
ISSN 2706-8145, Control systems and computers, 2024, No. 3 45

Cite: Dukhnovska K.K., Myshko I.L. Analysis and Comparison of Full-Text Search Algorithms. Control Systems 
and Computers, 2024, 3, 45-52. https://doi.org/10.15407/csc.2024.03.045
© Видавець ВД «Академперіодика» НАН України, 2024. Стаття опублікована на умовах відкритого доступу 
за ліцензією CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.15407/csc.2024.03.045
UDC 004.04.043; 004.912; 004.62

K.K. DUKHNOVSKA, Ph.D. in Technical Sciences, Associate Professor 
at the Department of Software Systems and Technologies, Faculty of Information Technologies, 
Taras Shevchenko National University of Kyiv, Ukraine, 
Bohdana Khmelnytskyi Street, 24, Kyiv, Ukraine, 02000,
ORCID: https://orcid.org/0000-0002-4539-159X, 
kseniia.dukhnovska@knu.ua 

I.L. MYSHKO, student at the Department of Software Systems and Technologies, 
Faculty of Information Technologies, 
Taras Shevchenko National University of Kyiv, Ukraine, 
Bohdana Khmelnytskyi Street, 24, Kyiv, Ukraine, 02000,
ORCID: https://orcid.org/0009-0003-6018-6521,
ivan.mishko21@gmail.com

A COMPARATIVE ANALYSIS 
OF FULL-TEXT SEARCH ALGORITHMS

The exponential growth of electronically stored textual data poses a significant challenge for search engine developers. 
This paper is dedicated to a detailed study and comparison of three classical full-text search algorithms: Knuth-Mor-
ris-Pratt (KMP), Boyer-Moore (BM), and Rabin-Karp (RK). These algorithms are widely used in computer science 
for efficient substring searching in textual data. The research results allowed us to identify the strengths and weaknesses 
of each algorithm and to determine the conditions under which each algorithm is most efficient.
Keywords: full-text search, substring search algorithms, Knuth-Maurice-Pratt algorithm, Boyer-Moore algorithm, Ra-
bin-Karp algorithm.

Intellectual Informational 
Technologies and Systems

Інтелектуальні інформаційні 
технології та системи

Introduction

While traditional search algorithms are efficient 
for small datasets, they often fall short when dea-
ling with large-scale systems. In today’s informa-
tion-rich environment, users demand rapid and 
accurate retrieval of specific objects from vast col-
lections.

Advanced search algorithms address these cha-
llenges through innovative approaches. Indexing, 
which involves creating a database of stored infor-
mation about all objects in the system, enables swift 

localization of desired resources. Filtering, using 
various criteria, reduces the number of irrelevant 
results, ensuring a more accurate representation of 
the user’s query. Contextual analysis, which consi-
ders the specific characteristics of the search to en-
hance result precision, is another crucial component.

Implementing advanced search algorithms 
offers numerous benefits. Primarily, it significantly 
increases search speed, enabling users to interact 
with the platform efficiently. Additionally, it im-
proves search accuracy, providing users with only 
the relevant information.



46 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 3

K.K. Dukhnovska, I.L. Myshko

The growing volume of information on plat-
forms and the increasing demand for fast, accurate 
search results underscore the importance of re-
search into advanced search algorithms.

Analysis of Existing Research 
and Problem Identification
Some text search algorithms, such as the Knuth-
Morris-Pratt algorithm, are renowned for their 
speed, efficiency, and versatility. They find appli-
cations in various fields, including text proces-
sing and data analysis. Due to their power and ease 
of use, these algorithms remain popular among 
software developers.

In [1], an analysis of pattern searching algo-
rithms is conducted, specifically focusing on the 
Knuth-Morris-Pratt algorithm, the Boyer-Moore 
algorithm, the Bitap algorithm, and the Aho-Co-
rasick algorithm. This study delves into the fun-
damental principles of each algorithm and high-
lights key directions for future research aimed at 
improving their performance and reducing re-
source consumption.

