Intellectual Informational

Technologies and Systems
[HTeneKkTyanbHi  iHOpMaLifHi
TE€XHO(IOTii Ta CHCTEMH

https://doi.org/10.15407/csc.2024.03.045
UDC 004.04.043; 004.912; 004.62

K.K. DUKHNOVSKA, Ph.D. in Technical Sciences, Associate Professor

at the Department of Software Systems and Technologies, Faculty of Information Technologies,
Taras Shevchenko National University of Kyiv, Ukraine,

Bohdana Khmelnytskyi Street, 24, Kyiv, Ukraine, 02000,

ORCID: https://orcid.org/0000-0002-4539-159X,

kseniia.dukhnovska@knu.ua

I.L. MYSHKO, student at the Department of Software Systems and Technologies,
Faculty of Information Technologies,

Taras Shevchenko National University of Kyiv, Ukraine,

Bohdana Khmelnytskyi Street, 24, Kyiv, Ukraine, 02000,

ORCID: https://orcid.org/0009-0003-6018-6521,

ivan.mishko21@gmail.com

A COMPARATIVE ANALYSIS
OF FULL-TEXT SEARCH ALGORITHMS

The exponential growth of electronically stored textual data poses a significant challenge for search engine developers.
This paper is dedicated to a detailed study and comparison of three classical full-text search algorithms: Knuth-Mor-
ris-Pratt (KMP), Boyer-Moore (BM), and Rabin-Karp (RK). These algorithms are widely used in computer science
for efficient substring searching in textual data. The research results allowed us to identify the strengths and weaknesses
of each algorithm and to determine the conditions under which each algorithm is most efficient.

Keywords: full-text search, substring search algorithms, Knuth-Maurice-Pratt algorithm, Boyer-Moore algorithm, Ra-
bin-Karp algorithm.

Introduction

While traditional search algorithms are efficient
for small datasets, they often fall short when dea-
ling with large-scale systems. In today’s informa-
tion-rich environment, users demand rapid and
accurate retrieval of specific objects from vast col-
lections.

Advanced search algorithms address these cha-
llenges through innovative approaches. Indexing,
which involves creating a database of stored infor-
mation about all objects in the system, enables swift

localization of desired resources. Filtering, using
various criteria, reduces the number of irrelevant
results, ensuring a more accurate representation of
the user’s query. Contextual analysis, which consi-
ders the specific characteristics of the search to en-
hance result precision, is another crucial component.

Implementing advanced search algorithms
offers numerous benefits. Primarily, it significantly
increases search speed, enabling users to interact
with the platform efficiently. Additionally, it im-
proves search accuracy, providing users with only
the relevant information.

Cite: Dukhnovska K.K., Myshko L.L. Analysis and Comparison of Full-Text Search Algorithms. Control Systems
and Computers, 2024, 3, 45-52. https://doi.org/10.15407/csc.2024.03.045

© Bupasenp B]l «Akagemnepiognka» HAH Yipainn, 2024. Crartst ony6/1ikoBaHa Ha yMOBAX BiAKPUTOTO JOCTYITY
3a nintensielo CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

ISSN 2706-8145, Control systems and computers, 2024, No. 3

45



K.K. Dukhnovska, I.L. Myshko

The growing volume of information on plat-
forms and the increasing demand for fast, accurate
search results underscore the importance of re-
search into advanced search algorithms.

Analysis of Existing Research
and Problem Identification

Some text search algorithms, such as the Knuth-
Morris-Pratt algorithm, are renowned for their
speed, efficiency, and versatility. They find appli-
cations in various fields, including text proces-
sing and data analysis. Due to their power and ease
of use, these algorithms remain popular among
software developers.

In [1], an analysis of pattern searching algo-
rithms is conducted, specifically focusing on the
Knuth-Morris-Pratt algorithm, the Boyer-Moore
algorithm, the Bitap algorithm, and the Aho-Co-
rasick algorithm. This study delves into the fun-
damental principles of each algorithm and high-
lights key directions for future research aimed at
improving their performance and reducing re-
source consumption.

