-camera transforma-
tion for the current Frame F, T, . is the camera-
to-world transformation for the last KeyFrame
KF. The criteria is then computed as D >0, .

e Visibility check: if the current Frame sees
less than some percentage of Gaussians that are
observed by the last KeyFrame. Visibility check
is computed as Intersection-over-Union (IoU) of
the current Frame visibility vector V_ and last
KeyFrame visibility vector V,,, :

Ve Vi

IoU = .
Ve UV

(5)

The criteria is then computed as IoU <0, ..

ISSN 2706-8145, Control systems and computers, 2024, No. 2 5

A.O. Smirnov

Fig. 1. Map immediately after first KeyFrame insertion: (left) target image; (center)
color rendering mode; (right) depth rendering mode

Fig. 2. Example of map state during Bundle-Adjustment: (left) Gaussians before Bun-
dle-Adjustment and densification or pruning; (middle) Gaussians after pruning re-
moved unstable points; (right) Gaussians after Bundle- Adjustment and densification

Fig. 3. Camera trajectory: (left) visualized trajectory in-
depth rendering mode; (right) color rendering mode

We consider the map initialized when it has at
least K KeyFrames, where K is equal to the size of
the covisibility graph (e.g. 8).

Bundle Adjustment

During KeyFrame insertion and every map-
ping step, we optimize both KeyFrame positions
and Gaussians.

Since optimizing the whole map is intractable
we maintain covisibility graph of the most recent
KeyFrames W and a randomly selected subset
from the map S, so the optimization is done over
B=WuUS KeyFrames.

To enforce multi-view consistency we raster-
ize Gaussians into all image planes from B at once.

This means that we get |B| images for which the
loss is computed with respect to image in each
KeyFrame and finally aggregated.

(5) ,
L=y [r|c]-1| . (©6)
i=1

where R, is the Gaussian rasterizer initialized with
a pose from i-th KeyFrame from B covisibility
graph, I is the respective image from i-th Key-
Frame and G is the set of all Gaussians.

The gradient is then computed over L with re-
spect to Gaussians G and KeyFrames poses from
W. We do not update poses for randomly selected
KeyFrames in S since for every mapping iteration
we re-sample the set S to encourage consistency
across the whole map.

Because the gradient is computed over all im-
ages at once it enforces stronger multi-view con-
sistency than when computing gradient over indi-
vidual frames. However, the downside is that it re-
quires O(|B|) memory.

Additionally, we periodically run densifica-
tion and pruning for Gaussians as in [3] to encour-
age precise and more robust environment rep-
resentation.

6 ISSN 2706-8145, CncteMn kepyBaHHA Ta KOMIT'I0TepH, 2024, N° 2

Dynamic Map Management for Gaussian Splatting SLAM

Running Bundle-Adjustment as often as pos-
sible reduces accumulated errors in camera poses
and improves accuracy. Figure 3 visualizes the map
state including KeyFrames (red boxes), rough tra-
jectory (orange lines) that the camera took, and the
Gaussians themselves. The trajectory is rough be-
cause we connect only KeyFrames and not every
frame that is processed.

Gaussian Pruning

During densification and KeyFrame insertion,
many newly added Gaussians will violate multi-
view consistency and therefore impact camera po-
se estimation. Some of them will vanish when pru-
ning during Bundle-Adjustment, if:

e Gaussians occupy too much region in pixel
space after rasterization;

e opacity of the Gaussian is less than some
small value ¢;

e accumulated gradient for the Gaussians or
their scale in the world space is below some
threshold.

However, we can improve on the pruning
Gaussians that are observed by less than K Key-
Frames. As during KeyFrame insertion or densifi-
cation some of the Gaussians may be too noisy, but
for camera pose estimation we want to have only
robust Gaussians as they directly impact the trac-
king accuracy.

Therefore, for each KeyFrame in the covisi-
bility graph W, we compute visibility vector and
count how many KeyFrames observe each Gaus-
sian. If the Gaussian is observed by less than K
KeyFrames, we prune it as it is too unreliable.

Odometry Mode Pruning

Often, we may be interested only in camera
pose and trajectory estimation and not in actual
environment reconstruction as is often the case
for SLAM algorithms.

In this case, we consider pruning Gaussians
that are far away from the most recent KeyFrames
in covisibility graph W and that are not observed
by any such KeyFrame during rendering.

This helps both with performance (during
rasterization we test each Gaussian if it is visible)
and memory consumption especially if we are

tracking over big regions. Such Gaussians can be
offloaded from GPU and stored on disk for later
retrieval if ever needed.

