https://doi.org/10.15407/csc.2024.03.053
UCD 514.18

Intellectual Informational
Technologies and Systems

IHTeneKkTyanbHi iHpOopMaLirHi
TE€XHO(IOTii Ta CHCTEMH

V.YU. LEVCHUK, Master's degree, National University of Kyiv-Mohyla Academy,

H. Skovorody str., 2, Kyiv, Ukraine, 04070,
ORCID: https://orcid.org/0009-0001-6613-7478,
pifagor654 1 @gmail.com

THE UNIVERSAL MODULE FOR INTEGRATION
OF AN INTELLIGENT ASSISTANT INTO 10S APPLICATIONS

Investigated current implementations of the integration of intelligent assistants into mobile applications. Identified key
disadvantages of existing implementations and formed the criteria for a universal intelligent assistant. Developed a
proprietary software module for integrating an intelligent assistant into iOS application, which provides autonomy,
minimal resource requirements, and simplifies the development process. Created a photo editor application to test the
operation of the software module. The test results were presented and further development prospects were described.

Keywords: intelligent assistant, artificial intelligence, semantic search, natural language, model, machine learning,

speech recognition, graphical interface.

Introduction

Currently, the field of artificial intelligence (AI) is
experiencing a new wave of interest, driven by
the rapid development of large language models
(“LLMSs”) and products based on them. Chatbots
such as ChatGPT, developed by OpenAl and re-
leased to the public on November 30, 2022, can
process and generate natural language at an un-
precedented level of quality for many languages
and fields of knowledge [1]. Because of this,
chatbot-based intelligent assistants have become
useful tools for performing search and content
creation tasks.

However, despite their effectiveness in these
areas, such chatbots have a significant limitation:
they are unable to interact with the device’s ope-

rating system and its applications. This is an im-
portant drawback, because according to a study of
user behavior in devices with virtual assistants [2],
a wide range of functionality is one of the most
important qualities of an intelligent assistant for
users. That is why operating system-level intelli-
gent assistants are very popular [3]. These prima-
rily include Apple Siri for the iOS operating system
and Google Assistant for Android. Such assistants
provide the ability to integrate with third-party
applications but have several significant limita-
tions and disadvantages, which will be disclosed
in this article.

The purpose of this article is to demonstrate
the current possibilities of creating an intelligent
assistant for the iOS mobile operating system with
minimal requirements for development resources

Cite: Levchuk V.Yu. The Universal Module for Integration of an Intelligent Assistant into iOS Applications. Control
Systems and Computers, 2024, 3, 53-59. https://doi.org/10.15407/csc.2024.03.053

© Bupasernp B]I «Akagemnepioanka» HAH Yipainu, 2024. Crartst omny6/1ikoBaHa Ha yMOBAX BiAKPUTOTO JOCTYITY
3a ntintensielo CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

ISSN 2706-8145, Control systems and computers, 2024, No. 3 53

V.Yu. Levchuk

and device computing power. This research aims
to overcome the existing limitations and create a
more efficient and versatile solution.

This study is divided into the following parts:
identifying the flaws of existing implementations
and defining the criteria for the desired solution;
writing a software module that meets the stated
criteria; writing a test application with the integ-
rated module; and demonstrating the results of
the integration.

Problem Setting

OS-level virtual assistants are most often used on
mobile devices. These primarily include Apple Siri
for i0OS and Google Assistant for Android, which
use the same approach to integrate with third-
party applications — intents.

This approach involves application developers
defining interaction points through which the as-
sistant and the application communicate. These
interaction points should belong to the activity ca-
tegories predefined by the assistant or application
developers to typify them and allow the assistant
to better identify them. In this way, applications
provide the assistant with separate, independent
pieces of functionality that have a clearly defined
purpose and conditions for execution.

In addition, for most operations, existing vir-
tual assistants use server processing power and
therefore depend on an Internet connection.