The Knuth-Morris-Pratt algorithm finds ap-
plication in various domains. In a study [2], a no-
vel approach to detecting and preventing SQL in-
jection and cross-site scripting (XSS) attacks is 
proposed. SQL injection attacks are a form of cy-
berattack that exploits vulnerabilities in applica-
tions that use SQL queries to interact with a data-
base. They pose a significant threat to data-driven 
web applications. The paper explores various pat-
terns of such attacks and proposes to detect them 
using the Knuth-Morris-Pratt algorithm. The study 
demonstrates that the proposed method is more 
effective in detecting and preventing SQL injection 
and XSS attacks.

In another study [3], security issues such as 
network intrusion and viruses are also investiga-
ted. The study introduced an intrusion detection 
system (IDS) and performed event classification 
to categorize events as either normal or intrusive. 
This classification process relies on one of the 
string matching algorithms. The paper employs 
three substring search algorithms: Brute-Force, 
Knuth-Morris-Pratt, and Boyer-Moore.

In [4], the Knuth-Morris-Pratt algorithm and 
its improvements are applied to multi-channel 
string filtering. The term “multi-channel string” 
refers to the use of multiple read or write paths 
within a string, where each path represents a sepa-
rate stream or “channel” for data processing.

This can occur both in hardware (e.g., multi-
threaded readers or writers) and in software that 
processes data from various sources or different 
parts of a system. In multi-channel strings, each 
stream can represent a separate channel for data 
transmission, and such strings are often used to 
optimize reading and writing in a parallel proces-
sing or high-performance systems.

Multi-channel strings can enable task distri-
bution and improve data processing efficiency by 
utilizing multiple streams for different operations. 
In programming or computer architecture, when 
referring to multi-channel strings, it may indicate 
the ability to use multiple read or write streams 
for different parts of data or different data opera-
tions. This approach can lead to improved per-
formance and optimized resource utilization.

The study utilized the Knuth-Morris-Pratt 
algorithm and its derivatives for string pattern 
matching.

With the COVID-19 pandemic forcing stu-
dents into online learning, the reliance on devices 
like computers and tablets has increased. Study [5] 
proposes using the Knuth-Morris-Pratt algorithm 
to facilitate the translation of the Palembang 
language to Bahasa Indonesia, thereby enabling 
students to learn Palembang through a software 
application.

Study [6] performs pattern matching on com-
pressed patterns within binary texts encoded using 
minimum redundancy codes. A modified Knuth-
Morris-Pratt algorithm is employed to mitigate 
false positives, where an encoded pattern appears 
in the encoded text but does not correspond to 
the original pattern. A bitwise Knuth-Morris-Pratt 
algorithm is introduced, capable of shifting one 
additional bit upon mismatch due to the binary 
nature of the alphabet.

String searching algorithms with linear time 
complexity and constant space complexity are ge-
nerally quite complex. Most of them consist of two 



ISSN 2706-8145, Control systems and computers, 2024, No. 3 47

Analysis and Comparison of Full-Text Search Algorithms

phases: a preprocessing phase and a search phase. 
An exception is the one-pass Crochemore algo-
rithm, a version of the Knuth-Morris-Pratt algo-
rithm with “instantaneous” pattern shift calcula-
tions. Study [7] examines Crochemore’s approach 
and builds upon it.

Therefore, the study of improved search al-
gorithms is not only relevant but also important 
for improving the functionality and efficiency of 
using modern information technologies.

The Purpose 
and Objectives of the Study

The purpose of the study is to improve the effi-
ciency of algorithms in the context of searching for 
text patterns in large volumes of data. This work 
aims to determine the optimal conditions and sce-
narios for the use of algorithms to increase the pro-
ductivity of search engines in information systems.

To achieve the goal, the following tasks were set:
 using different algorithms to compare the 

quality of the search engine;
comparison of the speed of the search me-

chanism using different algorithms;
study of the impact of algorithm partiti on-

ing on parallel flows.

Analysis of Full-text 
Search Algorithms

The study was conducted using text files that were 
generated using a script that creates files with ran-
dom data and search terms at the end. A total of 
10.000 files in the Ukrainian language were ge-
ne rated, each of them having a length of about 
140.000 characters.

