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ANALYSIS OF SEARCH AND MULTI-AGENT 
ALGORITHMS IN THE PAC-MAN GAME

Th is paper examines the performance of search and multi-agent algorithms within the context of the Pac-Man game. 
Th e game is used as a platform to simulate autonomous system management tasks, where an agent must complete 
missions in a two-dimensional space while avoiding dynamic obstacles. Classical search algorithms such as A* and BFS, 
along with multi-agent approaches like Alpha-Beta, Expectimax, and Monte Carlo Tree Search (MCTS), are analyzed 
in terms of their eff ectiveness under diff erent maze complexities and game conditions. Th e study explores how maze size, 
ghost behaviors, and environmental dynamics infl uence the performance of each algorithm, particularly in terms of 
execution time, score, and win percentage.
Keywords: search algorithms, multi-agent algorithms, Pac-Man, path optimization, Alpha-Beta, Expectimax, MCTS.
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Introduction

The Pac-Man game can be viewed as a simplified 
simulation of autonomous system management 
tasks, where agents must perform certain tasks in 
a two-dimensional space while facing moving ob-
stacles. In this context, the game’s maze can be in-
terpreted as a 2D terrain model, where autono-
mous systems such as drones or ground robots 
need to optimize their paths, particularly in con-

strained spaces with obstacles. The game Ms. 
Pac-Man is an excellent test problem in pur-
suit-evasion with multiple active opponents, who 
adapt their chasing strategies based on the state 
and decisions of Ms. Pac-Man [1]. The scientific 
interest in this topic is growing, and numerous re-
search directions are actively evolving, including 
work in the fields of robotics, biology, sociology, 
and psych ology. The field of computational intelli-
gence is particularly active, in part due to popular 
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academic game competitions involving Ms. Pac-
Man [2].

Pac-Man acts as an autonomous agent whose 
goal is to complete critical tasks-collecting cap-
sules, which can be compared to real-life opera-
tions such as drones collecting data or delivering 
resources to specific points. Capsules can be seen 
as goals located in the environment that require 
specific actions such as data collection, servicing, 
or monitoring certain areas. The agent is defined as 
a simple finite automaton with a set of rules that 
regulate the likelihood of the agent’s movement, 
taking into account maze constraints at any given 
moment [3]. By computing paths in real time, the 
algorithm can quickly adapt to unexpected oppo-
nent movements or dynamic environments [4].

Ghosts, in turn, represent dynamic threats or 
hostile agents, such as other drones or moving ob-
jects, that may interfere with completing the mis-
sion. Interaction with such obstacles requires the 
autonomous agent to constantly evade and adjust 
its path in real time. In real-world scenarios, this 
could include algorithm adaptations to avoid inter-
ception or collision with hostile or other moving 
objects. In a study by Tuchník et al. (2018), an ex-
perimental comparison was conducted based on 
a model where agents represent economic entities 
and can engage in interactions. The model was 
scaled to different levels of complexity, considering 
the number of agents and transport nodes. The re-
sults indicated significant differences in path plan-
ning task completion times depending on the sys-
tem’s complexity levels and model sizes [5].

Thus, the Pac-Man game provides an excellent 
platform for modeling and testing algorithms that 
can be applied to real-world autonomous systems 
operating in complex environments with dyna-
mically changing obstacles. Autonomous agents’ 
interaction with obstacles and the completion of 
cri tical tasks require algorithms to optimize paths 
and adapt to environmental changes, directly cor-
responding to real-world challenges in robotics 
and autonomous systems. For example, Said et al. 
(2021) discussed that related methods treat agents 
as a high-dimensional complex system and use 
complete optimal planners (such as A* and its va-
riants). However, the naive approach quickly be-

comes impractical due to exponential complexity 
[6]. Recently, specific suboptimal algorithms with 
polynomial complexity have been proposed for 
computing actual paths in important sub-tasks of 
the general problem. These algorithms use sin-
gle-agent primitives but return sequential paths 
where only one agent moves at a time [6]. This 
demonstrates potential applications in large mul-
ti-robot systems [7].

In the context of autonomous systems, it is im-
portant to consider that in games such as Warcraft 
III, agent routes may intersect if the agents’ plans 
do not interfere with each other. This means that 
agents may occupy the same space at different 
moments in time, but not simultaneously[8]. Ho-
wever, in tasks involving environment coverage or 
observation, there may be a requirement that agent 
routes do not overlap, which allows covering more 
territory in less time, also considering the limited 
power provided by robot batteries [8].

In scenarios such as emergency rescue, there 
may be a need for certain areas of the terrain to be 
checked by specific agents, as the likelihood of 
people being in those areas is high. To prevent one 
agent from doing all the work, restrictions may be 
placed on the route length or plan duration for 
each agent [8].