As a result, existing implementations of in-
telligent assistants have several significant draw-
backs:

1) limited functionality: the assistant interacts
with individual application functions, not the en-
tire application;

2) insufficient flexibility: assistants interact
best with apps from a limited set of activity catego-
ries, such as calendars, messengers, shopping apps,
etc.; while for other types of apps, the quality of
performance can be significantly worse;

3) complexity of integration: manual configu-
ration of each interaction point requires significant
development resources;

4) dependence on the network: the need for an
Internet connection makes it impossible to use as-

sistants in many situations and raises privacy con-
cerns among users [4].

Existing intelligent assistants Apple Siri and
Google Assistant were created in the conditions of
less developed artificial intelligence and weaker
hardware, which led to the above mentioned short-
comings. These problems hinder the development
of these systems and slow down the introduction
of artificial intelligence into everyday tasks.

For this reason, the task of creating a new soft-
ware solution that provides the functions of an in-
telligent assistant for mobile phones, taking into
account modern advances in hardware and the
development of artificial intelligence, is becoming
increasingly important. This solution has the form
of a software module, with an emphasis on auto-
nomy and ease of integration for the developer,
which is demonstrated on the example of integra-
tion into a photo editor.

Purpose

This paper aims to develop a universal intelligent
assistant integration module that can be easily ad-
ded to any iOS application. This intelligent assis-
tant allows the user to interact with the application
using voice requests, namely to search for and
perform the desired functionality based on an
approximate description. The implemented mo-
dule must meet the following requirements:

1) Universality: this intelligent assistant can be
integrated into any application, regardless of its sub-
ject matter, and does not require specific training.

2) Ease of integration: the assistant’s software
interface is as simple and intuitive as possible and
does not require much time to master.

3) Autonomy: the voice intelligent assistant
can work in a fully autonomous mode, without
using an Internet connection.

4) Accuracy: the assistant correctly recognizes
voice input in natural language; fulfills user re-
quests if the required functionality is available or
warns about its absence.

Compliance with these requirements is the
main criterion for the success of the module deve-
lopment, which should be verified during testing
on a specially developed application.

54 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3

Universal Module for Integration of an Intelligent Assistant into iOS Applications

PhotoYi app

«—— Ul interactions with the assistant—

|

«— Search and execution of actions in the app—

Apple Natural
Language

Recording and transcribing
a user’s voice request

¥

SwiftUI
component

lifecycle

Translated actions descriptions
Actions that can be executed
by the assistant

DistillBERT

all-MiniLM-L6-v2

Fig. 1. Structure of the program module

Results

A software module called AccessibilityGuided has
been developed in Swift. It is designed to be inte-
grated into iOS applications whose interface is
built using the SwiftUI framework, and the mini-
mum supported iOS version is 16.0. This module
allows the user to call the desired function within
the current window at any time of the application’s
operation by providing an approximate voice de-
scription.

To test the module, a separate photo editor
application called PhotoYi was developed to test
the assistant’s target use cases.

Structure

The developed module for integrating an intelligent
assistant consists of several key components (Fig. 1):

1) User interface: a visual interface that allows
the user to invoke voice input and interact with
the intelligent assistant.

2) Application Programming Interface (API)
for developers, which is used to integrate the mo-
dule into iOS applications.

ISSN 2706-8145, Control systems and computers, 2024, No. 3

L] AccessibilityGuided

Intelectual assistant

N

Storage of available actions

- QA search —| SimilaritySearchKit

Text similarity search ——

and their descriptions

Search of the required action

|

[

3) Action storage and processing, which inclu-
des methods and structures that store and provide
actions available for execution in the current ap-
plication context.

4) Speech Recognition: This includes recording
and transcribing the user’s voice requests.

5) Decision-making, which consists of finding
an action that matches the user’s request and de-
termining the correctness of the search results.

The proposed structure of the module allows to
separate the work with the most important ele-
ments: interface operation, Al tools for speech re-
cognition, and AI tools for decision making. This is
important in the context of further support and de-
velopment of the module, as the tools for these ele-
ments are rapidly evolving and constantly changing.

Application Programming Interface

The AccessibilityGuided module provides a simple
programmatic interface for integration into ap-
plications. The integration algorithm is based on
linking actions that are relevant for certain appli-
cation contexts to interface elements. Thus, the
actions performed by a certain element, such as

55

V.Yu. Levchuk

a button, slider, or radio button, are available for
execution through the intelligent assistant as long
as this element is in the user’s field of view.

