
ISSN 2706-8145, Control systems and computers, 2024, No. 4 19

Cite: Novikov O.A., Yanovsky V.V. Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game. Control
Systems and Computers, 2024, 4, 19—33. https://doi.org/10.15407/csc.2024.04.019
© Видавець ВД «Академперіодика» НАН України, 2024. Стаття опублікована на умовах відкритого доступу
за ліцензією CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.15407/csc.2024.04.019
UDC 004.94

O.A. NOVIKOV, PhD student, Institute of Computer Science and Artificial
Intelligence Department of Mathematical Modeling and Data Analysis,
Karazin Kharkiv National University,
Svobody, Sq 4, Kharkiv, Ukraine, 61022,
ORCID: https://orcid.org/0009-0004-5914-7098,
artem.slick@gmail.com

V.V. YANOVSKY, Doctor of Physical and Mathematical Sciences,
Professor of Department of Artificial Intelligence Systems,
“Institute for Single Crystals” of National Academy of Sciences,
Nauky ave. 60, Kharkiv, 61001, Ukraine,
ORCID: https://orcid.org/0000-0003-0461-749X,
Scopus Author ID 7003273794,
yanovsky@isc.kharkov.ua

ANALYSIS OF SEARCH AND MULTI-AGENT
ALGORITHMS IN THE PAC-MAN GAME

Th is paper examines the performance of search and multi-agent algorithms within the context of the Pac-Man game.
Th e game is used as a platform to simulate autonomous system management tasks, where an agent must complete
missions in a two-dimensional space while avoiding dynamic obstacles. Classical search algorithms such as A* and BFS,
along with multi-agent approaches like Alpha-Beta, Expectimax, and Monte Carlo Tree Search (MCTS), are analyzed
in terms of their eff ectiveness under diff erent maze complexities and game conditions. Th e study explores how maze size,
ghost behaviors, and environmental dynamics infl uence the performance of each algorithm, particularly in terms of
execution time, score, and win percentage.
Keywords: search algorithms, multi-agent algorithms, Pac-Man, path optimization, Alpha-Beta, Expectimax, MCTS.

Intellectual Informational
Technologies and Systems

Інтелектуальні інформаційні
технології та системи

Introduction

The Pac-Man game can be viewed as a simplified
simulation of autonomous system management
tasks, where agents must perform certain tasks in
a two-dimensional space while facing moving ob-
stacles. In this context, the game’s maze can be in-
terpreted as a 2D terrain model, where autono-
mous systems such as drones or ground robots
need to optimize their paths, particularly in con-

strained spaces with obstacles. The game Ms.
Pac-Man is an excellent test problem in pur-
suit-evasion with multiple active opponents, who
adapt their chasing strategies based on the state
and decisions of Ms. Pac-Man [1]. The scientific
interest in this topic is growing, and numerous re-
search directions are actively evolving, including
work in the fields of robotics, biology, sociology,
and psych ology. The field of computational intelli-
gence is particularly active, in part due to popular

20 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

academic game competitions involving Ms. Pac-
Man [2].

Pac-Man acts as an autonomous agent whose
goal is to complete critical tasks-collecting cap-
sules, which can be compared to real-life opera-
tions such as drones collecting data or delivering
resources to specific points. Capsules can be seen
as goals located in the environment that require
specific actions such as data collection, servicing,
or monitoring certain areas. The agent is defined as
a simple finite automaton with a set of rules that
regulate the likelihood of the agent’s movement,
taking into account maze constraints at any given
moment [3]. By computing paths in real time, the
algorithm can quickly adapt to unexpected oppo-
nent movements or dynamic environments [4].

Ghosts, in turn, represent dynamic threats or
hostile agents, such as other drones or moving ob-
jects, that may interfere with completing the mis-
sion. Interaction with such obstacles requires the
autonomous agent to constantly evade and adjust
its path in real time. In real-world scenarios, this
could include algorithm adaptations to avoid inter-
ception or collision with hostile or other moving
objects. In a study by Tuchník et al. (2018), an ex-
perimental comparison was conducted based on
a model where agents represent economic entities
and can engage in interactions. The model was
scaled to different levels of complexity, considering
the number of agents and transport nodes. The re-
sults indicated significant differences in path plan-
ning task completion times depending on the sys-
tem’s complexity levels and model sizes [5].

Thus, the Pac-Man game provides an excellent
platform for modeling and testing algorithms that
can be applied to real-world autonomous systems
operating in complex environments with dyna-
mically changing obstacles. Autonomous agents’
interaction with obstacles and the completion of
cri tical tasks require algorithms to optimize paths
and adapt to environmental changes, directly cor-
responding to real-world challenges in robotics
and autonomous systems. For example, Said et al.
(2021) discussed that related methods treat agents
as a high-dimensional complex system and use
complete optimal planners (such as A* and its va-
riants). However, the naive approach quickly be-

comes impractical due to exponential complexity
[6]. Recently, specific suboptimal algorithms with
polynomial complexity have been proposed for
computing actual paths in important sub-tasks of
the general problem. These algorithms use sin-
gle-agent primitives but return sequential paths
where only one agent moves at a time [6]. This
demonstrates potential applications in large mul-
ti-robot systems [7].

In the context of autonomous systems, it is im-
portant to consider that in games such as Warcraft
III, agent routes may intersect if the agents’ plans
do not interfere with each other. This means that
agents may occupy the same space at different
moments in time, but not simultaneously[8]. Ho-
wever, in tasks involving environment coverage or
observation, there may be a requirement that agent
routes do not overlap, which allows covering more
territory in less time, also considering the limited
power provided by robot batteries [8].

In scenarios such as emergency rescue, there
may be a need for certain areas of the terrain to be
checked by specific agents, as the likelihood of
people being in those areas is high. To prevent one
agent from doing all the work, restrictions may be
placed on the route length or plan duration for
each agent [8].

Classical Search Algorithms

In classical pathfinding approaches, such as A*
and BFS, the goal is to find the shortest path to
capsu les or other objects in the maze. The A* al-
gorithm uses a heuristic to estimate the distance
to the target, which helps optimize search time by
reducing the number of nodes considered. This ap-
proach is particularly effective in static environ-
ments, such as maze walls, but does not account for
dynamic threats like ghosts. On the other hand,
BFS offers a different approach by ensuring a com-
prehensive search of all possible paths in the maze.
However, its downside is that it can be less efficient
in large mazes due to the high search cost. While
classical search algorithms are effective for static
environments, they lose their efficiency in dyna-
mic environments like the Pac-Man game, where
ghosts move and create changing threats. As He-

ISSN 2706-8145, Control systems and computers, 2024, No. 4 21

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

vavasam et al. (2022) point out, many algorithms
lack a proper method to adapt to the speeds of
moving objects during navigation decision-ma-
king [9]. This is especially evident in large and
complex mazes, where classical algorithms often
lead to locally optimal but not globally efficient
solutions, as they do not account for the variable
behavior of ghosts.