Classical Search Algorithms

In classical pathfinding approaches, such as A* 
and BFS, the goal is to find the shortest path to 
capsu les or other objects in the maze. The A* al-
gorithm uses a heuristic to estimate the distance 
to the target, which helps optimize search time by 
reducing the number of nodes considered. This ap-
proach is particularly effective in static environ-
ments, such as maze walls, but does not account for 
dynamic threats like ghosts. On the other hand, 
BFS offers a different approach by ensuring a com-
prehensive search of all possible paths in the maze. 
However, its downside is that it can be less efficient 
in large mazes due to the high search cost. While 
classical search algorithms are effective for static 
environments, they lose their efficiency in dyna-
mic environments like the Pac-Man game, where 
ghosts move and create changing threats. As He-
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vavasam et al. (2022) point out, many algorithms 
lack a proper method to adapt to the speeds of 
moving objects during navigation decision-ma-
king [9]. This is especially evident in large and 
complex mazes, where classical algorithms often 
lead to locally optimal but not globally efficient 
solutions, as they do not account for the variable 
behavior of ghosts.

The study by Lu et al. (2011) proposes an exten-
sion to the basic algorithm with the effective use of 
a multi-dimensional environment representation, 
allowing quick localization of changed edges and 
updating the priority queue [10]. This improves 
both resilience and computational complexity in 
the worst case compared to classical algorithms.

Multi-Agent Strategies

To solve tasks in dynamic environments, multi-
agent algorithms are used, which can model inte-
ractions with other agents, such as ghosts. The 
Expectimax algorithm allows modeling probabi-
listic actions of ghosts, enabling Pac-Man to pre-
dict possible threats and avoid them. This is par-
ticularly useful in complex environments where 
ghosts have unpredictable behavior, such as after 
collecting a capsule when they become vulnerable.

However, it should be noted that modeling the 
possible actions of all ghosts within Expectimax 
can significantly increase computational comple-
xity, especially in large mazes, limiting the appli-
cation of this algorithm in real-world scenarios. To 
address this issue, Alpha-Beta Pruning is used, 
which optimizes the search by cutting off unneces-
sary branches of the move tree. As Saffidine et al. 
(2012) note, this approach uses MiniMax values 
to prune a subtree when there is confidence that 
the move will not affect the decision at the root 
node, allowing Pac-Man to make quick decisions 
by reducing the number of considered options 
[11]. The study also notes that after its discovery, 
the Alpha-Beta method was extended to other 
types of games and search algorithms, indicating 
its widespread application in various contexts [11].

Additionally, attention should be paid to algo-
rithms that use simulation approaches, such as 
Monte Carlo Tree Search (MCTS). This method al-

lows Pac-Man to explore possible actions through 
simulation of future states. MCTS is an algorithm 
that finds “optimal” actions by random movements 
in the action space and building them into a tree 
structure [12]. The MCTS algorithm strikes a ba-
lance between exploring new possibilities and ex-
ploiting already known successful strategies. As 
Lee (2019) notes, “exploitation” involves finding 
the best solution based on already learned exam-
ples, while “exploration” refers to trying a new ap-
proach that was previously unknown in the space 
of learned examples [12].

The success of MCTS depends on balancing 
exploitation (focusing on promising areas) and ex-
ploration (focusing on areas that have not been 
well studied yet) [13]. The most popular algorithm 
in the MCTS family, which addresses this dilem-
ma, is Upper Confidence Bound for Trees (UCT), 
which combines exploitation and exploration to 
achieve optimal decisions [14].

With each new simulation, the algorithm gra-
dually improves its decisions, making it especially 
useful in large mazes and complex environments. 
As Kuipers et al. (2013) noted, when the tree size is 
small, preference should be given to exploitation, 
whereas in large trees, it is more appropriate to 
conduct more exploration [14].

The Importance 
of Different Approaches

Each of the mentioned approaches has its advan-
tages and disadvantages depending on the game 
conditions and the maze’s complexity. A* and BFS 
work well in static environments with predictable 
obstacles, but when facing dynamic ghosts, they 
often lack flexibility. Expectimax and AlphaBeta 
are more adaptive as they can model ghost beha-
vior, but they become less efficient when there are 
many agents or in large mazes due to limited com-
putational resources. As Felner et al. (2021) note, 
the classical A* algorithm can be applied to Mul-
ti-Agent Path Finding (MAPF) by using a state 
space representing the location of all agents, but 
it suffers from exponential growth in the size of the 
state space and branching factor as the number of 
agents increases. Multi-agent approaches can pro-
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vide exponential speedups compared to A* by de-
composing the task into independent sub-tasks [15].

MCTS shows the best results in large and com-
plex environments, as it can balance exploring new 
options and exploiting acquired knowledge through 
simulations. This algorithm is particularly useful 
in situations with a large number of possible ac-
tions, where other algorithms may suffer signifi-
cant efficiency losses due to the expanding search 
space. As Kandelwal et al. (2016) note, over the 
past decade, Monte Carlo Tree Search (MCTS), 
and particularly Upper Confidence Bound in Trees 
(UCT), have proven to be quite effective in large 
probabilistic planning domains. Research into va-
rious backpropagation strategies in MCTS, beyond 
simple Monte Carlo averaging, can lead to signi-
ficantly better results in large and complex proba-
bilistic planning tasks [16]. Additionally, Ou et al. 
(2023) note that MCTS is a cutting-edge algorithm 
suitable for decision-making in complex environ-
ments with adversaries. They introduce important 
sampling in MCTS to make the search more effi-
cient in ultra-large search spaces [17].