The module API is represented as 2 methods:

e func guidedAction(descriptionKey: String,
action: @escaping() -> Void) — a modifier of a SwiftUI
element that accepts an action and a key to a loca-
lized text description of this action. The action
and its description are added to RAM when the
widget becomes visible on the screen and removed
when it disappears from the user’s view;

e func guidedAction(localizedDescription:
String, action: @escaping() -> Void — performs
the same function, but instead of the translation
key, it accepts a ready-made string with the action
description. This modifier is useful when it is ne-
cessary to dynamically generate an action des-
cription. For example, to allow a parameterized
action by creating separate actions and descrip-
tions for each parameter.

These modifiers can be applied to all types of
elements in the SwiftUI, allowing the user to per-
form any action available within the current win-
dow through voice requests.

Speech Recognition

The module uses a solution built into iOS — the
Speech framework from Apple. This framework
has been a part of iOS since version 10.0 and allows
transcription of voice input in all languages sup-
ported by iOS.

The AccessibilityGuided module’s voice input
works without an internet connection for a li-
mited list of languages, as it can only work in this
mode with those languages for which the Speech
framework has the most number of languages
for which transcription without an internet con-
nection is possible is support (English, French,
etc.). However, with further iOS updates, the grow-
ing, so the possibilities for AccessibilityGuided’s
offline operation will increase with the develop-
ment of iOS.

Natural Language Processing
and Decision Making

All available actions are stored in a dictionary
structure along with their descriptions and unique

identifiers. To determine the action that matches
the user’s request, a semantic search based on the
Transformer architecture [5] is used, which is a
natural language processing method that splits
text into vectors of numbers that are compared
to classify and search for similar text.

To work with transformer models, the Si-
milaritySearchKit framework [6] is used, which
allows easy import of AI models into iOS and
provides ready-to-use models. This module uses
2 transformer models imported from the Hugging
Face model library [7]:

e DistilBERT is a lightweight version of the
large BERT model from Google [8]. The scalar
product is used for the similarity metric between
vectors, which allows to correctly identify texts
that are similar in meaning, regardless of their size.
Initially, it was designed for question-and-answer
searches, which is why it is ideal for an intelligent
assistant. In this module, this model is used exclu-
sively for English, as it does not support other
languages.

e all-MiniLM-L6-v2 — this model belongs to
the MiniLM (Mini Language Model) family [9],
known for its efficiency and compactness, which
makes it ideal for use in environments with limi-
ted resources. It is designed primarily to determine
the similarity of texts. The similarity metric uses
the cosine of the similarity, which is why the size of
the texts can affect the result. This model is used in
the module for all languages except English.

When searching for the action whose descrip-
tion most closely matches the user’s query, the si-
milarity coeflicients of the descriptions and the
query are compared. The description that has the
highest similarity coeflicient (which is higher than
the threshold set empirically) is considered a result
that satisfies the user’s query. If none of the simi-
larity coefficients satisfy the similarity threshold,
the user is displayed a message about the lack of
such a possibility.

Application for Testing the Module

To test the software module, a photo editor ap-
plication for iOS called PhotoYi was created. It
creates the necessary conditions for testing the

56 ISSN 2706-8145, CucteMH KepyBaHHA Ta KOMI'10TepH, 2024, N° 3

Universal Module for Integration of an Intelligent Assistant into iOS Applications

Cancel Done

Projects

Create new project
a b
Fig. 2. Interface of the test application (a—d)

implemented module with an intelligent assistant,
as it allows not only to check its functionality but
also to analyze the impact on the performance and
stability of the application.

The PhotoYi application includes the follow-
ing image editing functions:

1) Image cropping (Fig. 2, b): The user can
crop the image by selecting a certain rectangular
area on the screen by moving its sides.

2) Apply filters (Fig. 2, ¢): The application of-
fers a set of filters to change the appearance of the
image. The filters are located in a long horizontal
list and are selected by clicking.