The Knuth-Morris-Pratt algorithm finds ap-
plication in various domains. In a study [2], a no-
vel approach to detecting and preventing SQL in-
jection and cross-site scripting (XSS) attacks is
proposed. SQL injection attacks are a form of cy-
berattack that exploits vulnerabilities in applica-
tions that use SQL queries to interact with a data-
base. They pose a significant threat to data-driven
web applications. The paper explores various pat-
terns of such attacks and proposes to detect them
using the Knuth-Morris-Pratt algorithm. The study
demonstrates that the proposed method is more
effective in detecting and preventing SQL injection
and XSS attacks.

In another study [3], security issues such as
network intrusion and viruses are also investiga-
ted. The study introduced an intrusion detection
system (IDS) and performed event classification
to categorize events as either normal or intrusive.
This classification process relies on one of the
string matching algorithms. The paper employs
three substring search algorithms: Brute-Force,
Knuth-Morris-Pratt, and Boyer-Moore.

In [4], the Knuth-Morris-Pratt algorithm and
its improvements are applied to multi-channel
string filtering. The term “multi-channel string”
refers to the use of multiple read or write paths
within a string, where each path represents a sepa-
rate stream or “channel” for data processing.

This can occur both in hardware (e.g., multi-
threaded readers or writers) and in software that
processes data from various sources or different
parts of a system. In multi-channel strings, each
stream can represent a separate channel for data
transmission, and such strings are often used to
optimize reading and writing in a parallel proces-
sing or high-performance systems.

Multi-channel strings can enable task distri-
bution and improve data processing efficiency by
utilizing multiple streams for different operations.
In programming or computer architecture, when
referring to multi-channel strings, it may indicate
the ability to use multiple read or write streams
for different parts of data or different data opera-
tions. This approach can lead to improved per-
formance and optimized resource utilization.

The study utilized the Knuth-Morris-Pratt
algorithm and its derivatives for string pattern
matching.

With the COVID-19 pandemic forcing stu-
dents into online learning, the reliance on devices
like computers and tablets has increased. Study [5]
proposes using the Knuth-Morris-Pratt algorithm
to facilitate the translation of the Palembang
language to Bahasa Indonesia, thereby enabling
students to learn Palembang through a software
application.

Study [6] performs pattern matching on com-
pressed patterns within binary texts encoded using
minimum redundancy codes. A modified Knuth-
Morris-Pratt algorithm is employed to mitigate
false positives, where an encoded pattern appears
in the encoded text but does not correspond to
the original pattern. A bitwise Knuth-Morris-Pratt
algorithm is introduced, capable of shifting one
additional bit upon mismatch due to the binary
nature of the alphabet.

String searching algorithms with linear time
complexity and constant space complexity are ge-
nerally quite complex. Most of them consist of two

46 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3



Analysis and Comparison of Full-Text Search Algorithms

phases: a preprocessing phase and a search phase.
An exception is the one-pass Crochemore algo-
rithm, a version of the Knuth-Morris-Pratt algo-
rithm with “instantaneous” pattern shift calcula-
tions. Study [7] examines Crochemore’s approach
and builds upon it.

Therefore, the study of improved search al-
gorithms is not only relevant but also important
for improving the functionality and efficiency of
using modern information technologies.

The Purpose
and Objectives of the Study

The purpose of the study is to improve the effi-
ciency of algorithms in the context of searching for
text patterns in large volumes of data. This work
aims to determine the optimal conditions and sce-
narios for the use of algorithms to increase the pro-
ductivity of search engines in information systems.

To achieve the goal, the following tasks were set:

e using different algorithms to compare the
quality of the search engine;

e comparison of the speed of the search me-
chanism using different algorithms;

e study of the impact of algorithm partition-
ing on parallel flows.

Analysis of Full-text
Search Algorithms

The study was conducted using text files that were
generated using a script that creates files with ran-
dom data and search terms at the end. A total of
10.000 files in the Ukrainian language were ge-
nerated, each of them having a length of about
140.000 characters.

Python 3.11 and the built-in functionality of
the programming language to generate random
words were used to generate the files. Each file
contains words 8 characters long, consisting of lo-
wercase letters of the Ukrainian alphabet. In ad-
dition, search terms were randomly included in
some files to investigate the performance of full-
text search algorithms.

FastAPI, which is a framework for rapid API
development, was used to implement the search
engine and conduct research. The results of research

on the effectiveness of the search engine using
various algorithms.

The Results of Research
on the Effectiveness of the Search
Engine Using Various Algorithms

To achieve this goal, a study was conducted using
various line search algorithms.