Thus, different algorithms can be used for diffe-
rent types of tasks in the Pac-Man game. The opti-
mal solution depends on the maze structure, the 
number of ghosts, and the dynamics of their be-
havior. Using a combination of classical search 
algorithms and multi-agent strategies allows adap-
tation to various conditions and ensures success 
in achieving the main goal. However, as Silva et al. 
(2018) note, the concept of hyper-heuristics re-
mains under-researched in the analyzed frame-
works, and there is a lack of tools that offer optimi-
zation process support, such as statistical analysis, 
parameter self-optimization, and graphical inter-
faces [18].

Problem Setting

In this version of the Pac-Man game, the primary 
objective remains unchanged — to collect all cap-
sules on the map while avoiding ghosts. However, 
several new conditions have been introduced to 
complicate the game, making it more interesting 
for testing various decision-making algorithms. 
These conditions can also be easily interpreted in 

real-world scenarios, such as drone or autonomous 
robot management in complex environments.

The main task of Pac-Man (the agent) is to col-
lect capsules, which can be considered as goals or 
tasks in real-world environments, such as scouting 
an area or collecting data using drones. Capsules 
act as critical objects that need to be located and 
collected. In this context, the maze becomes a 
two-dimensional terrain model where the agent 
must optimize its path to complete the task while 
avoiding collisions with obstacles or other agents.

To more accurately model real situations, ad-
ditional conditions were introduced that simulate 
challenges in complex environments. Here are the 
main game modifications:

Penalties and Rewards:
1. Penalty for inactivity. In real-world tasks like 

reconnaissance using drones, time is a critical re-
source. Inactivity or delays in task execution can 
lead to loss of efficiency or even mission failure. 
Similar to how Pac-Man loses points for each extra 
move, real-world systems require time and energy 
optimization for success.

2. Reward for collecting capsules. Capsules can 
be treated as critical data collection points or im-
portant objects that need to be identified and pro-
cessed. For example, drones can be programmed 
to gather information from specific points on the 
map or perform certain actions in high-concentra-
tion object areas.

3. Reward for defeating a scared ghost. A 
scared ghost in the context of real systems can 
mean the temporary vulnerability of another agent 
or system. For instance, this could be when a mov-
ing object (another drone or vehicle) becomes vul-
nerable due to technical problems or limited po-
wer, allowing the main agent to take advantage of 
the moment to neutralize or complete the task. 
This situation may arise, for example, when one 
drone temporarily loses connection or power, crea-
ting an opportunity for other agents to act quickly.

Ghost Mechanics and Scared States:
1. Ghosts as mobile obstacles: Ghosts in the 

Pac-Man game can be seen as moving obstacles or 
enemies in a real-world environment. These could 
be other autonomous systems (drones, ground ro-
bots) or even aggressive elements, such as enemy 
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drones in military scenarios. Their aggressive be-
havior, which involves chasing Pac-Man, resem-
bles dynamic threats that must be considered when 
planning routes and avoiding them.

2. Scared state. The vulnerability of ghosts du-
ring their scared state can be interpreted as a tem-
porary weakness in a system or agent that can be 
exploited to achieve a goal. For example, this could 
relate to moments when other drones or vehicles 
become temporarily inoperative due to technical 
problems, allowing the main agent (Pac-Man) to 
act more aggressively to complete the mission.

In the classic version of Pac-Man, the player 
simply collects food and avoids ghosts, but in the 
modified version, additional elements have been 
added that relate to real-world autonomous system 
management tasks. The loss of points for each unne-
cessary move simulates real situations where ti me 
and resources are limited. In systems like dro nes or 
autonomous robots, every move has its cost — 
either in terms of energy or time. Inefficient route 
planning can lead to energy waste or mission fai-
lure within the planned timeframe. For example, 
an autonomous drone conducting monitoring or 
delivery must constantly optimize its route, as 
every unnecessary move reduces battery life, which 
can negatively impact task completion. The same 
situation occurs in Pac-Man: each inefficient move, 
for which points are deducted, brings the player 
closer to defeat, making the search for optimal 
routes critically important.

Capsules are key objects that must be collected 
for success. In real scenarios, capsules can be com-
pared to critical information collection points, im-
portant data, or areas where certain actions must 
be performed, such as terrain scanning, delivery, 
or evacuation. For example, an autonomous drone 
may have a task to collect data from several points 
or deliver goods to several predetermined loca-
tions. Choosing the right route and task execution 
order directly affects the overall system efficiency. 
The priority of capsules in the game reflects a si-
milar situation, where selecting the correct se-
quence of actions is key to success.