The study by Lu et al. (2011) proposes an exten-
sion to the basic algorithm with the effective use of
a multi-dimensional environment representation,
allowing quick localization of changed edges and
updating the priority queue [10]. This improves
both resilience and computational complexity in
the worst case compared to classical algorithms.

Multi-Agent Strategies

To solve tasks in dynamic environments, multi-
agent algorithms are used, which can model inte-
ractions with other agents, such as ghosts. The
Expectimax algorithm allows modeling probabi-
listic actions of ghosts, enabling Pac-Man to pre-
dict possible threats and avoid them. This is par-
ticularly useful in complex environments where
ghosts have unpredictable behavior, such as after
collecting a capsule when they become vulnerable.

However, it should be noted that modeling the
possible actions of all ghosts within Expectimax
can significantly increase computational comple-
xity, especially in large mazes, limiting the appli-
cation of this algorithm in real-world scenarios. To
address this issue, Alpha-Beta Pruning is used,
which optimizes the search by cutting off unneces-
sary branches of the move tree. As Saffidine et al.
(2012) note, this approach uses MiniMax values
to prune a subtree when there is confidence that
the move will not affect the decision at the root
node, allowing Pac-Man to make quick decisions
by reducing the number of considered options
[11]. The study also notes that after its discovery,
the Alpha-Beta method was extended to other
types of games and search algorithms, indicating
its widespread application in various contexts [11].

Additionally, attention should be paid to algo-
rithms that use simulation approaches, such as
Monte Carlo Tree Search (MCTS). This method al-

lows Pac-Man to explore possible actions through
simulation of future states. MCTS is an algorithm
that finds “optimal” actions by random movements
in the action space and building them into a tree
structure [12]. The MCTS algorithm strikes a ba-
lance between exploring new possibilities and ex-
ploiting already known successful strategies. As
Lee (2019) notes, “exploitation” involves finding
the best solution based on already learned exam-
ples, while “exploration” refers to trying a new ap-
proach that was previously unknown in the space
of learned examples [12].

The success of MCTS depends on balancing
exploitation (focusing on promising areas) and ex-
ploration (focusing on areas that have not been
well studied yet) [13]. The most popular algorithm
in the MCTS family, which addresses this dilem-
ma, is Upper Confidence Bound for Trees (UCT),
which combines exploitation and exploration to
achieve optimal decisions [14].

With each new simulation, the algorithm gra-
dually improves its decisions, making it especially
useful in large mazes and complex environments.
As Kuipers et al. (2013) noted, when the tree size is
small, preference should be given to exploitation,
whereas in large trees, it is more appropriate to
conduct more exploration [14].

The Importance
of Different Approaches

Each of the mentioned approaches has its advan-
tages and disadvantages depending on the game
conditions and the maze’s complexity. A* and BFS
work well in static environments with predictable
obstacles, but when facing dynamic ghosts, they
often lack flexibility. Expectimax and AlphaBeta
are more adaptive as they can model ghost beha-
vior, but they become less efficient when there are
many agents or in large mazes due to limited com-
putational resources. As Felner et al. (2021) note,
the classical A* algorithm can be applied to Mul-
ti-Agent Path Finding (MAPF) by using a state
space representing the location of all agents, but
it suffers from exponential growth in the size of the
state space and branching factor as the number of
agents increases. Multi-agent approaches can pro-

22 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

vide exponential speedups compared to A* by de-
composing the task into independent sub-tasks [15].

MCTS shows the best results in large and com-
plex environments, as it can balance exploring new
options and exploiting acquired knowledge through
simulations. This algorithm is particularly useful
in situations with a large number of possible ac-
tions, where other algorithms may suffer signifi-
cant efficiency losses due to the expanding search
space. As Kandelwal et al. (2016) note, over the
past decade, Monte Carlo Tree Search (MCTS),
and particularly Upper Confidence Bound in Trees
(UCT), have proven to be quite effective in large
probabilistic planning domains. Research into va-
rious backpropagation strategies in MCTS, beyond
simple Monte Carlo averaging, can lead to signi-
ficantly better results in large and complex proba-
bilistic planning tasks [16]. Additionally, Ou et al.
(2023) note that MCTS is a cutting-edge algorithm
suitable for decision-making in complex environ-
ments with adversaries. They introduce important
sampling in MCTS to make the search more effi-
cient in ultra-large search spaces [17].

Thus, different algorithms can be used for diffe-
rent types of tasks in the Pac-Man game. The opti-
mal solution depends on the maze structure, the
number of ghosts, and the dynamics of their be-
havior. Using a combination of classical search
algorithms and multi-agent strategies allows adap-
tation to various conditions and ensures success
in achieving the main goal. However, as Silva et al.
(2018) note, the concept of hyper-heuristics re-
mains under-researched in the analyzed frame-
works, and there is a lack of tools that offer optimi-
zation process support, such as statistical analysis,
parameter self-optimization, and graphical inter-
faces [18].

Problem Setting

In this version of the Pac-Man game, the primary
objective remains unchanged — to collect all cap-
sules on the map while avoiding ghosts. However,
several new conditions have been introduced to
complicate the game, making it more interesting
for testing various decision-making algorithms.
These conditions can also be easily interpreted in

real-world scenarios, such as drone or autonomous
robot management in complex environments.

The main task of Pac-Man (the agent) is to col-
lect capsules, which can be considered as goals or
tasks in real-world environments, such as scouting
an area or collecting data using drones. Capsules
act as critical objects that need to be located and
collected. In this context, the maze becomes a
two-dimensional terrain model where the agent
must optimize its path to complete the task while
avoiding collisions with obstacles or other agents.

To more accurately model real situations, ad-
ditional conditions were introduced that simulate
challenges in complex environments. Here are the
main game modifications:

Penalties and Rewards:
1. Penalty for inactivity. In real-world tasks like

reconnaissance using drones, time is a critical re-
source. Inactivity or delays in task execution can
lead to loss of efficiency or even mission failure.
Similar to how Pac-Man loses points for each extra
move, real-world systems require time and energy
optimization for success.