3) Changing the brightness (Fig. 2, d): The
user can change the brightness of the image by
moving the slider.

4) Change the contrast: The application allows
you to change the contrast of the image by moving
the slider.

5) Change saturation: The user can change the
saturation of the image by moving the slider.

In addition, the user can create (Fig. 2, a) and
delete projects, as well as save and send images.

Photo Yi is written in the modern Swift lan-
guage. The SwiftUI framework was used to develop

Cancel Done

v GEED - ov GEED -

Cancel Done

Brigtness

c d

the interface of the test application, and Core Image
was used to implement image editing functions.

Test Results

The photo editor with the integrated module was
tested in English and Ukrainian. The testing did
not reveal any impact of the assistant on the ap-
plication’s performance or stability.

The primary benchmarks for testing were 4
criteria that were used in the design of the module.
It is the compliance with these criteria that forms
the assessment of the development results:

1) Universality: the created program module
really did not require any preliminary configura-
tion to be integrated into the application. Provided
that the developers have written the correct ac-
tion descriptions, the intelligent assistant performs
all the necessary operations.

2) Easy integration: the assistant’s program
interface consists of 2 methods that can be easily
integrated into the existing SwiftUI interface.
There is no need to design the integration struc-
ture, it is enough to write the correct descriptions
of the actions performed by visual elements.

ISSN 2706-8145, Control systems and computers, 2024, No. 3 57

V.Yu. Levchuk

3) Autonomy: for English and several other
popular languages, the module works completely
autonomously, but for some languages, transcrip-
tion may require an Internet connection depen-
ding on the iOS version.

4) Accuracy: voice input is recognized equal-
ly correctly for all languages, while the search for
actions that satisfy the query works best for Eng-
lish. For it, the correct results are selected regard-
less of the size of the texts, while for other lan-
guages, the size of the query may affect the quality
of the result.

In general, the developed module meets the
requirements for ease of implementation and
universality, without requiring prior training. The
intelligent assistant inside the module provides
accurate results using only the power of the mobile
device, which meets the requirements of accura-
cy and autonomy. Thus, the tasks outlined in this
article have been fully met.

REFERENCES

Conclusion

The developed universal smart assistant integra-
tion module demonstrates modern integration ca-
pabilities with minimal resource requirements. It is
flexible, efficient, and can be easily implemented in
a wide range of mobile applications.

It should be noted that the effectiveness of such
a solution largely depends on the quality of servi-
ces provided by developers of artificial intelligence
models and speech recognition technologies.

This work has several possible directions for
development and research: improving the created
software module, as well as defining the architec-
tural approach of the module with development
and scaling to other platforms. Taking into account
the speed of technology development and the cur-
rent state of the field of intelligent assistants, the
priority research area is the formation of a general
architectural approach to the integration of artifi-
cial intelligence into arbitrary applications.

1. Nori, H. et al. (2023). “Capabilities of GPT-4 on medical challenge problems” [online]. Available at: <https://

arxiv.org/abs/2303.13375> [Accessed April 21, 2024].

2. Yang, H., Lee, H. (2019). “Understanding user behavior of virtual personal assistant devices”. Inf. Syst. E-Bus

58

Manage, 17, pp. 65-87. DOI: https://doi.org/10.1007/s10257-018-0375-1.

. Hoy, M. B. (2018). “Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants”. Medical Reference Ser-

vices Quarterly, 37 (1), pp. 81-88. https://doi.org/10.1080/02763869.2018.1404391.

. Easwara Moorthy, A. and Vu, K.-P.L. (2015). “Privacy Concerns for Use of Voice Activated Personal Assistant

in the Public Space’, International Journal of Human-Computer Interaction, 31(4), pp. 307-335. DOI: https://doi.
0rg/10.1080/10447318.2014.986642.

. Vaswani, A. et al. (2023). “Attention is all you need”, arXiv.org. [online]. Available at: <https://arxiv.org/abs/

1706.03762> [Accessed April 28, 2024].