Results and Limitations

The table below showcases the information about
the resulting map after running SLAM on diffe-
rent datasets. Replica [11] room 0 is a purely syn-
thetic dataset where all images have the same ex-
posure, no motion blur, and smooth camera mo-
tions. However, it contains lots of purely
rotational camera movements which are good for
testing the tracking capabilities of the SLAM.

The other two TUM [12] freiburgl desk and
TUM freiburg2 xyz are real-world datasets with
varying exposure, motion blur, and rapid camera
motions. As can be seen, TUM freiburgl desk con-
tains almost the same amount of KeyFrames as
Replica room 0 while having almost 3.2 times fe-
wer frames. This is expected as the more sporadic
motions dataset contains the more KeyFrames is
needed to accurately track the camera and repre-
sent the environment where KeyFrames act as
anchor points against which SLAM optimizes.

As the map grows so does the amount of
Gaussians which we need to test for visibility every
time we render an image. Especially if we are inte-
rested both in camera pose and trajectory esti-
mation and environment reconstruction, where
we maintain all Gaussians.

At some point, testing for visibility of each
Gaussian takes a significant amount of time as it
requires projecting each Gaussian from world to
the camera space and testing its depth as well as if
it projects onto the image plane itself. And of
course, it takes a significant amount of memory.

Table. Comparison of the resulting map
size after processing different datasets

Dataset Total Total Number
Frames| KeyFrames | of Gaussians
Replica room 0 2000 129 6240
TUM freiburgl desk | 613 114 6320
TUM freiburg2 xyz | 3669 231 10426

ISSN 2706-8145, Control systems and computers, 2024, No. 2 7

A.O. Smirnov

For future directions, it can be fruitful to in-
vestigate the dynamic construction of volumetric
trees (Octree [9], BVH) or construction of level
of details (LoD) for Gaussians [10] to avoid ex-
cessive visibility testing and provide stable ren-
dering time.

Volumetric trees would partition Gaussians in
space allowing us to efficiently filter out large
chunks of Gaussians that are not visible without
testing each Gaussian separately. While Level of
Details would work in a coarse-to-fine fashion, re-
placing fine-detailed Gaussians with rough appro-
ximations of lower detail when the camera is loca-
ted far away from those Gaussians and vice versa.

This should significantly speed up the proces-
sing time, although dynamically managing such

Conclusions

In conclusion, this work presents an algorithm
for dynamic map management for a Simultaneous
Localization and Mapping (SLAM) problem that
utilizes Gaussians as an environment represen-
tation.

Gaussian Splatting is an appealing choice for
environment representation as it is both efficient
and results in high-quality reconstructions utili-
zing rasterization and gradient-based methods
for optimization and thus can be efficiently execu-
ted on GPUs.

We describe key operations that need to be
performed during SLAM and the impact each
operation has on the resulting map and showcase

trees comes with its own challenges.

results.

REFERENCES

1.

10.

11.

12.

Campos, C., Elvira, R., Rodriguez,].J.G., Montiel, .M., & Tardés, J.D. (2021). “Orb-slam3: An accurate open-
source library for visual, visual-inertial, and multimap slam”. IEEE Transactions on Robotics, 37 (6), pp. 1874—
1890. DOI: 10.1109/tro0.2021.3075644.

. Chen, Y., Chen, Y., & Wang, G. (2019). “Bundle adjustment revisited”. arXiv preprint arXiv:1912.03858.
. Kerbl, B., Kopanas, G., Leimkiihler, T., & Drettakis, G. (2023). “3d gaussian splatting for real-time radiance

field rendering”. ACM Transactions on Graphics, 42 (4), pp. 1—14. arXiv: 2308.04079.

. Kingma, D.P, Ba, J. (2017). “Adam: A Method for Stochastic Optimization”. https://doi.org/10.48550/arXiv.

1412.6980.

. Lim, K.L., & Braunl, T. (2020). “A Review of Visual Odometry Methods and Its Applications for Autonomous

Driving”. arXiv 2020. arXiv preprint arXiv:2009.09193.

. Mildenhall, B., Srinivasan, P.P, Tancik, M., Barron,].T., Ramamoorthi, R., & Ng, R. (2021). “Nerf: Representing

scenes as neural radiance fields for view synthesis” Communications of the ACM, 65 (1), pp. 99—106. arXiv:
2003.08934.