2. Reward for collecting capsules. Capsules can
be treated as critical data collection points or im-
portant objects that need to be identified and pro-
cessed. For example, drones can be programmed
to gather information from specific points on the
map or perform certain actions in high-concentra-
tion object areas.

3. Reward for defeating a scared ghost. A
scared ghost in the context of real systems can
mean the temporary vulnerability of another agent
or system. For instance, this could be when a mov-
ing object (another drone or vehicle) becomes vul-
nerable due to technical problems or limited po-
wer, allowing the main agent to take advantage of
the moment to neutralize or complete the task.
This situation may arise, for example, when one
drone temporarily loses connection or power, crea-
ting an opportunity for other agents to act quickly.

Ghost Mechanics and Scared States:
1. Ghosts as mobile obstacles: Ghosts in the

Pac-Man game can be seen as moving obstacles or
enemies in a real-world environment. These could
be other autonomous systems (drones, ground ro-
bots) or even aggressive elements, such as enemy

ISSN 2706-8145, Control systems and computers, 2024, No. 4 23

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

drones in military scenarios. Their aggressive be-
havior, which involves chasing Pac-Man, resem-
bles dynamic threats that must be considered when
planning routes and avoiding them.

2. Scared state. The vulnerability of ghosts du-
ring their scared state can be interpreted as a tem-
porary weakness in a system or agent that can be
exploited to achieve a goal. For example, this could
relate to moments when other drones or vehicles
become temporarily inoperative due to technical
problems, allowing the main agent (Pac-Man) to
act more aggressively to complete the mission.

In the classic version of Pac-Man, the player
simply collects food and avoids ghosts, but in the
modified version, additional elements have been
added that relate to real-world autonomous system
management tasks. The loss of points for each unne-
cessary move simulates real situations where ti me
and resources are limited. In systems like dro nes or
autonomous robots, every move has its cost —
either in terms of energy or time. Inefficient route
planning can lead to energy waste or mission fai-
lure within the planned timeframe. For example,
an autonomous drone conducting monitoring or
delivery must constantly optimize its route, as
every unnecessary move reduces battery life, which
can negatively impact task completion. The same
situation occurs in Pac-Man: each inefficient move,
for which points are deducted, brings the player
closer to defeat, making the search for optimal
routes critically important.

Capsules are key objects that must be collected
for success. In real scenarios, capsules can be com-
pared to critical information collection points, im-
portant data, or areas where certain actions must
be performed, such as terrain scanning, delivery,
or evacuation. For example, an autonomous drone
may have a task to collect data from several points
or deliver goods to several predetermined loca-
tions. Choosing the right route and task execution
order directly affects the overall system efficiency.
The priority of capsules in the game reflects a si-
milar situation, where selecting the correct se-
quence of actions is key to success.

Ghosts in the game act as mobile obstacles or
hostile agents that should be avoided, similar to
real-world autonomous systems dealing with dy-

namic threats, such as other drones, vehicles, or
other moving objects. The scared state of ghosts
in the game can be compared to the temporary
vulnerability of hostile agents in real-world scena-
rios. For example, drones performing missions may
encounter other autonomous systems that become
temporarily vulnerable (due to technical failures,
loss of communication, or other factors). During
this period, autonomous systems can not only avoid
threats but also effectively neutralize them or use
the moment to achieve additional goals, similar to
how Pac-Man takes advantage of the scared state of
ghosts to score extra points.

Just like in real autonomous systems, Pac-Man
collects food in addition to the main capsules,
which brings smaller but consistent points. This
can be compared to secondary tasks in real auto-
nomous missions, where the system performs ad-
ditional operations that yield smaller yet important
results, such as collecting secondary data or per-
forming simple auxiliary actions that contribute to
the overall success of the mission.

The primary goal of this research is to study
the effectiveness of various agents in the context of
autonomous system management tasks, simulated
in the Pac-Man game. To achieve this, we plan to
compare the performance of the aforementioned
search and multi-agent algorithms in this environ-
ment using different versions of 2D terrain models,
represented in the game by mazes. We aim to ex-
plore how these algorithms perform under various
conditions: from simple and less dynamic environ-
ments, where path optimization plays a significant
role, to dynamic environments with more agents,
where interaction with these agents (ghosts) criti-
cally affects decision-making.

Key questions we aim to answer:
1. Which algorithms are most effective for com-

pleting tasks under different levels of environmen-
tal complexity?

2. How do maze complexity and additional con-
ditions (number of enemy agents, terrain size, and
number of obstacles) impact the performance of
different agents?

3. How effective are search algorithms compared
to multi-agent approaches in the context of tasks
with varying levels of complexity and dynamism?

24 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

To achieve this goal, a series of experiments in
mazes of different sizes and complexity will be con-
ducted to compare metrics such as execution time,
score achieved, and win percentage for each agent.
This will help identify usage patterns for the al-
gorithms and determine which approach is most
effective depending on the complexity of the en-
vironment and the specific conditions of the task.

Algorithms

AStarSearch (A)* is an efficient pathfinding me-
thod that combines actual path cost and heuristics
to minimize the distance to the target. In the Pac-
Man game, this algorithm helps to collect all cap-
sules by accounting for the maze structure and
optimizing the route.

Key components:
1. Priority Queue (fringe). The algorithm uses

a priority queue to organize states, allowing it to
find optimal solutions with minimal costs. In real
autonomous systems, such as drones, this approach
is used for route planning while considering li mi-
ted resources (energy, time).

2. State. The state consists of Pac-Man’s position
and the list of capsules that remain to be collected.
In real systems, this could correspond to the po si ti-
on of a drone and the goals it must reach or process.

3. Heuristic. A* uses heuristics to estimate the
distance to the nearest capsule, allowing the algo-
rithm to prioritize closer targets. This is similar to
drones using distance estimations to critical points
to minimize time and energy.

4. Closed List. The algorithm remembers all vi-
si ted states, preventing unnecessary returns to them.
In real autonomous systems, this reduces resource
costs for reprocessing the same points or tasks.

A* is one of the main algorithms for route plan-
ning in autonomous systems. For example, drones
use it to find the shortest path through complex
environments with obstacles and changing condi-
tions. The algorithm helps achieve a balance be-
tween speed and resource optimization, which is a
key factor in successfully completing missions in
real systems.

BFSSearch (Breadth-First Search) is a classic
search algorithm that explores all possible paths at
the same distance from the starting state, gradually

expanding the search area. In the context of Pac-
Man, BFS helps find a path to collect all capsules
by checking all available options without using
heuristics.