The Knuth-Morris-Pratt (KMP) algorithm
employs a precomputed table to expedite substring
searching. By leveraging information about the
pattern’s internal structure, the algorithm can avoid
unnecessary character comparisons, significantly
enhancing search efficiency. The Knuth-Morris-
Pratt algorithm is an efficient algorithm for sear-
ching for a substring within a string. It employs
preprocessing of the search pattern to avoid un-
necessary character comparisons, significantly ac-
celerating the search process. Before starting the
search, the algorithm constructs a shift table (pre-
fix function) (Fig. 1). For each character in the pat-
tern, the shift table indicates how far to shift the
pattern if this character does not match the corre-
sponding character in the text. The values in the
table are calculated based on the prefixes and suf-
fixes of the substring of the pattern preceding the
current character. This table contains information
about how many characters the pattern can be
shifted in case of a mismatch during comparison
with the text. Next, the algorithm compares the
characters of the pattern with the characters of the

B Spyder (Python 3.7)
File Edit Search Source Run

NeB%E0 pBBED G )
Editor - C:\Users\1\.spyder-py3\temp.py
M temppy* B

1 Hef PrefixFunction(substring):
2 m = len{substring)
3 Position = [8] * m
k=28
for i in range(l, m):
while k > @ and substring[k] != substring[i]:
k = Position[k - 1]
if substring[k] == substring[i]:
k += 1
10 Position[i] = k
11 return Position

Debug Conscles Projects Tools

[ REN. T R Y

5 O

Fig. 1. Prefix functions

ISSN 2706-8145, Control systems and computers, 2024, No. 3 47



K.K. Dukhnovska, I.L. Myshko

13 def AlgorithmKMP(string, substring):

14 n = len(string)

15 m = len(substring)

16 Position = PrefixFunction(substring)
17 k=29

18 for i in range(n):

19 while k > @ and substring[k] != string[i]:
20 k = Position[k - 1]

21 if substring[k] == string[i]:

22 k += 1

23 if k == m:

24 print("There is singing:”, i - m + 1)
25

k = Position[k - 1]

Fig. 2. Substring search by KMP algorithm

1 def Good_Suffics(substring):

2 good_suffics = [-1] * 256

4 for i in range(len(substring)):

5 good_suffics[ord(substring[i])] = i
6

7| return good_suffics

5]

Fig. 3. Creating a table of good suffixes

‘S def AlgorithmBM(string, substring):
11 m = len(substring)
12 n = len(string)

ifm==0Gorn==Qormb>n:
return -1
good_suffics = Good_Suffics(substring)
s =8
while 5 <= n - m:
] jem-1
while j >= @ and substring[j] == string(s + j]:
J =2
26 if § < e:
return s

else:

s 4= max(l, j - good_suffics[ord(string[s + §])}])

33 return -1

Fig. 4. Substring search by BM algorithm

Table 1. “Good suffixes” for the word integral

i n t e g r A I

1 2 3 4 5 6 7 8 8

text one by one (Fig.2). If a mismatch occurs, it
uses the shift table to determine the new position
from which to continue the comparison, thus
avoiding repeated checks of already checked cha-
racters.

The algorithm has linear time complexity
O(n+m) — where n is the string length and m is
the substring length.

@ Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

OsB%E0 pBBRG N=c=n N
Editor - C:\Users\luntitied 1.py
3 temppy £ unttedopy* 3 untitedipy* B3
1 def AlgorithmBM(string, substring):
2 m = len(substring)
n = len(string)
if m == 2:
5 return @
if nws @ orm>n:
return -1

for i in range(m):
mask[substring[i]] = mask.get(substring[i], @) | (1 << i)

6
8
9
1@
11
12

for i in range(n):
T = ((T << 1) | 1) & mask.get(string[i], @)

if TR (1 << (m- 1))
return 1 - m + 1

REGESR!

return -1

B

Fig. 5. Substring search by BP algorithm

The BM algorithm operates by comparing a
pattern (substring) to a text starting from the end
rather than the beginning, allowing it to quickly
skip over sections of the text where the pattern
cannot possibly occur. This makes it one of the
fastest general-purpose substring search algo-
rithms. Let’s consider an example. Suppose we have
the pattern “integral”. First, we create a “good suf-
fix” table. We start from the end of the given pat-
tern (Table 1).

The value in the second row of the table repre-
sents the index of the first occurrence of the letter
within the substring. The column marked with an
asterisk indicates the length of the substring. The
script for creating a table of good suffixes is pre-
sented in Fig. 3.