. Muller, T., Evans, A., Schied, C., & Keller, A. (2022). “Instant neural graphics primitives with a multiresolution

hash encoding” ACM transactions on graphics (TOG), 41 (4), pp. 1—15. DOI: 10.1145/3528223.3530127.

. Mur-Artal, R., Montiel, J]. M.M., & Tardos, J.D. (2015). “ORB-SLAM: a versatile and accurate monocular SLAM

system”. IEEE transactions on robotics, 31 (5), pp. 1147—1163. DOI: 10.1109/tr0.2015.2463671.

. Ren, K, Jiang, L., Lu, T., Yu, M., Xu, L., Ni, Z., & Dai, B. (2024). “Octree-gs: Towards consistent real-time rende-

ring with lod-structured 3d gaussians” arXiv preprint arXiv:2403.17898.
Shuai, Q., Guo, H., Xu, Zh., Lin, H., Peng, S., Bao, H., Zhou, X. (2024). “Real-Time View Synthesis for Large
Scenes with Millions of Square Meters”. [online]. Available at: https://zju3dv.github.io/LoG_webpage/ [Accessed
01 March. 2024].
Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., ... & Newcombe, R. (2019). “The Replica dataset:
A digital replica of indoor spaces”. arXiv preprint arXiv:1906.05797.
Sturm, J., Engelhard, N., Endres, E, Burgard, W., & Cremers, D. (2012). “A benchmark for the evaluation of
RGB-D SLAM systems”. In 2012 IEEE/RS] international conference on intelligent robots and systems,
pp. 573—580.

Received 15.03.2024

ISSN 2706-8145, CncteMn kepyBaHHA Ta KOMIT'I0TepH, 2024, N° 2

Dynamic Map Management for Gaussian Splatting SLAM

A.O. Cmuphos, acmipanT, Mi>KHapOIHMIT HAYKOBO-HaBYa/IbHUI LIEHTP
indopmariiitaux TexHosnoriit i cucrem HAH Ta MOH VYkpaiun,

03187, m. Kuis, npocn. Akafiemika Iimymkosa, 40, YkpaiHa,

ORCID: https://orcid.org/0009-0002-6509-4135,
tonysmn97@gmail.com

IVMHAMIYHA IIOBYJOBA MAIIN
IJIA1 AJITOPUTMY SLAM HA OCHOBITAYCVIAH

Beryn. Y 3agagax KOMITI0TEPHOTO 30PY Ta POOOTOTEXHIKM YaCTO BUHMKAE HEOOXIJHICTD 3HAXOMPKEHHSI PO3TAIIly-
BaHHs areHTa B cepeposuuli. IIpoTe, 3a3BMyail Mana HaBKOJMUIIHbOIO CepeloBMIla Halepes, He € BioMolo. Tomy
BUHIIKAa€ HEOOXITHICTb OFHOYACHOI IOOYLOBM Mamy Ta JIOKali3aliil areHTa B Hill, a A1 PO3B’sI3aHHsI TaKOl 3a/a4i
3aCTOCOBYIOTD anroputM OpHovacHoi Jlokanisanii Ta Kaprorpadysauus (Simultaneous Localization and Mapping)

Y BuIajKy, AKIIO MaIly HeoOXiTHO BUKOPUCTOBYBATY He JINILe IJI 3afiad JIoKalisaliil, Taka Mama Mae 6yTu
BJMCOKOAKICHOIO Ta YiTKO IMPEJCTABIATI HaBKOMMINHE cepefopuile. Hemomapui MeToau 1A peKOHCTPYKIil HaB-
KOJIMIITHBOTO CepPeOBIINA HA OCHOBI Am¢epeHiiioBaHOro 06’eMHOT0 peHaepuHry, Taki sx Hertponsi Ioms Bu-
npowminioBauus (Neural Radiance Fields) Ta Haknagauus laycuan (Gaussian Splatting) naioTb 3MOTY OTPUMYBaTH
doTopeanictuyni pesynbrartu. IIpore, 0OMeXeHHAM TaKMX METOXIB € Te, [0 BOHM BUMAraloTh Hameper Bizomi
laHi Ipo po3TalllyBaHH:A KaMep Ta BiloMUX Hab0OPiB 306pakeHb, AKi BUKOPMCTOBYBAaTUMYThCSA /A PEKOHCTPYKILI.