Key components:
1. Queue (fringe). BFS uses a queue to organize

path searches. The algorithm explores all possible
options step by step, ensuring that the first path found
is the shortest in terms of moves. In real-world sce-
narios, this can be useful for navigation in environ-
ments where minimizing the number of moves is
important, such as in delivery systems or robotics.

2. State: Each state includes Pac-Man’s position
and the list of capsules that remain to be collected.
In real systems, this could be the equivalent of
achieving a set of goals in a terrain, such as data
collection or task completion in designated areas.

3. No Heuristics. BFS explores all options wi thout
additional evaluation. This makes it less op timized
for execution time compared to A*, but it guaran-
tees finding the shortest path in terms of moves.

4. Closed List. The algorithm remembers all
visited states to avoid re-exploring them, reducing
computational complexity and resource costs.

In real systems, BFS can be useful for finding the
shortest paths in environments with many options,
where the number of moves is more important than
resource costs. For example, in urban navigation,
autonomous robots can use BFS to explore routes
with the fewest maneuvers. BFS is also effective
for tasks where all possible options must be ex-
plored without prior evaluation, such as in search
and exploration of new environments.

RandomAgent is a simple agent that randomly
chooses an action from the available options, ig-
noring the stop action. It does not use any heuris-
tics or path planning algorithms, making it the
simplest decision-making option. This agent can
be useful as a control, representing the worst pos-
sible option or for evaluating the effectiveness of
other algorithms.

Key components:
1. Action selection: The agent receives all avai-

lable actions in the current state and randomly se-
lects one, excluding the stop action. This makes it
entirely dependent on randomness, without any
strategy or reasoned choice.

ISSN 2706-8145, Control systems and computers, 2024, No. 4 25

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

2. Lack of planning: RandomAgent does not
analyze the current situation or the future con se-
quences of its actions. This means it cannot adapt
its strategy to changes in the environment, making
it very inefficient in complex tasks. In real systems,
such an approach could be analogous to random
actions or chaotic behavior in the absence of data
or limited resources.

In real systems, a random approach similar to
RandomAgent may be used as a control group or
to test the boundaries of other algorithms’ effec-
tiveness. For example, in modeling autonomous
systems, random decisions can show the worst-
case scenario, against which the performance of
more complex algorithms can be compared. Ad-
ditionally, such agents may be useful in systems
where full optimization is impossible due to a lack
of environmental information.

AlphaBetaAgent uses the alpha-beta pruning
algorithm for efficient decision-making in the
Pac-Man game. This agent acts as a maximizer for
Pac-Man and a minimizer for the ghosts, aiming to
maximize Pac-Man’s score while considering stra-
tegies for avoiding ghosts and collecting capsules.

Key components:
1. Alpha-beta pruning: The algorithm prunes

unnecessary branches of the decision tree when it
can be guaranteed that a particular path will not
improve the outcome. This reduces the number of
computations without losing decision quality. In
real-world scenarios, alpha-beta pruning is applied
in many multi-level systems for decision optimi-
zation under limited resources.

2. Max/Min nodes: Each Pac-Man move is a
maximizing node, where the algorithm seeks to
increase the score (by collecting capsules), while
each ghost move is a minimizing node, where the
ghosts try to reduce Pac-Man’s points (by appro a-
ching him). This allows a balance between aggres-
sive and defensive strategies, similar to threat avoi-
dance scenarios in autonomous systems.

3. Evaluation function: The CapsulesEvalua-
tionFunction evaluates the current game state ba-
sed on the distance to the nearest capsules, ghosts,
and food. This function provides a balanced ap-
proach to avoiding threats and maximizing scores.
In real autonomous systems, similar evaluations

can be used for route optimization, where it is ne-
cessary to avoid dangers while achieving goals.

In real systems where it is crucial to avoid threats
while completing tasks, AlphaBetaAgent can be
ap plied to optimize avoidance and goal comple-
tion. For example, autonomous drones may use si-
milar strategies to avoid obstacles while maintain-
ing focus on the main tasks. The algorithm allows
for effective decision-making in multi-level gam-
ing environments, akin to tasks where optimal de-
cisions must be made under time and resource
constraints.

ExpectimaxAgent uses the Expectimax algo-
rithm, allowing Pac-Man to choose actions that
maximize his expected score. In this algorithm,
Pac-Man’s actions maximize the result, while the
ghosts make their moves randomly, reflecting the
probabilistic nature of their behavior. The algo-
rithm enables Pac-Man to plan his actions by con-
sidering both favorable and unfavorable scenarios
based on the ghosts’ random actions.

Key components:
1. Max node (Pac-Man). In Pac-Man’s nodes,

the algorithm tries to maximize the score by cho o-
sing actions that bring the most points (collecting
capsules, food, and avoiding ghosts).

2. Exp node (Ghosts). In the ghost nodes, Ex-
pectimax calculates the average outcome based on
the assumption that the ghosts choose their actions
randomly. This allows Pac-Man to assess the pro-
babilities of each possible scenario and choose
the best strategy.

3. Evaluation function. The CapsulesEvalua-
tionFunction evaluates the current game state,
con sidering the distance to capsules, food, and ghosts.
The algorithm prioritizes capsules but also assesses
the risks of approaching ghosts and the opportu-
nities to attack scared ghosts. This provides Pac-
Man with a balanced strategy between resource
collection and threat avoidance.

Expectimax is suitable for scenarios where the
agent faces random events or actions of other
agents. For example, in real autonomous systems,
Expectimax can be used to plan actions in envi-
ronments where other participants (or threats) act
unpredictably. This is useful for autonomous drones
or robots operating in dangerous conditions, where

26 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

Fig. 1. Small Maze 1 (Optimised) displaying

Fig. 2. Small Maze 2 (Non-Optimised) displaying

Fig. 3. Medium maze 1 (Optimised) displaying

they must plan actions while considering probable
threats or obstacles.

MCTSAgent uses the Monte Carlo Tree Search
(MCTS) algorithm to make decisions that effi-
ciently balance the exploration of new opportuni-
ties with the exploitation of known strategies. The
agent conducts simulations to explore possible
strategies in the Pac-Man game, where the ghosts
act as dynamic threats.

Key components:
1. Simulations. The agent runs a set number of

simulations to explore possible paths and assess
the best action. The simulations are based on game
situations where Pac-Man avoids ghosts and col-
lects capsules. After the simulations, the action that
has been most successful based on the number of
visits in the tree is selected.