To find the substring “integral” within the
string “indefinite integral’, we compare the 8th
character of the string with the 8th character of the
substring. In this case, we compare 7’ and 7, which
don’t match. Since the letter 7’ is present in the
good suffix table, we shift the pattern to the right
by the difference between the positions of " and ‘P
in the pattern, which is 7 in this case. This aligns
the 7’ of the pattern with the 7" of the text. We then
repeat the process (Fig. 4).

The algorithm has linear time complexity
O(n+m) — where n is the string length and m is the
substring length. However, it is important to note
that this worst case scenario is rare.

48 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3



Analysis and Comparison of Full-Text Search Algorithms

The BP algorithm is frequently employed in
tasks such as word searching in texts, spell check-
ing, and bioinformatics analyses. The Bitap al-
gorithm relies on the use of bitmasks to represent
information about character matches (Fig.5). The
algorithm implements fuzzy search.

The algorithm has linear time complexity
O(n+m) — where n is the string length and m is
the substring length.

The RK algorithm employs a hashing scheme
to efficiently search for a pattern within a text. The
algorithm can be broken down into three main
steps: computing a hash value for each substring,
comparing these hash values, and efficiently cal-
culating the hash value for the next substring (as
illustrated in Fig. 6—8).

All algorithms were optimized for parallel
processing, running in 8 parallel threads to maxi-
mize performance.

The advantages and disadvantages of the pre-
sented algorithms are summarized in Table 2.

A comparative analysis of the algorithms was
conducted using several key performance indica-
tors, which were classified into two main catego-
ries: search result quality and search speed.

Quality of search results:

e accuracy: the ratio of the number of rele-
vant documents to the total number of found do-
cuments;

e completeness:

e the ratio of the number of found relevant
documents to the total number of relevant do-
cuments in the collection;

e relevance: the degree of relevance of the
found documents to the user’s request.

Search speed:

e search time: time required to find all rele-
vant documents;

e resource usage: the amount of memory and
processor time required for searching.

The research used the empirical testing me-
thod. This method involves conducting expe-
riments with various search algorithms and eva-
luating their effectiveness using certain indicators.

The method of empirical testing allows you to
obtain practical data about the behavior of algo-
rithms in real conditions.

& Spyder (Python 3.7)
File Edit Debug Consoles

DeB%EQ >OEDG M=

Editor - C:\Users\1\untitled2.py
0 temp.py £
1 def AlgorithmRK(string, substring):

Search Source Run Projects Tools View

untitiedo.py ] untitied1.py [ untitled2.py™ [EJ

n = len(string)

m = len(substring)

q = 149

ql = 256

h = pow(ql, m-1) % q

p=0

t=29

for i in range(m):
p = (ql * p + ord(substring[i])) ¥ q
t=(ql * t + ord(string[i])) ¥ q

=
0NN B W

e
U

Fig. 6. Substring hashing

res = []
for i in range(n-m+l):
if r == t:

for j in range(m):
if string[i+j] != substring[j]:
break
if j == m-1:
res.aopend(i)

Fig. 7. Hash comparison

if i < n-m:
t = (q1*(t-ord(string[i])*h) + ord(string[i+m])) ¥ q
return res

Fig. 8. Calculation of the hash for the next substring

Table 2. Advantages and disadvantages of full-text search algorithms

Algorithm Advantages Disadvantages
KMP Fast for long patterns More difficult to implement
BM Fast for short patterns Not as effective as KMP for long patterns
BP May find inexact matches Slower than other algorithms
RK Very fast for long texts It can cause false positives

ISSN 2706-8145, Control systems and computers, 2024, No. 3

49



K.K. Dukhnovska, I.L. Myshko

The research involves the development of a
test environment that includes a collection of text
documents, a set of queries, software for imple-
menting a search mechanism, and software for
evaluating the effectiveness of algorithms.

Conducting experiments with different types
of text documents and with different queries is an
integral part of the research.

Analysis of the results and formulation of con-
clusions about the effectiveness of search algo-
rithms will be an important stage of the research.

