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USING EXPONENTIAL COMPLEX
POLYNOMIALS FOR CONSTRUCTING CLOSED
CURVES WITH GIVEN PROPERTIES

In this paper, we present a method to compute the coefficients of a complex exponential polynomial of real argument
that, while being decomposed into real and imaginary parts by Euler’s formula, obtains required interpolating and
differential properties at any given points of its real graph. Moreover, imaginary components in their nodes of interpola-
tion and differentiation serve as additional control tools that shape the polynomial appearance. Although the impact of
these components is not yet studied extensively, we can still use them to achieve useful properties, e. g. we can minimize
the total height of the polynomial graph.

From the geometry standpoint, having these properties implies that the parametric curves constructed with such
polynomials can go through given points, have predetermined tangent vectors in those or other points, and retain enough
variability to have additional useful properties, for instance, the total length of these curves, or their maximal curvature
can also be minimized within limits.
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Introduction

Computing a trigonometric periodic interpolating
polynomial analogous to interpolating Lagrange
algebraic polynomial is a long-solved problem.
The first implementation was proposed in 1948 by
H. E. Salzer [1]. However, while the application of
algebraic polynomials for geometric problems has
been developing heavily through the XX century:
Bezier curves, basis splines, rational Bezier, and
NURBS — all stem from algebraic and not trigo-
nometric polynomials, and all took their place in
computer-aided design systems, the development
of trigonometric polynomials application seems to
pause until the XXI century. Trigonometric Bezier
curves were only presented in 2009 by J. Sanchez-
Reyes [2], and rational trigonometric Bezier curves in
2023 by A. Ramanantoanina and K. Hormann [3].

The main motivation for introducing rational
trigonometric Bezier curves was supplying them
with more shape control tools. By converting trigo-
nometric rational Bezier curves into barycentric
form, Ramanantoanina and Hormann achieve the
same effect as with analytic rational Bezier curves
in their earlier work [4] while making the resulting
curve closed. This conversion allows them to add
more than 2 guiding points that the curve goes
through explicitly.

In this paper, we present a curve that also al-
lows adding an arbitrary number of guiding points
that the curve goes through. Additionally, the
curve can have tangent vectors set explicitly in an
arbitrary set of points. This already gives us a level
of shape control similar to the rational periodic
Bezier curves in the barycentric form Ramanan-
toanina and Hormann propose. But on top of that,
the shape of the curves constructed with the expo-
nential polynomial showcased in our work still re-
mains variative enough so that additional optimi-
zations like minimization of its total length could
be conducted.

Problem Setting

Even though constructing closed curves with pe-
riodic polynomials is technically a solved problem,
every periodic polynomial Pperiodic(t) forms a
closed parametric curve (Px(t), Py(t)) on a plane,

and (Px(t), Py(t), Pz(t)) in a 3D space, shape con-
trol of such curves: supplying them with given
points and tangent vectors, minimizing their total
curvature, length, etc. remains an open problem
after all.

Let’s say we have m points on a plane: (x, y,),
i =1...m, and p vectors on the same plane (dx, dy,),
j =1...p. We want to build a closed smooth and
continuous parametric curve that goes through
points (x, y,) and, in some points also has tangent
vectors (dxj, dyj). Also, we want to have enough
control over the shape of that curve so that even
within given constraints (points and tangent vec-
tors), the shape of the curve could still be opti-
mized by select criteria using numeric methods of
mathematical optimization.

To build such a curve, we use the complex ex-
ponential polynomial of a rational argument.

Complex Exponential
Polynomial of a Real Argument

A complex exponential polynomial of a real argu-
ment is:

P(x)= Zakeik’c.
i=0

The x is a real number, g, is, however, a com-
plex number. The k is an integer number which is
the degree of a corresponding member. Then ikx is
also an imaginary number, and this allows us to
rely on Euler’s formula to split each member of the
polynomial into a real cosinusoid and an imagi-
nary sinusoid.

akeikx = a, cos(kx)+ia, sin(kx).