2. UCT (Upper Confidence Bound for Trees).
For selecting the next move during the simula tion,
MCTS uses the UCB1 policy, which prioriti zes not
only the most explored nodes but also those that may
hide potential gains. This allows the al gorithm to
efficiently balance between exploring new actions
and exploiting already known winning strategies.

3. Evaluation function. The CapsulesEvalua-
tionMCTSFunction uses the distance to capsules,
food, and ghosts to calculate the effectiveness of
Pac-Man’s strategy. Capsules and avoiding ghosts
are given particular weight, allowing MCTS to find
balanced decisions between risks and rewards.

MCTS is an effective tool for decision-making
under uncertainty, where the agent must explore
many options while evaluating potential gains and
risks. In real systems, such as autonomous drones
or robots, MCTS can be used to plan actions in
complex and dynamic environments, where un-
known or variable factors affect the final outcome.
MCTS allows for finding optimal solutions by com-
bining a heuristic approach with in-depth explora-
tion of potential scenario developments.

Description and Details
of the Experiments

During the experiments, several different maze va-
riations were used, each with its unique structu re,
number of ghosts, and capsules. The mazes were di-
vided into optimized and non-optimized catego-
ries. Optimized mazes had well-planned paths and
convenient passages for Pac-Man, allowing the algo-
rithms to find efficient routes. Non-optimized ma zes
had chaotic walls and a complex structure, ma king
it significantly harder to find the shortest paths.

Maze types:
Small maze 1 (Optimised): 720, 2 ghosts, 2

ob jectives (See Fig. 1).

ISSN 2706-8145, Control systems and computers, 2024, No. 4 27

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

Fig. 4. Medium maze 2 (Non-Optimised) displaying

Fig. 5. Large maze 1 (Optimised) displaying

Fig. 6. Large maze 2 (Non-Optimised) displaying

The experiments were conducted with Pac-Man
facing the classic ghost agents from the original
game. The ghosts followed the classic Pac-Man
rules, chasing the player and blocking paths, ad-
ding dynamic complexity to each experiment.

Small maze 2 (Non-Optimised): 720, 2 ghosts,
2 objectives (See Fig. 2).
Medium maze 1 (Optimised): 1120, 2 ghosts,

2 objectives (See Fig. 3).
Medium maze 2 (Non-Optimised): 1120, 2

ghosts, 2 objectives (See Fig. 4).
Large maze 1 (Original classic, Optimised):

2728, 4 ghosts, 4 objectives (See Fig. 5).
Large maze 2 (Non-Optimised): 2728, 4

ghosts, 5 objectives (See Fig. 6).
The game conditions remained the same for all

mazes:
Penalty for inactivity: 1 point per move.
Collecting a capsule: +500 points.
Eating a ghost: +200 points.
Collecting food: +10 points.
Ghosts’ scared timer: 10 moves after collecting

a capsule.
To evaluate the agents’ efficiency, the following

metrics were used:
1. Average score: The total number of points the

agent earned during the game. This includes points
for capsules, food, and neutralized ghosts, consid-
ering penalties for inefficient actions.

2. Time: The amount of time the agent took to
complete the game or reach the final goal (collect-
ing all capsules or losing).

3. Win percentage: The percentage of games
where Pac-Man won, i.e., collected all capsules
without getting caught by the ghosts.

These metrics allow for a comparison of the per-
formance of different agents across various mazes
and game conditions.

28 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

Table 1. Results of search algorithms
in Small Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 1063.27 4.12 37
BFSSearch Agent 1071.49 4.08 37
Random Agent 35.88 2.66 0

Table 2. Results of multi-agent
algorithms in Small Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 1272.29 7.09 62
Expectimax Agent 1410.85 7.91 72
MCTS Agent
(101 simulations) 585.18 7.59 12

These agents followed predefined strategies, pre-
senting challenges for Pac-Man and influencing
the effectiveness of each algorithm.

For each maze and agent, 100 runs were con-
ducted to gather enough data for performance ana-
lysis. The only variable in each experiment was
the Pac-Man agent and its settings.

For agents using MCTS, the number of simula-
tions was adjusted to several levels: 50, 101, 200,
300, 400, 500 simulations. This allowed for an as-
sessment of how the number of simulations affec-
ted the agent’s performance across different mazes.
Other game parameters remained unchanged.
Results

Small Maze 1 (Optimised) — 720, 2 ghosts, 2
capsules

In this maze, AStarSearch and BFS showed al-
most identical results, with both agents having the
same win percentage. Random Agent acted chaoti-
cally, leading to low results (Table 1).

Expectimax performed the best among mul-
ti-agent algorithms, surpassing AlphaBeta in both
average score and win percentage. MCTS Agent,
with the current number of simulations, had the
worst results among the agents, except for Random
Agent (Table 2).

Small Maze 2 (Non-Optimised) —
720, 2 ghosts, 2 capsules
AStarSearch Agent demonstrated better results in
terms of score and win percentage compared to
BFSSearch Agent, though the gap between them
was minimal. Random Agent, as usual, showed
poor results (Table 3). Expectimax Agent was
significantly more effective than AlphaBeta Agent,
while MCTS Agent had a lower average score
and win percentage compared to other agents
(Table 4).
Medium Maze 1 (Optimised) —

1120, 2 ghosts, 2 capsules

In the medium maze, search agents like AStar-
Search and BFSSearch demonstrated a low win
rate, though their execution time was optimal (Ta-
ble 5). Expectimax Agent was the most effective
in this maze, achieving the highest win rate and
slightly better performance than the AlphaBeta
Agent. MCTS Agent showed a noticeably lower win
rate compared to these agents but still significantly
outperformed the search algorithms (Table 6).
Medium Maze 2 (Non-Optimised) —

1120, 2 ghosts, 2 capsules

In the non-optimized medium maze, the BFS-
Search Agent outperformed the AStarSearch Agent

Table 3. Results of search algorithms
in Small Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 963.92 3.62 49
BFSSearch Agent 936.20 3.58 40
Random Agent 61.73 2.68 0

Table 4. Results of multi-agent algorithms
in Small Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 1098.27 7.24 17
Expectimax Agent 1212.56 17.03 44
MCTS Agent
(101 simulations) 784.41 9.28 9

ISSN 2706-8145, Control systems and computers, 2024, No. 4 29

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

in terms of win percentage. Random Agent, once
again, did not show significant results (Table 7).
Multi-agent algorithms: the Expectimax Agent de-
monstrated higher performance than other mul-
ti-agent algorithms, showing nearly twice the effi-
ciency of the AlphaBeta Agent. MCTS Agent re-
sults were the least effective, with a significant lag
in each performance metric (Table 8).
Large Maze 1 (Optimised) —

2728, 4 ghosts, 4 capsules

In the large maze, BFSSearch Agent showed a
slightly higher win percentage compared to AStar-
Search, despite similar results in average score. Ran-
dom Agent was ineffective, as expected (Table 9).
AlphaBeta Agent achieved the highest average sco-
re, win percentage, and time. Expectimax had a

better time and showed improved results in each
parameter compared to MCTS Agent with 50 si-
mulations (Table 10).
Large Maze 2 (Non-Optimised) —

2728, 4 ghosts, 5 capsules

Search Algorithms: AStarSearch Agent and BFS-
Search Agent demonstrated extremely high effi-
ciency in the non-optimized large maze, with a
high win percentage (Table 11).