Ghosts in the game act as mobile obstacles or 
hostile agents that should be avoided, similar to 
real-world autonomous systems dealing with dy-

namic threats, such as other drones, vehicles, or 
other moving objects. The scared state of ghosts 
in the game can be compared to the temporary 
vulnerability of hostile agents in real-world scena-
rios. For example, drones performing missions may 
encounter other autonomous systems that become 
temporarily vulnerable (due to technical failures, 
loss of communication, or other factors). During 
this period, autonomous systems can not only avoid 
threats but also effectively neutralize them or use 
the moment to achieve additional goals, similar to 
how Pac-Man takes advantage of the scared state of 
ghosts to score extra points.

Just like in real autonomous systems, Pac-Man 
collects food in addition to the main capsules, 
which brings smaller but consistent points. This 
can be compared to secondary tasks in real auto-
nomous missions, where the system performs ad-
ditional operations that yield smaller yet important 
results, such as collecting secondary data or per-
forming simple auxiliary actions that contribute to 
the overall success of the mission.

The primary goal of this research is to study 
the effectiveness of various agents in the context of 
autonomous system management tasks, simulated 
in the Pac-Man game. To achieve this, we plan to 
compare the performance of the aforementioned 
search and multi-agent algorithms in this environ-
ment using different versions of 2D terrain models, 
represented in the game by mazes. We aim to ex-
plore how these algorithms perform under various 
conditions: from simple and less dynamic environ-
ments, where path optimization plays a significant 
role, to dynamic environments with more agents, 
where interaction with these agents (ghosts) criti-
cally affects decision-making.

Key questions we aim to answer:
1. Which algorithms are most effective for com-

pleting tasks under different levels of environmen-
tal complexity?

2. How do maze complexity and additional con-
ditions (number of enemy agents, terrain size, and 
number of obstacles) impact the performance of 
different agents?

3. How effective are search algorithms compared 
to multi-agent approaches in the context of tasks 
with varying levels of complexity and dynamism?
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To achieve this goal, a series of experiments in 
mazes of different sizes and complexity will be con-
ducted to compare metrics such as execution time, 
score achieved, and win percentage for each agent. 
This will help identify usage patterns for the al-
gorithms and determine which approach is most 
effective depending on the complexity of the en-
vironment and the specific conditions of the task.

Algorithms

AStarSearch (A)* is an efficient pathfinding me-
thod that combines actual path cost and heuristics 
to minimize the distance to the target. In the Pac-
Man game, this algorithm helps to collect all cap-
sules by accounting for the maze structure and 
optimizing the route.

Key components:
1. Priority Queue (fringe). The algorithm uses 

a priority queue to organize states, allowing it to 
find optimal solutions with minimal costs. In real 
autonomous systems, such as drones, this approach 
is used for route planning while considering li mi-
ted resources (energy, time).

2. State. The state consists of Pac-Man’s position 
and the list of capsules that remain to be collected. 
In real systems, this could correspond to the po si ti-
on of a drone and the goals it must reach or process.

3. Heuristic. A* uses heuristics to estimate the 
distance to the nearest capsule, allowing the algo-
rithm to prioritize closer targets. This is similar to 
drones using distance estimations to critical points 
to minimize time and energy.

4. Closed List. The algorithm remembers all vi-
si ted states, preventing unnecessary returns to them. 
In real autonomous systems, this reduces resource 
costs for reprocessing the same points or tasks.

A* is one of the main algorithms for route plan-
ning in autonomous systems. For example, drones 
use it to find the shortest path through complex 
environments with obstacles and changing condi-
tions. The algorithm helps achieve a balance be-
tween speed and resource optimization, which is a 
key factor in successfully completing missions in 
real systems.

BFSSearch (Breadth-First Search) is a classic 
search algorithm that explores all possible paths at 
the same distance from the starting state, gradually 

expanding the search area. In the context of Pac-
Man, BFS helps find a path to collect all capsules 
by checking all available options without using 
heuristics.

Key components:
1. Queue (fringe). BFS uses a queue to organize 

path searches. The algorithm explores all possible 
options step by step, ensuring that the first path found 
is the shortest in terms of moves. In real-world sce-
narios, this can be useful for navigation in environ-
ments where minimizing the number of moves is 
important, such as in delivery systems or robotics.

2. State: Each state includes Pac-Man’s position 
and the list of capsules that remain to be collected. 
In real systems, this could be the equivalent of 
achieving a set of goals in a terrain, such as data 
collection or task completion in designated areas.

3. No Heuristics. BFS explores all options wi thout 
additional evaluation. This makes it less op timized 
for execution time compared to A*, but it guaran-
tees finding the shortest path in terms of moves.

4. Closed List. The algorithm remembers all 
visited states to avoid re-exploring them, reducing 
computational complexity and resource costs.

In real systems, BFS can be useful for finding the 
shortest paths in environments with many options, 
where the number of moves is more important than 
resource costs. For example, in urban navigation, 
autonomous robots can use BFS to explore routes 
with the fewest maneuvers. BFS is also effective 
for tasks where all possible options must be ex-
plored without prior evaluation, such as in search 
and exploration of new environments.