Python 3.11 and the built-in functionality of 
the programming language to generate random 
words were used to generate the files. Each file 
contains words 8 characters long, consisting of lo-
wercase letters of the Ukrainian alphabet. In ad-
dition, search terms were randomly included in 
some files to investigate the performance of full-
text search algorithms.

FastAPI, which is a framework for rapid API 
development, was used to implement the search 
engine and conduct research. The results of research 

on the effectiveness of the search engine using 
va rious algorithms.

The Results of Research 
on the Effectiveness of the Search 
Engine Using Various Algorithms

To achieve this goal, a study was conducted using 
various line search algorithms.

The Knuth-Morris-Pratt (KMP) algorithm 
employs a precomputed table to expedite substring 
searching. By leveraging information about the 
pattern’s internal structure, the algorithm can avoid 
unnecessary character comparisons, significantly 
enhancing search efficiency. The Knuth-Morris-
Pratt algorithm is an efficient algorithm for sear-
ching for a substring within a string. It employs 
preprocessing of the search pattern to avoid un-
necessary character comparisons, significantly ac-
celerating the search process. Before starting the 
search, the algorithm constructs a shift table (pre-
fix function) (Fig. 1). For each character in the pat-
tern, the shift table indicates how far to shift the 
pattern if this character does not match the corre-
sponding character in the text. The values in the 
table are calculated based on the prefixes and suf-
fixes of the substring of the pattern preceding the 
current character. This table contains information 
about how many characters the pattern can be 
shifted in case of a mismatch during comparison 
with the text. Next, the algorithm compares the 
characters of the pattern with the characters of the 

Fig. 1. Prefix functions



48 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 3

K.K. Dukhnovska, I.L. Myshko

The BM algorithm operates by comparing a 
pattern (substring) to a text starting from the end 
rather than the beginning, allowing it to quickly 
skip over sections of the text where the pattern 
cannot possibly occur. This makes it one of the 
fastest general-purpose substring search algo-
rithms. Let’s consider an example. Suppose we have 
the pattern “integral”. First, we create a “good suf-
fix” table. We start from the end of the given pat-
tern (Table 1). 

The value in the second row of the table repre-
sents the index of the first occurrence of the letter 
within the substring. The column marked with an 
asterisk indicates the length of the substring. The 
script for creating a table of good suffixes is pre-
sented in Fig. 3.

To find the substring “integral” within the 
string “indefinite integral”, we compare the 8th 
character of the string with the 8th character of the 
substring. In this case, we compare ‘i’ and ‘l’, which 
don’t match. Since the letter ‘i’ is present in the 
good suffix table, we shift the pattern to the right 
by the difference between the positions of ‘i’ and ‘l’ 
in the pattern, which is 7 in this case. This aligns 
the ‘r’ of the pattern with the ‘r’ of the text. We then 
repeat the process (Fig. 4).

The algorithm has linear time complexity 
O(n+m)  where n is the string length and m is the 
substring length. However, it is important to note 
that this worst case scenario is rare.

Table 1. “Good suffixes” for the word integral

i n t e g r A l *

1 2 3 4 5 6 7 8 8

Fig. 2. Substring search by KMP algorithm

Fig. 3. Creating a table of good suffixes

Fig. 4. Substring search by BM algorithm

Fig. 5. Substring search by BP algorithm

text one by one (Fig.2). If a mismatch occurs, it 
uses the shift table to determine the new position 
from which to continue the comparison, thus 
avoiding repeated checks of already checked cha-
racters.

The algorithm has linear time complexity 
O(n+m) — where n is the string length and m is 
the substring length.



ISSN 2706-8145, Control systems and computers, 2024, No. 3 49

Analysis and Comparison of Full-Text Search Algorithms

The BP algorithm is frequently employed in 
tasks such as word searching in texts, spell check-
ing, and bioinformatics analyses. The Bitap al-
gorithm relies on the use of bitmasks to represent 
information about character matches (Fig.5). The 
algorithm implements fuzzy search.

The algorithm has linear time complexity 
O(n+m) — where n is the string length and m is 
the substring length. 