Multi-Agent Algorithms: Expectimax Agent
showed the highest average score among mul-
ti-agent algorithms. MCTS Agent demonstrated
the highest win percentage and comparable results
in terms of time and average score, which is a sig-
nificant outcome considering the overall win per-
centage (Table 12).

Table 5. Results of search algorithms
in Medium Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 847.12 4.84 5
BFSSearch Agent 863.19 4.86 6
Random Agent 86.13 5.77 0

Table 6. Results of multi-agent algorithms
 in Medium Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 1427.44 9.12 68
Expectimax Agent 1424.39 9.46 75
MCTS Agent
(101 simulations) 1093.71 17.95 34

Table 7. Results of search algorithms
in Medium Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 1078.98 4.95 54
BFSSearch Agent 1115.53 4.98 61
Random Agent 43.54 2.48 0

Table 8. Results of multi-agent algorithms
in Medium Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 989.38 7.73 18
Expectimax Agent 1129.20 10.61 30
MCTS Agent
(101 simulations) 766.24 15.31 5

Table 9. Results of search algorithms
 in Large Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 2156.62 18.08 31
BFSSearch Agent 2166.65 18.09 43
Random Agent 80.63 14.31 0

Table 10. Results of multi-agent algorithms
in Large Maze 1 (Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 2382.58 28.56 25
Expectimax Agent 2272.06 33.45 11
MCTS Agent
(50 simulations) 1255.41 36.23 1

30 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

General Observations:
1. Multi-Agent Algorithms (Expectimax, Al-

phaBeta, MCTS) consistently demonstrate higher
efficiency in larger mazes, where the search space
is broader and interaction with ghosts is more
complex.

2. Search Algorithms (AStarSearch, BFS) show
high performance in smaller mazes, where strate-
gic evasion of ghosts is less crucial.

3. Random Agent is the least effective, high-
lighting the need for well-founded strategies to ef-
fectively achieve the goal in Pac-Man.

These results may help identify the most effec-
tive algorithms depending on the environment
complexity and the number of simulations.

Conclusions

The analysis of the conducted experiments leads to
several key conclusions regarding the choice of al-
gorithms based on the task type. For search tasks
in optimized environments, search algorithms
such as AStarSearch and BFSSearch demonstrate
high efficiency. These algorithms perform well in
smaller mazes where interacting with a large num-
ber of dynamic threats, like ghosts, is not neces-

sary. AStarSearch delivers better results in opti-
mized mazes due to its effective consideration of
distances to objectives, while BFSSearch is com-
petitive in more complex, non-optimized envi-
ronments.

Multi-agent algorithms such as AlphaBeta, Ex-
pectimax, and MCTS perform better in complex
environments with dynamic threats where the pro-
bable behavior of ghosts must be considered. Ex-
pectimax demonstrates the best results in condi-
tions where ghost behavior can change randomly,
especially in small and medium-sized mazes. Al-
phaBeta is suitable for situations where minimiz-
ing risks is necessary by avoiding direct collisions
with ghosts. MCTS proves most effective in large
mazes due to its ability to conduct numerous sim-
ulations, allowing it to find optimal solutions in
highly complex environments with many possible
scenarios.

The performance analysis of search and mul-
ti-agent algorithms shows that while search algo-
rithms perform well in optimized environments,
their effectiveness decreases in dynamic conditions
involving interaction with ghosts. Multi-agent al-
gorithms are more flexible and effective in complex
situations where it is necessary to avoid threats
while collecting capsules.

Random Agent, which acts randomly, showed
the worst results and served as a control variant
for comparing with other algorithms. The results
show that even the simplest search algorithms,
such as AStarSearch, significantly outperform
random strategies, while multi-agent algorithms
provide the highest efficiency in complex and dy-
namic environments.

Thus, the choice of algorithm for Pac-Man de-
pends on the maze’s complexity and the necessity
of accounting for ghost actions. In optimized and
simplified conditions, search algorithms are more
effective, while for more dynamic environments
and complex mazes, multi-agent approaches are
the most promising. Prospects for improving the
algorithms include increasing the number of simu-
lations for MCTS and improving heuristics for
search algorithms to make them more adaptable to
complex environments.

Table 11. Results of search algorithms
 in Large Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AStarSearch Agent 2854.78 15.44 77
BFSSearch Agent 2836.62 17.08 72
Random Agent 62.61 4.31 0

Table 12. Results of multi-agent algorithms
in Large Maze 2 (Non-Optimised)

Agent Average
Score Time Win

Percentage (%)

AlphaBeta Agent 2985.85 21.27 14
Expectimax Agent 3307.09 30.23 17
MCTS Agent (50
simulations) 3109.16 37.12 29

ISSN 2706-8145, Control systems and computers, 2024, No. 4 31

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

REFERENCES
 1. Foderaro, G., Swingler, A., Ferrari, S. (2017) “A Model-Based Approach to Optimizing Ms. Pac-Man Game Strat-

egies in Real Time.” IEEE Transactions on Computational Intelligence and AI in Games, 9 (2), pp. 153165. DOI:
https://doi.org/10.1109/TCIAIG.2016.2523508

 2. Rohlfshagen, P., Liu, J., Perez-Liebana, D., Lucas, S.M. (2018) “Pac-Man Conquers Academia: Two Decades of
Research Using a Classic Arcade Game.” IEEE Transactions on Games, 10 (3), pp. 233256. DOI: https://doi.
org/10.1109/TG.2017.2737145

 3. Gallagher, M., Ryan, A. (2003) “Learning to play Pac-Man: an evolutionary, rule-based approach.” The 2003
Congress on Evolutionary Computation, Canberra, ACT, Australia, pp. 24622469, Vol. 4. doi: https://doi.org/
10.1109/CEC.2003.1299397