This seemingly turns the complex exponential
polynomial of a real argument into a weighted sum
of cosinusoids in the real numbers as well. Howev-
er, given that the polynomial coeflicients g, are
complex and not real, the sinusoids also show up in
the real numbers when multiplied by the imagi-
nary components of the complex coefficients. This
adds variability to the polynomial. We can set its
real value in some real points, and set real deriva-
tives in real points as well, while every condition
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Fig. 1. An example of a periodic interpolating complex
exponential polynomial of a real argument in real
numbers

will raise the degree of polynomial by one. Mean-
while, the complex components of the given values
and derivatives will remain orthogonal to the re-
quested properties while still influencing the shape
of the function.

Interpolating a Point Set
by the Complex Exponential
Polynomial of a Real Argument

To determine the coefficients g, of an interpolating
complex polynomial of a real argument that passes
through n points in the real numbers (x, y,),
i=1...n, we should solve a system of # linear equa-
tions with a,,k = 1...n being a solution:

n—1

ikx; _
Zake = yi'
k=0

The number of equations in a linear system »
implies that the degree of the polynomial should
be n—1. Then there will be n equations and n coeffi-
cients a, as well. The solution of this system gives
us the polynomial that goes through the given set
of points (Fig. 1.).

Interpolating a Point Set
while Setting the Derivative
Values in Points

Just like for the interpolation alone, the coeflicients
of the interpolating polynomial that goes through
m points (x, y,), i = 1...m and has given derivatives
in p x; points dy,, j = 1...p can be computed by solv-

real
6L
4t
7L
ok
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Fig. 2. An example of an interpolating complex polyno-
mial of a real argument that has derivatives explicitly set
in the interpolation points

ing a system of equations that consists of two types
of equations. Those that satisfy the “function has
value y in x” conditions:

p-1

Zakeikx" =y, k=1...m.

k=0
And “function has derivative dy in x” conditions:

p-1 ik
Zikake’ X :dyj,j=1...p.

k=0

The degree of the resulting polynomial should
correspond to the total amount of equations of
both types p+m = n.

When m = 2, p = 2, and the points of interpo-
lation also have derivatives set in them, the polyno-
mial obtains properties similar to what cubic Bezi-
er has (Fig. 2). Of course, in our case, instead of
setting additional control points outside of the
curve, we set derivatives in points explicitly.

Since the polynomial consists of exponential
members, it is infinitely differentiable on its whole
range. Therefore, analogous to the first order deriv-
atives, we can set derivatives of any order and at
any point too.

Mathematical Optimization
of a Polynomial Shaping Target
Function in the Space

So far we have set all the interpolation points and
derivatives in points in real numbers. The interpo-
lation method sets no constraints on the imaginary
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Fig. 3. An example of a polynomial optimized by target function with the BFGS algorithm

components of the input data. However, as has
been stated before, the choice of these imaginary
components affects the shape of the resulting poly-
nomial. This means that we can choose them in a
way that benefits us in one way or another.

Although the exact impact of imaginary com-
ponents of the input data on the real function is
not yet thoroughly studied, we can still use me-
thods of mathematical optimization and optimize
some prdefined target function in the space of the
imaginary components without knowing the exact
mechanism of their impact.

The generic algorithm of such optimization
looks like this:

1. Set the initial values of the imaginary parts
of every interpolation value y, or a derivative dy,.
This choice could be made arbitrarily, until the
problem of initial values is studied further, setting
them all to 0 could be considered a good start.

2. Compute the polynomial coefficients by
solving a corresponding system of equations.

1 2 3 4 x

Fig. 4. A closed curve that runs through two predefined
points and follows the predefined tangent vectors

3. Compute a target function for the freshly
computed polynomial.

4. If a function has not reached its optimum,
change the imaginary parts of interpolation values
and derivatives towards the gradient of the target
function, go to step 2.

The choice of a specific algorithm of mathema-
tical optimization for every particular problem goes
far beyond this paper. However, in all the examples
shown below, we use the Broyden-Fletcher-Gold-
farb-Shanno algorithm algorithm (BFGS) [5].

For instance, if we chose the target function to
be the total length of the graph on [0; 27] and set
the initial data exactly as we did in Fig. 2, the poly-
nomial optimized by this target function with the
BFGS algorithm will look like in Fig. 3.

The same input data as in Fig. 3, but the poly-
nomial’s total graph length has been optimized in
the space of the imaginary components of input
data values.