The expected results of the research include
the determination of optimal search algorithms for
different types of text documents, the development
of recommendations for the use of search algo-
rithms, and the acquisition of new knowledge

Table 3. Testing of full-text search algorithms

. Number
Search request Algorithm of matches

“term 1, term 2” KMP 74
(in 74 texts)

BM 74

BP 74

RK 74
“term 1, term 2, term 3” KMP 25
(in 25 texts)

BM 25

BP 25

RK 25

Table 4. Average search time

Search request Algorithm Averztge search

1me

“term 1, term 2” KMP 4.39
(in 74 texts)

BM 1.05

BP 7.22

RK 8.25

“term 1, term 2, term 3” KMP 432
(in 25 texts)

BM 0.75

BP 7.25

RK 8.15

about the behavior of search algorithms in differ-
ent conditions.

The obtained data will have significant practi-
cal value for developers of information systems
and search engines.

The results of the research will help determine
the optimal search algorithms for various types of
text documents, develop recommendations for the
use of search algorithms, and improve existing and
create new information systems and search mech-
anisms.

This, in turn, will lead to an improvement in
the quality of information search, an increase in
the efficiency of users’ work, and an expansion of
the capabilities of information systems.

Testing was conducted using various algo-
rithms, the results of which are presented in the
form of a table (Table 3).

10

COKMP HEBM MBP [IRK

o

“term 1, term 2, term 3”

S N B~ N
T

“term 1, term 2”

Fig. 9. Graph of the average search time (ms) for different

Table 5. Influence of parallel streams

Average Impact
Search request Algorithm s?arCh tme ) search

with parallel time. %

processes P

“term 1, term 2” KMP 0.91 —-79.28

(in 74 texts)

BM 0.28 —-73.33

BP 1.38 —-80.87

RK 1.56 —-81.11

“term 1, term 2, KMP 0.96 -77.78
term 3” (in 25 texts)

BM 0.22 -70.67

BP 1.37 -81.10

RK 1.57 —-80.76

50 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3



Analysis and Comparison of Full-Text Search Algorithms

On the basis of the conducted tests, data on
the effectiveness of the search mechanism were
obtained (Table 4).

Fig. 9 provides a graphical representation of
the differences in average search time.

The results, as depicted in the diagram, indi-
cate that the BM algorithm is the fastest.

Influence
of Parallel Streams

An illustration of the effect of using parallel threads
on the search time for two test queries is given in
Table 5.

Analyzing the results of the study, we can con-
clude that the Boyer-Moore algorithm was the
most effective in terms of search speed for both
test queries (Table 4). Its advanced “bad symbol”
heuristics greatly speed up the process by skipping
unnecessary symbol comparisons. Despite the fact
that the KMP algorithm was considered the best in
previous studies, in this case, it took second place
in terms of speed.

However, for short search patterns, KMP may
still have an advantage due to its optimized struc-
ture and ability to avoid repeated character com-
parisons. Bitap and Rabin-Karp algorithms showed
worse results in terms of search speed compared to
BM and KMP.

Regarding search quality, all algorithms sho-
wed the same number of found matches for both
queries (Table 3), which indicates their equal abi-
lity to find relevant documents.

The use of parallel streams significantly impro-
ved the search speed for all algorithms (Table 5),
especially for longer texts. The speedup ranged
from 70% to 81% depending on the algorithm and
the query. Although parallelism required the over-
head of thread synchronization, the overall time
gain was worth the effort.

REFERENCES

Conclusions

This study was aimed at comparing the effective-
ness of different full-text search algorithms in
the Ukrainian language. The main tasks included
determining the most efficient algorithm in terms
of search time and quality, analyzing the impact of
parallel streams on search speed, and evaluating
the possibilities and limitations of the study.

According to the test results, it was found that
the Boyer-Moore algorithm demonstrated the
best search speed for both test queries. The KMP
algorithm ranked second for speed but may be an
advantage for short search patterns. All algorithms
showed the same search quality in terms of the
number of matches found.

The use of parallel threads led to a significant
acceleration of the search for all algorithms, espe-
cially for long texts. Although additional synchro-
nization overhead was required, the overall speed
gain justified the use of parallelism.

Despite the achieved results, the study has
certain limitations, such as the small size of the
test data set and the use of only the Ukrainian
language. The details of the implementation of
the algorithms could also affect the accuracy of
the results.

In general, these findings allow us to recom-
mend the use of the BM algorithm as an effective
solution for full-text search, especially for long text
documents. Parallel computing should also be
used to speed up searches in large text collections.