The RK algorithm employs a hashing scheme 
to efficiently search for a pattern within a text. The 
algorithm can be broken down into three main 
steps: computing a hash value for each substring, 
comparing these hash values, and efficiently cal-
culating the hash value for the next substring (as 
illustrated in Fig. 6—8).

All algorithms were optimized for parallel 
processing, running in 8 parallel threads to maxi-
mize performance.

The advantages and disadvantages of the pre-
sented algorithms are summarized in Table 2. 

A comparative analysis of the algorithms was 
conducted using several key performance indica-
tors, which were classified into two main catego-
ries: search result quality and search speed.

Quality of search results:
 accuracy: the ratio of the number of rele-

vant documents to the total number of found do-
cuments;

 completeness:
 the ratio of the number of found relevant 

documents to the total number of relevant do-
cuments in the collection;

 relevance: the degree of relevance of the 
found documents to the user’s request.

Search speed: 
 search time: time required to find all rele-

vant documents;

Fig. 6. Substring hashing

Fig. 8. Calculation of the hash for the next substring

Fig. 7. Hash comparison

Table 2. Advantages and disadvantages of full-text search algorithms

Algorithm Advantages Disadvantages

KMP Fast for long patterns More diffi  cult to implement
BM Fast for short patterns Not as eff ective as KMP for long patterns
BP May fi nd inexact matches Slower than other algorithms
RK Very fast for long texts It can cause false positives

 resource usage: the amount of memory and 
processor time required for searching.

The research used the empirical testing me-
thod. This method involves conducting expe-
riments with various search algorithms and eva-
luating their effectiveness using certain indicators.

The method of empirical testing allows you to 
obtain practical data about the behavior of algo-
rithms in real conditions.



50 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 3

K.K. Dukhnovska, I.L. Myshko

The research involves the development of a 
test environment that includes a collection of text 
documents, a set of queries, software for imple-
menting a search mechanism, and software for 
evaluating the effectiveness of algorithms.

Conducting experiments with different types 
of text documents and with different queries is an 
integral part of the research.

Analysis of the results and formulation of con-
clusions about the effectiveness of search algo-
rithms will be an important stage of the research.

The expected results of the research include 
the determination of optimal search algorithms for 
different types of text documents, the development 
of recommendations for the use of search algo-
rithms, and the acquisition of new knowledge 

about the behavior of search algorithms in differ-
ent conditions.

The obtained data will have significant practi-
cal value for developers of information systems 
and search engines.

The results of the research will help determine 
the optimal search algorithms for various types of 
text documents, develop recommendations for the 
use of search algorithms, and improve existing and 
create new information systems and search mech-
anisms.

This, in turn, will lead to an improvement in 
the quality of information search, an increase in 
the efficiency of users’ work, and an expansion of 
the capabilities of information systems.

Testing was conducted using various algo-
rithms, the results of which are presented in the 
form of a table (Table 3).Table 3. Testing of full-text search algorithms

Search request Algorithm Number 
of matches

“term 1, term 2” 
(in 74 texts)

KMP 74

BM 74
BP 74
RK 74

“term 1, term 2, term 3” 
(in 25 texts)

KMP 25

BM 25
BP 25
RK 25

Table 4. Average search time

 Search request Algorithm Average search 
time

“term 1, term 2” 
(in 74 texts)

KMP 4.39

BM 1.05
BP 7.22
RK 8.25

“term 1, term 2, term 3” 
(in 25 texts)

KMP 4.32

BM 0.75
BP 7.25
RK 8.15

Fig. 9. Graph of the average search time (ms) for different 

Table 5. Influence of parallel streams

Search request Algorithm
Average 

search time 
with parallel 

processes

Impact 
on search 
time, %

“term 1, term 2” 
(in 74 texts)

KMP 0.91 79.28

BM 0.28 73.33
BP 1.38 80.87
RK 1.56 81.11

“term 1, term 2, 
term 3” (in 25 texts)

KMP 0.96 77.78

BM 0.22 70.67
BP 1.37 81.10
RK 1.57 80.76



ISSN 2706-8145, Control systems and computers, 2024, No. 3 51

Analysis and Comparison of Full-Text Search Algorithms

On the basis of the conducted tests, data on 
the effectiveness of the search mechanism were 
obtained (Table 4).