. ZachNagengast - ZachNagengast/similarity-search-kit. [online]. Available at: <https://github.com/ZachNagen-

gast/similarity-search-kit> [Accessed 11 May 2024].

. Wolf, Thomas, et al. “HuggingFace’s Transformers: State-of-The-Art Natural Language Processing”. ArXiv:

1910.03771 [Cs], Feb. 11. 2020, arxiv.org/abs/1910.03771 [Accessed May 13, 2024].

. Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019).” DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter”. arXiv.org. https://arxiv.org/abs/1910.01108 [Accessed May 13, 2024].

. Wang, W. et al. (2020). “MINILM: Deep Self- Attention Distillation for Task-Agnostic Compression of Pre-Trained

Transformers” https://arxiv.org/abs/2002.10957 [Accessed June 21, 2024].
Received 28.07.2024

ISSN 2706-8145, CncreMu KepyBaHHA Ta KoM'totepH, 2024, N° 3

Universal Module for Integration of an Intelligent Assistant into iOS Applications

B.IO. Jlesuyx, maricTp,

Hauionanpumit yniBepcurer “KneBo-Mornnsancbka akagemis’,
By Ipuropis CxoBoponu, 2, M. Kuis, Ykpaina, 04070,
ORCID: https://orcid.org/OOO9-0001—6613—7478,
pifagor6541@gmail.com

YHIBEPCAJIbHVI MOY/Ib IHTETPAIIIT
IHTEJTEKTYAJTIbBHOI'O IIOMIYHMKA Y 3ACTOCYHKMN iOS

Berym. IHTerpalis iHTe/eKTyanbHUX ITOMIiYHUKIB Y MOOIIbHI JOAATKYU CTa/la BaXK/IMBOIO 3a/jadel0 B CY4aCHOMY
CBiTi, le KOpMCcTyBadi Aefani 6ipllle BUKOPMCTOBYIOTh TeXHOJIOTI IITYYHOTO iHTENeKTY s Bce OiMbIIOi Kib-
kocri 3azay. CyvacHi pilteHns, Taxi Ak Siri, Google Assistant i Amazon Alexa, mpomoHyOTb 06MeKeHy THYYKiCTb Ta
OTPeOYIOTh 3HAYHMX PeCYPCiB Ayst po3pobkit. Lle 06Mexxye MOXKIMBOCTI IIMPOKOTO BIIPOBAKEHHS IX, 0COOINBO
y HEBENUKUX PO3POOHMI[BKIX KOMaH/ax. ToMy icHye morpeba y CTBOpeHHI YHiBepCalbHOrO Ta epeKTIBHOTO MO-
LY/ UIA iHTerpanii iHTe/IeKTyalbHUX IIOMIYHMKIB.

Mera crarti. MeToto 1ji€l po60oTI € po3pobKa yHiBepCaabHOIO MOAY/A iHTerpanii iHTe/IeKTyanbHOIo Io-
MiYHIIKa, KU MOXKe OyTH JIETKO BIpOBaKeHuil y 6ynb-saki iOS-gofatku. Monynb oByHeH 6yTH aBTOHOMHUM,
Mary MiHiMaJIbHi BMMOTH IO PecypciB i cIpolryBaTy IIpoLec po3poOKu.

Meropu. IIpoananizoBaHo CydacHi peasisanii iHTerpamii iHTeeKTyaJlbHMX TOMIYHUKIB 31 CTOPOHHIMM 10O-
[aTKaM! Ta BIOKpeMJIeHO TonoBHi Heponiku. ChopmoBaHO KpuTepii 0 YHIBepcanpHOI iHTerpalii iHTeIeKTyab-
HOTO IIOMIYHMKA Ta BU3HAYEHO IIAXiZ [0 iHTerparii K posmupeHHs FOCTyIHOCTI. PO3po6eHo mporpaMHmii Mo-
Iy/Ib, AKUI Hajjae GYHKIiOHA IHTENeKTyanbHOrO ITOMIYHMKA I/ iHTerpanii B gogatku iOS i3 MiHIMalTbHUMMU
BUTpaTaMu pecypciB. Bukopucrano Mopeni-Tpanchopmepu npuponHoi Mosu 3 6i6miorexu HuggingFace. JIns tec-
TYBaHHS CTBOpeHO ¢oropegaktop Ayt i0S, y sikuit 6y1o iHTerpoBaHO po3po06IeHnt MORYIb i siKuit Mae inTepderic
AHIVIJICPKOIO Ta YKPAiHCHKOK MOBAMI.