 4. Foderaro, G., Raju, V., Ferrari, S. (2011) “A cell decomposition approach to online evasive path planning and
the video game Ms. Pac-Man.” 2011 IEEE International Symposium on Intelligent Control, Denver, CO, USA,
pp. 191197. DOI: https://doi.org/10.1109/ISIC.2011.6045414

 5. Tucnik, P., Nachazel, T., Cech, P., Bures, V. (2018) “Comparative analysis of selected path-planning approach-
es in large-scale multi-agent-based environments.” Expert Systems with Applications, 113, pp. 415427. DOI:
https://doi.org/10.1016/j.eswa.2018.07.001

 6. Sajid, Q., Luna, R., Bekris, K. (2012) “Multi-Agent Pathfinding with Simultaneous Execution of Single-Agent
Primitives.” Proceedings of the 5th Annual Symposium on Combinatorial Search, pp. 8896. DOI: http://doi.
org/10.1609/socs.v3i1.18243.

 7. Saccon, E., Palopoli, L., Roveri, M. (2023) “Comparing Multi-Agent Path Finding Algorithms in a Real Indus-
trial Scenario.” In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelli-
gence. AIxIA 2022. Lecture Notes in Computer Science, vol 13796. Springer, Cham. DOI: https://doi.org/10.1007/
978-3-031-27181-6_13

 8. Erdem, E., Kisa, D., Oztok, U., Schüller, P. (2013) “A General Formal Framework for Pathfinding Problems
with Multiple Agents.” Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013.

 9. Hewawasam, H., Ibrahim, Y., Appuhamillage, G. (2022) “Past, Present and Future of Path-Planning Algo-
rithms for Mobile Robot Navigation in Dynamic Environments.” IEEE Open Journal of the Industrial Electron-
ics Society, 3 (1), pp. 353365. DOI: http://doi.org/10.1109/OJIES.2022.3179617

10. Lu, Y., Huo, X., Arslan, O., Tsiotras, P. (2012) “Incremental Multi-Scale Search Algorithm for Dynamic Path
Planning With Low Worst-Case Complexity.” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, 41, pp. 15561570. DOI: http://doi.org/10.1109/TSMCB.2011.2157493

11. Saffidine, A., Finnsson, H., Buro, M. (2012) “Alpha-Beta Pruning for Games with Simultaneous Moves.” Pro-
ceedings of the National Conference on Artificial Intelligence, 1.

12. Lee, S. (2019) “Exploring to Learn Winning Strategy.” International Conferences Interfaces and Human Compu-
ter Interaction, Game and Entertainment Technologies, and Computer Graphics, Vsualization, Computer Vision
and Image Processing, pp. 377380. DOI: http://dx.doi.org/10.33965/g2019_201906C052.

13. Dam, T., D’Eramo, C., Peters, J., Pajarinen, J. (2022) “A Unified Perspective on Value Backup and Exploration
in Monte-Carlo Tree Search.” ArXiv abs/2202.07071.

14. Mirsoleimani, S.A., Plaat, A., van den Herik, J., Vermaseren, J.A.M. (2015) “Ensemble UCT Needs High Ex-
ploitation.” ArXiv abs/1509.08434, 2015.

15. Felner, A., Stern, R., Shimony, S.E., Boyarski, E., Goldenberg, M., Sharon, G., Sturtevant, N. R., Wagner, G.,
Surynek, P. (2021) “Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary and
Challenges.” Symposium on Combinatorial Search. DOI: https://doi.org/10.1609/socs.v8i1.18423

16. Khandelwal, P., Liebman, E., Niekum, S., Scott, A., Stone, P. (2016) “On the Analysis of Complex Backup Stra-
tegies in Monte Carlo Tree Search.” International Conference on Machine Learning, pp. 13191328.

17. Ou, T., Cao, J., Lu, Y., Wang, Y.-P., Wu, X. (2023) “A New Decision-Making Approach via Monte Carlo Tree
Search and A2C.” 2023 3rd International Conference on Computer Science, Electronic Information Engi-
neering and Intelligent Control Technology (CEI), pp. 204210. DOI: https://doi.org/10.1109/CEI60616.2023.
10527918

18. Silva, M.A.L., de Souza, S.R., Souza, M.J.F., de França Filho, M.F. (2018) “Hybrid metaheuristics and multi-agent
systems for solving optimization problems: A review of frameworks and a comparative analysis.” Applied Soft
Computing, 71, pp. 433459. DOI: https://doi.org/10.1016/j.asoc.2018.06.050

Received 21.08.2024

32 ISSN 2706-8145, Системи керування та комп’ютери, 2024, № 4

O.A. Novikov, V.V. Yanovsky

ЛІТЕРАТУРА
 1. Foderaro G., Swingler A., Ferrari S. “A Model-Based Approach to Optimizing Ms. Pac-Man Game Strategies in

Real Time.” IEEE Transactions on Computational Intelligence and AI in Games, 2017, 9 (2), pp. 153-165. DOI:
https://doi.org/10.1109/TCIAIG.2016.2523508

 2. Rohlfshagen P., Liu J., Perez-Liebana D., Lucas S. M. “Pac-Man Conquers Academia: Two Decades of Research
Using a Classic Arcade Game.” IEEE Transactions on Games, 2018, 10 (3), pp. 233-256. DOI: https://doi.
org/10.1109/TG.2017.2737145

 3. Gallagher M., Ryan A. “Learning to play Pac-Man: an evolutionary, rule-based approach.” The 2003 Congress on
Evolutionary Computation, 2003, Canberra, ACT, Australia, pp. 2462-2469, Vol. 4. doi: https://doi.org/10.1109/
CEC.2003.1299397

 4. Foderaro G., Raju V., Ferrari S. “A cell decomposition approach to online evasive path planning and the video
game Ms. Pac-Man.” 2011 IEEE International Symposium on Intelligent Control, 2011, Denver, CO, USA, pp.
191-197. DOI: https://doi.org/10.1109/ISIC.2011.6045414

 5. Tucnik P., Nachazel T., Cech P., Bures V. “Comparative analysis of selected path-planning approaches in large-
scale multi-agent-based environments.” Expert Systems with Applications, 2018, 113, pp. 415-427. DOI: https://
doi.org/10.1016/j.eswa.2018.07.001

 6. Sajid Q., Luna R., Bekris K. “Multi-Agent Pathfinding with Simultaneous Execution of Single-Agent Primitives.”
Proceedings of the 5th Annual Symposium on Combinatorial Search, 2012, pp. 88-96. DOI: http://doi.
org/10.1609/socs.v3i1.18243

 7. Saccon E., Palopoli L., Roveri M. “Comparing Multi-Agent Path Finding Algorithms in a Real Industrial Scenar-
io.” In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA
2022. Lecture Notes in Computer Science, vol 13796. Springer, Cham, 2023. DOI: https://doi.org/10.1007/978-3-
031-27181-6_13

 8. Erdem E., Kisa D., Oztok U., Schüller P. “A General Formal Framework for Pathfinding Problems with Multiple
Agents.” Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013.