Fig. 9 provides a graphical representation of 
the differences in average search time.

The results, as depicted in the diagram, indi-
cate that the BM algorithm is the fastest.

Influence 
of Parallel Streams

An illustration of the effect of using parallel threads 
on the search time for two test queries is given in 
Table 5.

Analyzing the results of the study, we can con-
clude that the Boyer-Moore algorithm was the 
most effective in terms of search speed for both 
test queries (Table 4). Its advanced “bad symbol” 
heuristics greatly speed up the process by skipping 
unnecessary symbol comparisons. Despite the fact 
that the KMP algorithm was considered the best in 
previous studies, in this case, it took second place 
in terms of speed.

However, for short search patterns, KMP may 
still have an advantage due to its optimized struc-
ture and ability to avoid repeated character com-
parisons. Bitap and Rabin-Karp algorithms showed 
worse results in terms of search speed compared to 
BM and KMP.

Regarding search quality, all algorithms sho-
wed the same number of found matches for both 
queries (Table 3), which indicates their equal abi-
lity to find relevant documents.

The use of parallel streams significantly impro-
ved the search speed for all algorithms (Table 5), 
especially for longer texts. The speedup ranged 
from 70% to 81% depending on the algorithm and 
the query. Although parallelism required the over-
head of thread synchronization, the overall time 
gain was worth the effort.

Conclusions

This study was aimed at comparing the effective-
ness of different full-text search algorithms in 
the Ukrainian language. The main tasks included 
determining the most efficient algorithm in terms 
of search time and quality, analyzing the impact of 
parallel streams on search speed, and evaluating 
the possibilities and limitations of the study.

According to the test results, it was found that 
the Boyer-Moore algorithm demonstrated the 
best search speed for both test queries. The KMP 
algorithm ranked second for speed but may be an 
advantage for short search patterns. All algorithms 
showed the same search quality in terms of the 
number of matches found.

The use of parallel threads led to a significant 
acceleration of the search for all algorithms, espe-
cially for long texts. Although additional synchro-
nization overhead was required, the overall speed 
gain justified the use of parallelism.

Despite the achieved results, the study has 
certain limitations, such as the small size of the 
test data set and the use of only the Ukrainian 
language. The details of the implementation of 
the algorithms could also affect the accuracy of 
the results.

In general, these findings allow us to recom-
mend the use of the BM algorithm as an effective 
solution for full-text search, especially for long text 
documents. Parallel computing should also be 
used to speed up searches in large text collections.

Promising directions for further research 
include expanding the test data set, studying the 
impact of various algorithm parameters, and de-
veloping adaptive and intelligent search methods 
using machine learning. Integration with other 
information processing systems and the deve-
lopment of specialized search solutions are also 
important tasks.

REFERENCES
1. Zhang, Z. (2022). “Review on String-Matching Algorithm”. In SHS Web of Conferences, Vol. 144, p. 03018. EDP 

Sciences. https://doaj.org/article/c78bdfe402274e139c26295b12694388.
2. Abikoye, O.C., Abubakar, A., Dokoro, A.H., Akande, O.N., & Kayode, A.A. (2020). “A novel technique to prevent 

SQL injection and cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm”. EURASIP Jour-
nal on Information Security, pp. 114. https://doaj.org/article/27372f01abe34aea9ad7f516f9739556.



52 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 3

K.K. Dukhnovska, I.L. Myshko

3. Sulaiman, H.E. (2019). “Use the Brute_Force Pattern Matching Algorithm for Misuse Intrusion Detection Sys-
tem”. AL-Rafidain Journal of Computer Sciences and Mathematics, 13 (1), pp. 6885. https://doaj.org/article/6c-
40c705b1fd4263955b4fc066b9155d.

4. Hendrian, D., Ueki, Y., Narisawa, K., Yoshinaka, R., & Shinohara, A. (2019). “Permuted pattern matching algo-
rithms on multi-track strings. Algorithms, 12(4), pp. 73. https://doaj.org/article/4a62dbb11cc14fd0ba9e2be7fa549cc2.