Promising directions for further research
include expanding the test data set, studying the
impact of various algorithm parameters, and de-
veloping adaptive and intelligent search methods
using machine learning. Integration with other
information processing systems and the deve-
lopment of specialized search solutions are also
important tasks.

1. Zhang, Z. (2022). “Review on String-Matching Algorithm” In SHS Web of Conferences, Vol. 144, p. 03018. EDP
Sciences. https://doaj.org/article/c78bdfe402274e139c26295b12694388.

2. Abikoye, O.C., Abubakar, A., Dokoro, A.H., Akande, O.N., & Kayode, A.A. (2020). “A novel technique to prevent
SQL injection and cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm” EURASIP Jour-
nal on Information Security, pp. 1-14. https://doaj.org/article/27372f01abe34aea9ad7{516£9739556.

ISSN 2706-8145, Control systems and computers, 2024, No. 3 51



K.K. Dukhnovska, I.L. Myshko

3. Sulaiman, H.E. (2019). “Use the Brute_Force Pattern Matching Algorithm for Misuse Intrusion Detection Sys-
tem”. AL-Rafidain Journal of Computer Sciences and Mathematics, 13 (1), pp. 68—85. https://doaj.org/article/6¢-
40c705b1fd4263955b4fc066b9155d.

4. Hendrian, D., Ueki, Y., Narisawa, K., Yoshinaka, R., & Shinohara, A. (2019). “Permuted pattern matching algo-
rithms on multi-track strings. Algorithms, 12(4), pp. 73. https://doaj.org/article/4a62dbb11cc14fd0ba9e2be7fa549cc2.

5. Shapira, D., & Daptardar, A. (2006). “Adapting the Knuth-Morris-Pratt algorithm for pattern matching in Huff-
man encoded texts”. Information processing ¢~ management, 42(2), pp. 429—439. https://www.sciencedirect.com/
science/article/abs/pii/S0306457305000191.

6. Rytter, W. (2003). “On maximal suffixes and constant-space linear-time versions of KMP algorithm”. Theoretical
computer science, 299 (1-3), pp. 763—774. https://www.sciencedirect.com/science/article/pii/S030439750200590X.

Received 15.04.2024

K.K. Jlyxnoscvka, KaHAU/IaT TEXHIYHUX HAyK, IOLIEHT,

Kadenpa IporpaMHUX CUCTeM i TexHOOTII, pakynbTeT iHPOPMALTHIX TEXHOMOTII,
KuiBcbkuit HanionanipbHmit ynisepcuret imeni Tapaca IlleBuenka,

By borgana lappunmmmna, 24, M. Knis, Ykpaina, 02000,

ORCID: https://orcid.org/0000-0002-4539-159X,

kseniia.dukhnovska@knu.ua

LJI. Muwixo, cTyfieHT, Kadenpa MporpaMHIX CUCTEM i TeXHOJOTIIL,
¢axyabret iHoOpMAIiTHIX TeXHOIOTIIL,

KuiBcbkuit HanioHanbHMit yHiBepcuTeT iMeHi Tapaca [lleBuenka,
By/. borpana laspunmmmna, 24, M. Knis, Ykpaina, 02000,
ORCID: https://orcid.org/0009-0003-6018-6521,
ivan.mishko21@gmail.com

[TIOPIBHAJIbHUN AHAJII3 AJITOPUTMIB TIOBHOTEKCTOBOTO ITOIIYKY

Bceryn. L5 pobora 6yna cipsiMoBaHa Ha BcebiuHe JOCTIKeHHs Ta TOPIBHAHHS e()eKTUBHOCTI Pi3HUX a/ITOPUTMIB
IIOBHOTEKCTOBOTO IIOUIYKY, 30KpeMa anroputMis Kayra-Moppica-ITparta Ta boepa-Mypa, 3 MeTO0 BU3HAUYEHHSA
OIITVMAJIbHOTO A/ITOPUTMY /I IOBHOTEKCTOBOTO NMOIIYKY. KpiMm TOT0, OCTiKEHH A OLIiHI/IO BIIJIUB ITapajie/lbHO-
ro 00YMCIeHHs HA MBUAKICTD MOIMIYKY Ta BUSBIIO OOMEXEHHs HasBHUX MifIXO/B.