RandomAgent is a simple agent that randomly 
chooses an action from the available options, ig-
noring the stop action. It does not use any heuris-
tics or path planning algorithms, making it the 
simplest decision-making option. This agent can 
be useful as a control, representing the worst pos-
sible option or for evaluating the effectiveness of 
other algorithms.

Key components:
1. Action selection: The agent receives all avai-

lable actions in the current state and randomly se-
lects one, excluding the stop action. This makes it 
entirely dependent on randomness, without any 
strategy or reasoned choice.
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2. Lack of planning: RandomAgent does not 
analyze the current situation or the future con se-
quences of its actions. This means it cannot adapt 
its strategy to changes in the environment, making 
it very inefficient in complex tasks. In real systems, 
such an approach could be analogous to random 
actions or chaotic behavior in the absence of data 
or limited resources.

In real systems, a random approach similar to 
RandomAgent may be used as a control group or 
to test the boundaries of other algorithms’ effec-
tiveness. For example, in modeling autonomous 
systems, random decisions can show the worst-
case scenario, against which the performance of 
more complex algorithms can be compared. Ad-
ditionally, such agents may be useful in systems 
where full optimization is impossible due to a lack 
of environmental information.

AlphaBetaAgent uses the alpha-beta pruning 
algorithm for efficient decision-making in the 
Pac-Man game. This agent acts as a maximizer for 
Pac-Man and a minimizer for the ghosts, aiming to 
maximize Pac-Man’s score while considering stra-
tegies for avoiding ghosts and collecting capsules.

Key components:
1. Alpha-beta pruning: The algorithm prunes 

unnecessary branches of the decision tree when it 
can be guaranteed that a particular path will not 
improve the outcome. This reduces the number of 
computations without losing decision quality. In 
real-world scenarios, alpha-beta pruning is applied 
in many multi-level systems for decision optimi-
zation under limited resources.

2. Max/Min nodes: Each Pac-Man move is a 
maximizing node, where the algorithm seeks to 
increase the score (by collecting capsules), while 
each ghost move is a minimizing node, where the 
ghosts try to reduce Pac-Man’s points (by appro a-
ching him). This allows a balance between aggres-
sive and defensive strategies, similar to threat avoi-
dance scenarios in autonomous systems.

3. Evaluation function: The CapsulesEvalua-
tionFunction evaluates the current game state ba-
sed on the distance to the nearest capsules, ghosts, 
and food. This function provides a balanced ap-
proach to avoiding threats and maximizing scores. 
In real autonomous systems, similar evaluations 

can be used for route optimization, where it is ne-
cessary to avoid dangers while achieving goals.

In real systems where it is crucial to avoid threats 
while completing tasks, AlphaBetaAgent can be 
ap plied to optimize avoidance and goal comple-
tion. For example, autonomous drones may use si-
milar strategies to avoid obstacles while maintain-
ing focus on the main tasks. The algorithm allows 
for effective decision-making in multi-level gam-
ing environments, akin to tasks where optimal de-
cisions must be made under time and resource 
constraints.

ExpectimaxAgent uses the Expectimax algo-
rithm, allowing Pac-Man to choose actions that 
maximize his expected score. In this algorithm, 
Pac-Man’s actions maximize the result, while the 
ghosts make their moves randomly, reflecting the 
probabilistic nature of their behavior. The algo-
rithm enables Pac-Man to plan his actions by con-
sidering both favorable and unfavorable scenarios 
based on the ghosts’ random actions.

Key components:
1. Max node (Pac-Man). In Pac-Man’s nodes, 

the algorithm tries to maximize the score by cho o-
sing actions that bring the most points (collecting 
capsules, food, and avoiding ghosts).

2. Exp node (Ghosts). In the ghost nodes, Ex-
pectimax calculates the average outcome based on 
the assumption that the ghosts choose their actions 
randomly. This allows Pac-Man to assess the pro-
babilities of each possible scenario and choose 
the best strategy.

3. Evaluation function. The CapsulesEvalua-
tionFunction evaluates the current game state, 
con sidering the distance to capsules, food, and ghosts. 
The algorithm prioritizes capsules but also assesses 
the risks of approaching ghosts and the opportu-
nities to attack scared ghosts. This provides Pac-
Man with a balanced strategy between resource 
collection and threat avoidance.

Expectimax is suitable for scenarios where the 
agent faces random events or actions of other 
agents. For example, in real autonomous systems, 
Expectimax can be used to plan actions in envi-
ronments where other participants (or threats) act 
unpredictably. This is useful for autonomous drones 
or robots operating in dangerous conditions, where 
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Fig. 1. Small Maze 1 (Optimised) displaying

Fig. 2. Small Maze 2 (Non-Optimised) displaying

Fig. 3. Medium maze 1 (Optimised) displaying

they must plan actions while considering probable 
threats or obstacles.