Closed Curves Construction

To construct a parametric curve on a plane, we
should specify two functions of the shared param-
eter t. In our case, the functions will be complex
exponential polynomials of a real argument: Px(t)
and Py(t). If the periods of the functions coincide,
and in our case they are, the set of points (Px(t),
Py(t)) will form a closed curve.

We can make the curve go through a set of
points (x, y,) if we compute the coefficients for the
polynomials from the corresponding equations for
Px(t) = x, and Py(t,) = y. We can also set tangent
vectors (dx; dy,) into correspondence with parame-
ter values ¢, The parameter values for the set curve
points and tangent vectors may or may not coincide.

If, for instance, they do, and we set two points
and two tangent vectors in those very points, then
the closed curve will produce a section with de-
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Fig. 5. The curve with minimizing the curves total length
in the space of the complex components of its prede-
fined points and tangent vectors

fined ends and tangent vectors in these ends that
can be then smoothly conjoined with an analo-
gously built curve that shares a point and a tangent
vector inverted direction in that point. This makes
the case of setting points and tangent vectors in
those points particularly interesting. An example
of such a curve is shown in Fig. 4.

As we can see from Fig. 4, the default shape of
the curve that follows the set properties may not
always apply to solving a particular problem. We
still retain, however, the control over imaginary
components of the points’ and tangent vectors’
coordinates. We can exploit these components to
give the curve a desired shape.

For instance, by minimizing the curve’s total
length in the space of the complex components of its
predefined points and tangent vectors, we can con-
struct a shorter curve as shown in Fig. 5, that still
goes through the predefined points (we haven't chan-
ged their coordinates in real numbers) and still fol-
lows the tangent vectors (in real numbers, these also
remain intact as the optimization commences).

The curve of Fig. 5. goes through the same
points as in Fig. 4 and follows the same tangents
but is now shorter

y
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Fig. 6. An example of the minimize the largest length of
the second derivative vector

Similar to the total length minimization, we
can minimize the largest length of the second de-
rivative vector which corresponds to the curve’s
maximal absolute curvature, as in Fig. 6.

The curve (Fig. 6) goes through the same
points as in Fig. 4 and with the same tangent vec-
tors set but the maximal curvature of this curve is
now minimized

Conclusion

Using a complex exponential polynomial for con-
strucing a closed curve allows us not only to set
points for the curve to go through, and tangent
vectors to follow in real numbers but also to use
complex components of the input data to optimize
the curve by any select target function by using
methods of mathematical optimization.

Future development of this method may in-
clude using a rational exponential function instead
of a polynomial, mixing members of exponential
and analytical polynomials in an interpolating
function, and also generalizing the polynomial to
the multivariate case for modeling not only curves
but surfaces, manifolds, and fields.
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ITOBYJOBA 3AMKHEHVX KPVIBUX I3 HATIEPE]] SAJAHVMMN
BIIACTMBOCTAMNM EKCITOHEHIITAJIbBHVMM KOMIUIEKCHVMM
[NOITHOMOM JIIVICHOTO APTYMEHTA

Beryn. HesBajkaroun Ha Te, 110 3aCTOCYBAHH; IEPIOAMIHUX MTOMTIHOMIB [/Is1 TOOYLOBU 3aMKHEHNX KPUBUX € TeX-
HIYHO PO3B’s3aHOI0 3ajadelo, Oymb-sKuil mepiognanuit momiHoM P (f) popMye 3aMKHEHY ITapaMeTpudHy KpUBY
(Px(t), Py(t)) na mwioumusi (Px(t), Py(t), Pz(t)) y mpocrtopi, mpobrieMa KepyBaHHs BUITISIIOM Ta BIaCTUBOCTIMMA
TaKMX KPMBUX JIMIIAETHCA BifKpuTolo. Jlo crocobiB KepyBaHHS BUITIALOM KPMBUX MOXKHA 3apaxyBaTl 3aBJaHH
KOHTPOJIbHNX TOYOK, JOTMYHNX BEKTOPIB, a TAKOK MiHiMi3aIlifo r11o6arbHNX BITaCTUBOCTEI, HAIIPUKIIAJ, JOBXMU-