Merta. MeTO0 JOCTIPKEHHA € MifiBUIeHHA e(DeKTUBHOCT] aITOPUTMIB Y KOHTEKCTI IIOIIYKY TeKCTOBUX LIab-
JIOHIB Y BeNUKNUX 00CsTax AaHNX.

MeTtopu. ATTOpUTMY TIOBHOTEKCTOBOTO MOIIYKY.

PesynbraTi. AHami3yioun pe3ynbTaTu JOCTiIXEeHHsI, MOXHA 3pOOUTHU BICHOBOK, 1[0 anroput™ boitepa-Mypa
BUABMBCA HajteheKTMBHIIIMM 32 IBUAKICTIO TIOIIYKY 11 060X TECTOBMX 3aIATIB. VIOro yI0CKOHa/IeHa eBPUCTHKA
“IOTaHOTO CYMBONY  HA€ 3MOTY 3HAUHO IIPMCKOPUTHU IIPOLeC, MIPOITYCKAI04M HEMOTPiOHI MOPiBHAHHA CHMBOJIB.
ITompu e, mo anroputm Kuyra-Mopica-IIpaTTa BBa)kaBcsl HallKpallluM y HONEPeHiX JOCTiIKEHHAX, B JAHOMY
BUIAJKY BiH IIOCIB ipyre Miclie 3a IIBUAKICTIO pOOOTH.

ITpore /11 KOPOTKUX MOIIYKOBUX I1ab/10HIB anroputM KuyTa-Mopica-ITparTa Bce 1iie MO)Ke MaTy IiepeBary
3aBJIAKNM CBOIJl ONTUMIi30BaHill CTPYKTYpi Ta 3FaTHOCTI YHMKATU ITOBTOPHMX HOPiBHAHD CUMBOJIB. AJITOPUTMU
Bitan ta Pa6ina-Kapna npopeMoHCTpyBamu ripiui pesyabTaTy IIOKO MIBUAKOCTI HOIIYKY ITOPiBHIHO 3 aIrOpUT-
mamu Boitepa-Mypa ta KnyTa-Mopica-IIparra.

Moo sAKOCTi NOLIYKY, BCi aITOPUTMY IIOKa3a/Iy OGHAKOBY KiZIbKicTb 3HaliIeHNX 36iriB /11 000X 3amlnTiB, 110
CBIJYNTD IO IX pIBHOLIHHY 3[JaTHICTb 3HAXOAMUTI PEIEBAHTHI JIOKYMEHTM.

BukopucTaHHA Mapale/IbHMX HOTOKIB 3HAYHO IOKPAIIIIO IIBYAKICTD NOIIYKY IJIS BCIX aIropuTMiB, 0cobmu-
BO I/ JOBIIMX TeKCTiB. IIpuckopenHs carano Big 70% 1o 81% 3anesxHO Bif aITOPUTMY Ta 3alIUTy. X04a IapasesnisMm
BMMaras JOJaTKOBMX BUTPAT Ha CMHXPOHi3aljilo MOTOKIB, 3aralbHNII BUTPALI 9aCcy BUABUBCA BaPTUM LJUX 3yCUIIb.

BucHoBku. IlepcrieKTMBHUMY HallpsAMaMy HOJA/BIINX JOCTIIKEeHb € PO3IIMPEHHA HAbOPy TeCTOBUX NaHMX,
[leTalbHMIT aHa/Ii3 BIUIMBY Pi3HUX ITapaMeTpPiB aITOPUTMIB Ha iXHIO epeKTUBHICTD, @ TAKOX PO3pOOKa afalTUBHIX
Ta iHTe/IeKTyaTbHUX METOMIB MOIIYKY 3 BUKOPMCTAHHAM MalIMHHOTO HaBYaHHA.

PesynbraTul 1IbOTO JOCTIPKEHHS MAIOTh IPAKTUYHE 3HAYECHHS JUI1 PO3POOKM e(pEeKTMBHMX MOIIYKOBUX CHUCTEM,
CHCTeM KepyBaHHs 6a3aMul JaHMX Ta IHIINX IIPOTPAMHUX IIPOAYKTIB, SIKi BUKOPUCTOBYIOTH IOBHOTEKCTOBII ITOIIK.

Kntouosi cnosa: nosHomexcmosuii noutyx, aneopummu nouiyky niopsaokis, aneopumm Kuyma-Mopica-IIpamma,
aneopumm Boepa-Mypa, aneopumm Pabina-Kapna.

52 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3