5. Shapira, D., & Daptardar, A. (2006). “Adapting the Knuth–Morris–Pratt algorithm for pattern matching in Huff-
man encoded texts”. Information processing & management, 42(2), pp. 429439. https://www.sciencedirect.com/
science/article/abs/pii/S0306457305000191.

6. Rytter, W. (2003). “On maximal suffixes and constant-space linear-time versions of KMP algorithm”. Theoretical 
computer science, 299 (13), pp. 763774. https://www.sciencedirect.com/science/article/pii/S030439750200590X.

Received 15.04.2024

К.К. Духновська, кандидат технічних наук, доцент, 
кафедра програмних систем і технологій, факультет інформаційних технологій, 
Київський національний університет імені Тараса Шевченка, 
вул. Богдана Гаврилишина, 24, м. Київ, Україна, 02000,
ORCID: https://orcid.org/0000-0002-4539-159X, 
kseniia.dukhnovska@knu.ua
І.Л. Мишко, студент, кафедра програмних систем і технологій, 
факультет інформаційних технологій, 
Київський національний університет імені Тараса Шевченка, 
вул. Богдана Гаврилишина, 24, м. Київ, Україна, 02000, 
ORCID: https://orcid.org/0009-0003-6018-6521, 
ivan.mishko21@gmail.com
ПОРІВНЯЛЬНИЙ АНАЛІЗ АЛГОРИТМІВ ПОВНОТЕКСТОВОГО ПОШУКУ
Вступ. Ця робота була спрямована на всебічне дослідження та порівняння ефективності різних алгоритмів 
повнотекстового пошуку, зокрема алгоритмів Кнута-Морріса-Пратта та Боєра-Мура, з метою визначення 
оптимального алгоритму для повнотекстового пошуку. Крім того, дослідження оцінило вплив паралельно-
го обчислення на швидкість пошуку та виявило обмеження наявних підходів.

Мета. Метою дослідження є підвищення ефективності алгоритмів у контексті пошуку текстових шаб-
лонів у великих обсягах даних.

Методи.Алгоритми повнотекстового пошуку.
Результати. Аналізуючи результати дослідження, можна зробити висновок, що алгоритм Бойєра-Мура 

виявився найефективнішим за швидкістю пошуку для обох тестових запитів. Його удосконалена евристика 
“поганого символу” дає змогу значно прискорити процес, пропускаючи непотрібні порівняння символів. 
Попри те, що алгоритм Кнута-Моріса-Пратта вважався найкращим у попередніх дослідженнях, в даному 
випадку він посів друге місце за швидкістю роботи.

Проте для коротких пошукових шаблонів алгоритм Кнута-Моріса-Пратта все ще може мати перевагу 
завдяки своїй оптимізованій структурі та здатності уникати повторних порівнянь символів. Алгоритми 
Бітап та Рабіна-Карпа продемонстрували гірші результати щодо швидкості пошуку порівняно з алгорит-
мами Бойєра-Мура та Кнута-Моріса-Пратта.

Щодо якості пошуку, всі алгоритми показали однакову кількість знайдених збігів для обох запитів, що 
свідчить про їх рівноцінну здатність знаходити релевантні документи.

Використання паралельних потоків значно покращило швидкість пошуку для всіх алгоритмів, особ ли-
во для довших текстів. Прискорення сягало від 70% до 81% залежно від алгоритму та запиту. Хоча па ралелізм 
вимагав додаткових витрат на синхронізацію потоків, загальний виграш часу виявився вартим цих зусиль.

Висновки. Перспективними напрямами подальших досліджень є розширення набору тестових даних, 
детальний аналіз впливу різних параметрів алгоритмів на їхню ефективність, а також розробка адаптивних 
та інтелектуальних методів пошуку з використанням машинного навчання.

Результати цього дослідження мають практичне значення для розробки ефективних пошукових систем, 
систем керування базами даних та інших програмних продуктів, які використовують повнотекстовий пошук.
Ключові слова: повнотекстовий пошук, алгоритми пошуку підрядків, алгоритм Кнута-Моріса-Пратта, 
алгоритм Боєра-Мура, алгоритм Рабіна-Карпа.