MCTSAgent uses the Monte Carlo Tree Search 
(MCTS) algorithm to make decisions that effi-
ciently balance the exploration of new opportuni-
ties with the exploitation of known strategies. The 
agent conducts simulations to explore possible 
strategies in the Pac-Man game, where the ghosts 
act as dynamic threats.

Key components:
1. Simulations. The agent runs a set number of 

simulations to explore possible paths and assess 
the best action. The simulations are based on game 
situations where Pac-Man avoids ghosts and col-
lects capsules. After the simulations, the action that 
has been most successful based on the number of 
visits in the tree is selected.

2. UCT (Upper Confidence Bound for Trees).
For selecting the next move during the simula tion, 
MCTS uses the UCB1 policy, which prioriti zes not 
only the most explored nodes but also those that may 
hide potential gains. This allows the al gorithm to 
efficiently balance between exploring new actions 
and exploiting already known winning strategies.

3. Evaluation function. The CapsulesEvalua-
tionMCTSFunction uses the distance to capsules, 
food, and ghosts to calculate the effectiveness of 
Pac-Man’s strategy. Capsules and avoiding ghosts 
are given particular weight, allowing MCTS to find 
balanced decisions between risks and rewards.

MCTS is an effective tool for decision-making 
under uncertainty, where the agent must explore 
many options while evaluating potential gains and 
risks. In real systems, such as autonomous drones 
or robots, MCTS can be used to plan actions in 
complex and dynamic environments, where un-
known or variable factors affect the final outcome. 
MCTS allows for finding optimal solutions by com-
bining a heuristic approach with in-depth explora-
tion of potential scenario developments.

Description and Details 
of the Experiments 

During the experiments, several different maze va-
riations were used, each with its unique structu re, 
number of ghosts, and capsules. The mazes were di-
vided into optimized and non-optimized catego-
ries. Optimized mazes had well-planned paths and 
convenient passages for Pac-Man, allowing the algo-
rithms to find efficient routes. Non-optimized ma zes 
had chaotic walls and a complex structure, ma king 
it significantly harder to find the shortest paths.

Maze types:
Small maze 1 (Optimised): 720, 2 ghosts, 2 

ob jectives (See Fig. 1).
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Fig. 4. Medium maze 2 (Non-Optimised) displaying

Fig. 5. Large maze 1 (Optimised) displaying

Fig. 6. Large maze 2 (Non-Optimised) displaying

The experiments were conducted with Pac-Man 
facing the classic ghost agents from the original 
game. The ghosts followed the classic Pac-Man 
rules, chasing the player and blocking paths, ad-
ding dynamic complexity to each experiment. 

Small maze 2 (Non-Optimised): 720, 2 ghosts, 
2 objectives (See Fig. 2).
Medium maze 1 (Optimised): 1120, 2 ghosts, 

2 objectives (See Fig. 3).
Medium maze 2 (Non-Optimised): 1120, 2 

ghosts, 2 objectives (See Fig. 4).
Large maze 1 (Original classic, Optimised): 

2728, 4 ghosts, 4 objectives (See Fig. 5).
Large maze 2 (Non-Optimised): 2728, 4 

ghosts, 5 objectives (See Fig. 6).
The game conditions remained the same for all 

mazes:
Penalty for inactivity: 1 point per move.
Collecting a capsule: +500 points.
Eating a ghost: +200 points.
Collecting food: +10 points.
Ghosts’ scared timer: 10 moves after collecting 

a capsule.
To evaluate the agents’ efficiency, the following 

metrics were used:
1. Average score: The total number of points the 

agent earned during the game. This includes points 
for capsules, food, and neutralized ghosts, consid-
ering penalties for inefficient actions.

2. Time: The amount of time the agent took to 
complete the game or reach the final goal (collect-
ing all capsules or losing).

3. Win percentage: The percentage of games 
where Pac-Man won, i.e., collected all capsules 
without getting caught by the ghosts.

These metrics allow for a comparison of the per-
formance of different agents across various mazes 
and game conditions.
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Table 1. Results of search algorithms 
in Small Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 1063.27 4.12 37
BFSSearch Agent 1071.49 4.08 37
Random Agent 35.88 2.66 0

Table 2. Results of multi-agent 
algorithms in Small Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 1272.29 7.09 62
Expectimax Agent 1410.85 7.91 72
MCTS Agent 
(101 simulations) 585.18 7.59 12

These agents followed predefined strategies, pre-
senting challenges for Pac-Man and influencing 
the effectiveness of each algorithm.

For each maze and agent, 100 runs were con-
ducted to gather enough data for performance ana-
lysis. The only variable in each experiment was 
the Pac-Man agent and its settings.

For agents using MCTS, the number of simula-
tions was adjusted to several levels: 50, 101, 200, 
300, 400, 500 simulations. This allowed for an as-
sessment of how the number of simulations affec-
ted the agent’s performance across different mazes. 
Other game parameters remained unchanged.
Results

Small Maze 1 (Optimised) — 720, 2 ghosts, 2 
capsules 

In this maze, AStarSearch and BFS showed al-
most identical results, with both agents having the 
same win percentage. Random Agent acted chaoti-
cally, leading to low results (Table 1).