 9. Hewawasam H., Ibrahim Y., Appuhamillage G. “Past, Present and Future of Path-Planning Algorithms for Mobile
Robot Navigation in Dynamic Environments.” IEEE Open Journal of the Industrial Electronics Society, 2022, 3
(1), pp. 353-365. DOI: http://doi.org/10.1109/OJIES.2022.3179617

10. Lu Y., Huo X., Arslan O., Tsiotras P. “Incremental Multi-Scale Search Algorithm for Dynamic Path Planning With
Low Worst-Case Complexity.” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012,
41, pp. 1556-1570. DOI: http://doi.org/10.1109/TSMCB.2011.2157493

11. Saffidine A., Finnsson H., Buro M. “Alpha-Beta Pruning for Games with Simultaneous Moves.” Proceedings of the
National Conference on Artificial Intelligence, 2012, 1.

12. Lee S. “Exploring to Learn Winning Strategy.” International Conferences Interfaces and Human Computer Inter-
action, Game and Entertainment Technologies, and Computer Graphics, Visualization, Computer Vision and
Image Processing, 2019, pp. 377-380. DOI: http://dx.doi.org/10.33965/g2019_201906C052

13. Dam T., D’Eramo C., Peters J., Pajarinen J. “A Unified Perspective on Value Backup and Exploration in Mon-
te-Carlo Tree Search.” ArXiv abs/2202.07071, 2022.

14. Mirsoleimani S. A., Plaat A., van den Herik J., Vermaseren J. A. M. “Ensemble UCT Needs High Exploitation.”
ArXiv abs/1509.08434, 2015.

15. Felner A., Stern R., Shimony S. E., Boyarski E., Goldenberg M., Sharon G., Sturtevant, N. R., Wagner, G., Surynek,
P. “Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary and Challenges.” Sympo-
sium on Combinatorial Search, 2021. DOI: https://doi.org/10.1609/socs.v8i1.18423

16. Khandelwal P., Liebman E., Niekum S., Scott A., Stone P. “On the Analysis of Complex Backup Strategies in Mon-
te Carlo Tree Search.” International Conference on Machine Learning, 2016, pp. 1319-1328.

17. Ou T., Cao J., Lu Y., Wang Y.-P., Wu, X. “A New Decision-Making Approach via Monte Carlo Tree Search and
A2C.” 2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intel-
ligent Control Technology (CEI), 2023, pp. 204-210. DOI: https://doi.org/10.1109/CEI60616.2023.10527918

18. Silva M. A. L., Souza S. R. de, Freitas Souza M. J., Felizardo de França Filho M. “Hybrid metaheuristics and mul-
ti-agent systems for solving optimization problems: A review of frameworks and a comparative analysis.” Applied
Soft Computing, 2018, 71, pp. 433-459. DOI: https://doi.org/10.1016/j.asoc.2018.06.050

Надійшла 21.08.2024

ISSN 2706-8145, Control systems and computers, 2024, No. 4 33

Analysis of Search and Multi-Agent Algorithms in the Pac-Man Game

А.О. Новіков, аспірант ННІ комп’ютерних наук та штучного інтелекту
кафедри математичного моделювання та аналізу даних,
Харківський національний університет ім. В.Н. Каразіна,
пл. Свободи, 4, Харків, Україна, 61022,
ORCID: https://orcid.org/0009-0004-5914-7098,
artem.slick@gmail.com
В.В. Яновський, доктор фіз.-мат. наук, професор, завідувач теоретичним відділом,
“Інститут монокристалів” Національної Академії наук України,
просп. Науки, 60, Харків, Україна, 61001,
ORCID: https://orcid.org/0000-0003-0461-749X; Scopus Author ID 7003273794,
yanovsky@isc.kharkov.ua
АНАЛІЗ ПОШУКОВИХ І МУЛЬТИАГЕНТНИХ
АЛГОРИТМІВ У ГРІ PAC-MAN
Вступ. У даній роботі досліджується ефективність пошукових та мультиагентних алгоритмів у контексті
гри Pac-Man. Гра Pac-Man моделює завдання управління автономними системами у двовимірному середо-
вищі, де агент стикається з динамічними перешкодами. Використання класичних пошукових алгоритмів,
таких як A*, BFS, а також мультиагентних підходів, таких як Alpha-Beta, Expectimax та Monte Carlo Tree
Search (MCTS), дозволяє дослідити різні стратегії для вирішення задач оптимізації шляху та ухилення від
динамічних загроз (привидів).

Мета статті. Метою даного дослідження є аналіз продуктивності різних алгоритмів у різних за складністю
лабіринтах, зокрема за показниками середнього балу, часу виконання та відсотка перемог. Це дослідження
спрямовано на порівняння ефективності пошукових та мультиагентних алгоритмів в умовах змінного
середовища.

Методи. У дослідженні використано системний підхід та метод експериментального моделювання.
Ефективність алгоритмів оцінювалася шляхом проведення численних експериментів у лабіринтах з різним
рівнем складності.

Результати. Отримані результати показують, що пошукові алгоритми (A* та BFS) демонструють високу
продуктивність у менш динамічних середовищах, тоді як мультиагентні алгоритми (Expectimax, Alpha-Beta,
MCTS) більш ефективні в складніших лабіринтах з багатьма динамічними загрозами. Expectimax про де мон-
стрував найкращі результати в середовищах із випадковими діями супротивників, тоді як MCTS показав
високу продуктивність у великих та складних середовищах.

Висновки. Дослідження виявило, що вибір алгоритму залежить від складності лабіринту та необхідності
врахування дій динамічних супротивників. Пошукові алгоритми є ефективними у спрощених умовах, тоді
як мультиагентні підходи є перспективними для складних середовищ з динамічними загрозами.
Ключові слова: алгоритми пошуку, мультиагентні алгоритми, Pac-Man, оптимізація шляху, Alpha-Beta,
Expectimax, MCTS.