Pesynprari. Pospo6reHo mporpaMHmii MOZY/Ib, SIKUIT O3BOJISIE TIOBHE KEPYBAHH 3aCTOCYHKOM 3a JOIIOMO-
rO0 TOJIOCOBMX 3aIIMTIB Ta MAa€ IPOCTUI MPUKIAFHNIT porpaMHumit iHTepderic as interpanii y goBinpamit iOS
3aCTOCYHOK. JI/1s1 iHTerpanii BUKOpMCTaHO HOBUII HiAXif, KNI IIOJISATa€e y IPUB A3yBaHHI KOHTEKCTHUX il O efe-
MeHTIB iHTepdeiicy Ta TO3BOJISI€E IHTENeKTyaIbHOMY ITOMIUHVIKY IPAIIOBaTy 3 YCiM JOaTKOM. IHTe/meKTyanbHuii
IIOMIYHVK BCepefiMHi MOLY/IA He 3aJIeKUTD Bifl iHTepHeT-3’€fHAaHHA, He OTpebye MONepeHbOrO TPeHYBaHHA
Ta 3a0e3ledye OfHAKOBY AKIiCTH poboTH He3anmeXXHO Bif chepn misnbHOCTI momaTka. HaliBuiia skictb po6oTn 3a-
OesmedyeTbCsl /sl AHIIINICBKOI MOBY 4depe3 O0OMeXeHHsI BMKOPUCTAHMX MOfener-TpaHc(opMepiB mpupofHOL
MoBH. PeanisoBaHMil MOLY/Ib [ja€ 3MOTY 3HMSUTH 3aTPaTU Ha PO3POOKY, MiBUIINTI IPOXYKTUBHICTD i 3abe3re-
YUTU BUCOKY SIKICTb B3a€MO/IIl 3 KOPUCTYBaYeEM.

BucHoBKM. PO3BUTOK TeXHOJIOTiI INTYYHOrO iHTeJIEKTy Ta alapaTHOro 00JIafJHaHHA CbOTONHI Jae 3MOTY IIN-
poko BukopucToByBaTy MO>KINBOCTI IIII Ha 0OMeXKeHUX MOTY>KHOCTAX MOOiNIbHUX puUcTpoiB. Pospobienuii
YHiBepcalbHMII MOYNb iHTETpallii iHTeNeKTya/IbHOTO TIOMiYHMKA JEMOHCTPYE CYy4acHi MOXXIMBOCTI iHTerpanii 3
MiHIManpHMMU TTOTpebaMu y pecypcax. BiH € THy4IKMM, epeKTUBHUM i MOXKe OYTHU JIeTKO BIPOBA/PKEHNUIT y LIN-
POKMII CIIeKTp MOOITBPHUX TOJATKiB. MaTepiamu cTarTi 6yAyTh KOPUCHUMIU /I PO3POOHNUKIB, SIKi IIYKAIOTh CIO-
cobu TmoKpaleHHs QYHKIIIOHABHOCTI CBOIX JOAATKIB 3a JOIIOMOIOIO IHTE/IEKTyaTbHIUX TOMIUHIKIB, @ TAKOX 15
TOCTiI)KEeHHs ITOKPALleHHA CTPYKTYPY B3a€EMOJII TIOMIYHMKIB Ta 3aCTOCYHKIB.

Kntouosi cnosa: inmenexmyanvHutl NOMIMHUK, WMYYHUTL iHIMeNEKN, CEMAHMUYHUTI NOUWLYK, NPUPOOHA MOBA, MO-
Oenv, MawutHe HABUAHHS, POINIZHABAHHS MOB/IEHHS, 2padiunuil inmepgeiic.

ISSN 2706-8145, Control systems and computers, 2024, No. 3 59