Expectimax performed the best among mul-
ti-agent algorithms, surpassing AlphaBeta in both 
average score and win percentage. MCTS Agent, 
with the current number of simulations, had the 
worst results among the agents, except for Random 
Agent (Table 2). 

Small Maze 2 (Non-Optimised) — 
720, 2 ghosts, 2 capsules
AStarSearch Agent demonstrated better results in 
terms of score and win percentage compared to 
BFSSearch Agent, though the gap between them 
was minimal. Random Agent, as usual, showed 
poor results (Table 3). Expectimax Agent was 
significantly more effective than AlphaBeta Agent, 
while MCTS Agent had a lower average score 
and win percentage compared to other agents 
(Table 4).
Medium Maze 1 (Optimised) —

1120, 2 ghosts, 2 capsules

In the medium maze, search agents like AStar-
Search and BFSSearch demonstrated a low win 
rate, though their execution time was optimal (Ta-
ble 5). Expectimax Agent was the most effective 
in this maze, achieving the highest win rate and 
slightly better performance than the AlphaBeta 
Agent. MCTS Agent showed a noticeably lower win 
rate compared to these agents but still significantly 
outperformed the search algorithms (Table 6).
Medium Maze 2 (Non-Optimised) — 

1120, 2 ghosts, 2 capsules

In the non-optimized medium maze, the BFS-
Search Agent outperformed the AStarSearch Agent 

Table 3. Results of search algorithms 
in Small Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 963.92 3.62 49
BFSSearch Agent 936.20 3.58 40
Random Agent 61.73 2.68 0

Table 4. Results of multi-agent algorithms 
in Small Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 1098.27 7.24 17
Expectimax Agent 1212.56 17.03 44
MCTS Agent 
(101 simulations) 784.41 9.28 9
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in terms of win percentage. Random Agent, once 
again, did not show significant results (Table 7). 
Multi-agent algorithms: the Expectimax Agent de-
monstrated higher performance than other mul-
ti-agent algorithms, showing nearly twice the effi-
ciency of the AlphaBeta Agent. MCTS Agent re-
sults were the least effective, with a significant lag 
in each performance metric (Table 8).
Large Maze 1 (Optimised) — 

2728, 4 ghosts, 4 capsules

In the large maze, BFSSearch Agent showed a 
slightly higher win percentage compared to AStar-
Search, despite similar results in average score. Ran-
dom Agent was ineffective, as expected (Table 9). 
AlphaBeta Agent achieved the highest average sco-
re, win percentage, and time. Expectimax had a 

better time and showed improved results in each 
parameter compared to MCTS Agent with 50 si-
mulations (Table 10).
Large Maze 2 (Non-Optimised) — 

2728, 4 ghosts, 5 capsules

Search Algorithms: AStarSearch Agent and BFS-
Search Agent demonstrated extremely high effi-
ciency in the non-optimized large maze, with a 
high win percentage (Table 11). 

Multi-Agent Algorithms: Expectimax Agent 
showed the highest average score among mul-
ti-agent algorithms. MCTS Agent demonstrated 
the highest win percentage and comparable results 
in terms of time and average score, which is a sig-
nificant outcome considering the overall win per-
centage (Table 12).

Table 5. Results of search algorithms 
in Medium Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 847.12 4.84 5
BFSSearch Agent 863.19 4.86 6
Random Agent 86.13 5.77 0

Table 6. Results of multi-agent algorithms
 in Medium Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 1427.44 9.12 68
Expectimax Agent 1424.39 9.46 75
MCTS Agent 
(101 simulations) 1093.71 17.95 34

Table 7. Results of search algorithms 
in Medium Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 1078.98 4.95 54
BFSSearch Agent 1115.53 4.98 61
Random Agent 43.54 2.48 0

Table 8. Results of multi-agent algorithms 
in Medium Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 989.38 7.73 18
Expectimax Agent 1129.20 10.61 30
MCTS Agent 
(101 simulations) 766.24 15.31 5

Table 9. Results of search algorithms
 in Large Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 2156.62 18.08 31
BFSSearch Agent 2166.65 18.09 43
Random Agent 80.63 14.31 0

Table 10. Results of multi-agent algorithms 
in Large Maze 1 (Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 2382.58 28.56 25
Expectimax Agent 2272.06 33.45 11
MCTS Agent 
(50 simulations) 1255.41 36.23 1
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General Observations:
1. Multi-Agent Algorithms (Expectimax, Al-

phaBeta, MCTS) consistently demonstrate higher 
efficiency in larger mazes, where the search space 
is broader and interaction with ghosts is more 
complex.

2. Search Algorithms (AStarSearch, BFS) show 
high performance in smaller mazes, where strate-
gic evasion of ghosts is less crucial.

3. Random Agent is the least effective, high-
lighting the need for well-founded strategies to ef-
fectively achieve the goal in Pac-Man.

These results may help identify the most effec-
tive algorithms depending on the environment 
complexity and the number of simulations.