Mera crarri. Y gaHiit po60Ti HaBOAUTHCS CIIOCi6 06UMCIeHHs KOe]il[iEHTiB KOMITIEKCHOTO eKCIIOHEHIiab-
HOTO IIO/IIHOMa [{i/ICHOTO apryMeHTa, SIKWIT, IPU PO3K/IaaHHi iioro 3a popmyrnomo Eitnepa Ha #ilicHy Ta KOMIUIEKCHY
YaCTKM, MaTMMe y [Ai/ICHOMY IIPOCTOPI Hameper 3afaHi iHTepnonsAnili i audepenuiiiyi Bractusocti. [Ipu Tomy
YABHI CK/Ia[{OBi TOYOK y By3/Iax iHTepronanii i pudepeHnijianii MaTMMyTh JOFATKOBMIT BIVIMB Ha BUITISAJ, TOTIHOMA.
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Y po6orTi n1okasaHo, 10 HaBiTh 3BaXKAI04M Ha Te, IO Leil BIUIMB JOCI He BUBYEHO, M) MOXKEMO BUKOPVCTOBYBATH
J10r0 JI7Is1 Ha/JaHHS IO/TiHOMOBI 62)KaHUX SIKOCTEll, HAIIPUKIIa[, I/ MiHiMizanii Bucortu oro rpacda. BignosigHo,
pu no6ynoBi 3aMKHEHOI KpMBOI TaKMM IIOJIIHOMOM, MI MOXXeMO 3aflaBaTlil TOYKIL, Yepe3 AKi IPOXOINUTb KPUBa,
HOTHYHI y IuX (411 IHIINX) TOYKAX, @ TAKOXK ONTUMI30BYBaTy KoedillieHTH IOKOOPANHATHUX IOIHOMIB y IPOCTO-
Pl YABHMX CKTAZOBMX BXIZHMX TOYOK i JOTUIHMX [/Is1 HAalaHHS KPMBill 6a)KaHUX SIKOCTelT, HAPUK/Iaf, MiHiMizaril
11 MOBXXVMHM 4YY 3arajIbHOI KPYBVHM.

Meroau. MareMaTH4HNUIT aHAi3, 00YUCTIOBAIBHAI €KCIIEPYMEHT.

PesynbraTu. [Toxasano crioci6 mo0ynoBy IepiofM4YHIX eKCIIOHEeHIia/IbHUX HO/IIHOMIB y IiICHOMY IPOCTOPi i3
Harepes, 3aJJlaHMMM BIACTUBOCTAMM: iHTEpIONALIIHMMY TOYKaMM Ta MOXiJHMMM y IIUX ToYKax. HaseneHo 3aranb-
HUJ aJITOPUTM ONTUMi3allii TAKOro IOJIiIHOMA 3a 3aflaHMM KpuTepieM. IIpoeMOHCTpOBaHO 3aCTOCYBaHHSA OITHU-
Mi30BaHOTO TIOIiHOMA i3 Halepey 3aJaHUMM BIACTUBOCTAMMU I TOOYOBY 3aMKHEHNUX KPUBHUX, SIKi IPOXOATD
4yepes KOHTPOJIbHI TOYKM, MAlOTh BM3HAY€Hi JOTMYHI BEKTOPHU i IIPY TOMY € ONTMMi30BaHMMU 32 IIEBHNM HaIlepes
3alaHUM KPUTEPIEM.

BucHOBKM. 3aCTOCYBaHHA €KCIIOHEHIITHOTO KOMIIEKCHOTO TIO/TiHOMa Ji/iICHOTO apTyMeHTa JN03BOJIAE MOEN-
HyBaTV aHAJITWYHI Ta 4MCcelIbHI MeTONYU NpY pO3B’A3aHHI OffHiel i Tiel >k 3amadi, 110, B CBOIO 4epry, JO3BOJLIE
OymyBaTu 3aMKHeHi KpuBi i3 Hanlepey 3afaHHIMI TIEBHUMY OOMEXXEHHSIMI i3 BIACTUBOCTSIMU, Ki ONITUMISYIOThCs
YMCENbHIMI METOLAMI He IOPYIIYIoUM Halepen 3aJaHNX 0OMeXeHb.

Kntouosi cnoea: excnoHenyitinuti KOMNAEKCHUTE NONIIHOM, NepioOu4Ha iHMePNoNAUis, 3aMKHEHA KPUBA, MAMEeMAMUYHA
ONMUMI3AUis, MiHIMI3auis 3a0avHoT 00BHCUHU.
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