IudepennirioBani anroputmy 06’ €MHOTO PEHAEPUHTY JAIOTh 3MOTy cpopMyBaTu 3amady, 3a KOl po3Tally-
BaHH:A KaMep He € HeoOXi/JHOI0 YMOBOIO /I poOOTI aJITOPUTMY Ta MOXKe Oy TU 004MC/IeHO OHOYACHO 3 T0OyHOo-
BOIO Mary 260 B Ipolieci HaAXOMKEHHsI HOBUX 300paskeHb 3 KAMEPHU Ha OCHOBI IIOMePeHIX CIIOCTEPEKEHb.

[TobynoBa Ta B16ip IMpeACTaB/IeHHs Ml € KIIOYOBUM €TallOM TaKUX a/ITOPUTMIB.

Merta. MeTot0 po60TH € IpefcTaBIeHHs aITOPUTMY HOOYLOBM AMHAMIYHOI Many Ta 1i MOFabIle BUKOPUC-
taHHA anroputMoM OpHovacHoi /lokanisauii Ta Kaprorpadysauus (SLAM) ta metony Haknaganus Taycuan mns
IIpeCTaB/IeHHA HABKOMMIIHBOTO CEPEeOBUIIIA.

MoxxmuBicTb edekTuBHO fomaBaty HOBi Kirowosi kanpu (Keyframes), mpubupaTyt HaJIMIIKOBI Ta KOHCTPY-
foBatu rpadu cris-Buanmocri (co-visibility) mae 6e3mocepeqHiil BIUIMB Ha WIBUAKICTb po60TH Ta TOYHICTD SLAM
AJITOPUTMIB.

Meropu. [Jns poss’sasanus 3agadi 6ymno Bukopucrano anroputmy Haxmapanus Taycnan ta [pagientHOro
CITyCKY.

Iia peanisarii po60Ty anroputmy 6y/10 BUKOPUCTaHO MOBY IIporpaMyBaHHA Julia, ska Mae IIMPOKY MiATPYMKY
rpa¢ivnux npouecopis GPU Ta §03BOJIA€ IX arHOCTUYHE IPOrPaMyBaHHs, 110 3HAYHO CIIPOLIYE CaMy peasisaliio.

PesynpraTn. ExcriepyiMeHTa/IbHA peaisallia Iboro aIrOpUTMy II0Kas3ana eeKTUBHICTb TAaKOro mifxony. Me-
ton Haknmagannsa [aycuan fae sMOry 3[iliCHIOBaTH BUCOKOAKICHY PEKOHCTPYKIIIO HaBKOMMIIHBOTO CEpeOBUILA 3
BUKOPUCTaHHAM AndepeHIiiioBanol pactepusalil Ta MATPUMYE POOOTY B PEXMMI peanbHOro 4acy, o poOuTh
JI0T0 YyOBMM KaH[UATOM /st HOOYROBM Mamy B anroput™ax SLAM.

MoXnuBicTh HaCKpi3HOI ONTUMIi3allil Ha OCHOBiI MeTOAY TPafliEHTHOTO CIYCKY 3HAYHO CIIPOILY€E ONTUMi3a-
1jifo MoOyKoBaHOI MaIy, OLIiHKY IIOJIOXKEHH:A KaMepu Ta pobory 3 KimouoByumMu kagpamu. Bukopucranus rpadiv-
HUX 0641CII0BaIbHUX IporecopiB GPU fae 3MOry IIpamioBaTy B PeXXMMi peaybHOTO 4acy, o CIpusie il mpaKTud-
HOMY 3aCTOCYBaHHIO.

BucHoBku. ExcriepuMeHTI OKa3ay JOLIbHICTD 3aIIPOIIOHOBAHOTO @ITOPUTMY AMHAMIYHOI MOOYLOBY Ma-
M HaBKOJIMIIHBOTO CepefioBMIIa 3 BUKopuctanHsa Merony Hakmamaunsa laycuan. IToganbira po6oTa anroputmy
MO>Ke OYTV IIOKpalljeHa 3aBAKI 3HAXOKEHHIO IIVK/IIB Y TPAEKTOPIl KaMepy Ta MOfaIbIIil onTuMisanii peamizarii
QITOPUTMY [U/IsI 3MEHIIEHHsI 00UICTIOBAIBHIX BIMOT.

Kniouosi cnosa: nonsi sunpominiosans, Haykosi obuucienns, oudepenyitiosanuti penoepume, 10KANI3auis, peKoH-
CMPYKYis, KomMn 1omepHuii 3ip.

ISSN 2706-8145, Control systems and computers, 2024, No. 2 9