Conclusions

The analysis of the conducted experiments leads to 
several key conclusions regarding the choice of al-
gorithms based on the task type. For search tasks 
in optimized environments, search algorithms 
such as AStarSearch and BFSSearch demonstrate 
high efficiency. These algorithms perform well in 
smaller mazes where interacting with a large num-
ber of dynamic threats, like ghosts, is not neces-

sary. AStarSearch delivers better results in opti-
mized mazes due to its effective consideration of 
distances to objectives, while BFSSearch is com-
petitive in more complex, non-optimized envi-
ronments.

Multi-agent algorithms such as AlphaBeta, Ex-
pectimax, and MCTS perform better in complex 
environments with dynamic threats where the pro-
bable behavior of ghosts must be considered. Ex-
pectimax demonstrates the best results in condi-
tions where ghost behavior can change randomly, 
especially in small and medium-sized mazes. Al-
phaBeta is suitable for situations where minimiz-
ing risks is necessary by avoiding direct collisions 
with ghosts. MCTS proves most effective in large 
mazes due to its ability to conduct numerous sim-
ulations, allowing it to find optimal solutions in 
highly complex environments with many possible 
scenarios.

The performance analysis of search and mul-
ti-agent algorithms shows that while search algo-
rithms perform well in optimized environments, 
their effectiveness decreases in dynamic conditions 
involving interaction with ghosts. Multi-agent al-
gorithms are more flexible and effective in complex 
situations where it is necessary to avoid threats 
while collecting capsules.

Random Agent, which acts randomly, showed 
the worst results and served as a control variant 
for comparing with other algorithms. The results 
show that even the simplest search algorithms, 
such as AStarSearch, significantly outperform 
random strategies, while multi-agent algorithms 
provide the highest efficiency in complex and dy-
namic environments.

Thus, the choice of algorithm for Pac-Man de-
pends on the maze’s complexity and the necessity 
of accounting for ghost actions. In optimized and 
simplified conditions, search algorithms are more 
effective, while for more dynamic environments 
and complex mazes, multi-agent approaches are 
the most promising. Prospects for improving the 
algorithms include increasing the number of simu-
lations for MCTS and improving heuristics for 
search algorithms to make them more adaptable to 
complex environments.

Table 11. Results of search algorithms
 in Large Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AStarSearch Agent 2854.78 15.44 77
BFSSearch Agent 2836.62 17.08 72
Random Agent 62.61 4.31 0

Table 12. Results of multi-agent algorithms 
in Large Maze 2 (Non-Optimised)

Agent Average 
Score Time Win 

Percentage (%)

AlphaBeta Agent 2985.85 21.27 14
Expectimax Agent 3307.09 30.23 17
MCTS Agent (50 
simulations) 3109.16 37.12 29
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АНАЛІЗ ПОШУКОВИХ І МУЛЬТИАГЕНТНИХ 
АЛГОРИТМІВ У ГРІ PAC-MAN
Вступ. У даній роботі досліджується ефективність пошукових та мультиагентних алгоритмів у контексті 
гри Pac-Man. Гра Pac-Man моделює завдання управління автономними системами у двовимірному середо-
вищі, де агент стикається з динамічними перешкодами. Використання класичних пошукових алгоритмів, 
таких як A*, BFS, а також мультиагентних підходів, таких як Alpha-Beta, Expectimax та Monte Carlo Tree 
Search (MCTS), дозволяє дослідити різні стратегії для вирішення задач оптимізації шляху та ухилення від 
динамічних загроз (привидів).

Мета статті. Метою даного дослідження є аналіз продуктивності різних алгоритмів у різних за складністю 
лабіринтах, зокрема за показниками середнього балу, часу виконання та відсотка перемог. Це дослідження 
спрямовано на порівняння ефективності пошукових та мультиагентних алгоритмів в умовах змінного 
середовища.

Методи. У дослідженні використано системний підхід та метод експериментального моделювання. 
Ефективність алгоритмів оцінювалася шляхом проведення численних експериментів у лабіринтах з різним 
рівнем складності.

Результати. Отримані результати показують, що пошукові алгоритми (A* та BFS) демонструють високу 
продуктивність у менш динамічних середовищах, тоді як мультиагентні алгоритми (Expectimax, Alpha-Beta, 
MCTS) більш ефективні в складніших лабіринтах з багатьма динамічними загрозами. Expectimax про де мон-
стрував найкращі результати в середовищах із випадковими діями супротивників, тоді як MCTS показав 
високу продуктивність у великих та складних середовищах.

Висновки. Дослідження виявило, що вибір алгоритму залежить від складності лабіринту та необхідності 
врахування дій динамічних супротивників. Пошукові алгоритми є ефективними у спрощених умовах, тоді 
як мультиагентні підходи є перспективними для складних середовищ з динамічними загрозами.
Ключові слова: алгоритми пошуку, мультиагентні алгоритми, Pac-Man, оптимізація шляху, Alpha-Beta, 
Expectimax, MCTS.


