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Abstract: Using platform of a new type of chiral Ni(Il) complex of glycine Schiff base we designed addition-cyclization reaction cascade
to explore aspects of kinetic/thermodynamic formation of the corresponding (S)(2S,3S)/(S)(2S,3R) diastereomers. It was found that the
final lactone products reflect the thermodynamic stereocontrol due to much greater rates of the reversible aldol addition vs. subsequent
cyclization step. The observed 4/1 (S)(2S,3S)/(S)(2S,3R) diastereoselectivity in the reactions of new type of (S)-Ni(ll) complexes constitute
an improvement over the previously reported 1.7/1 ratio.
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Introduction complex intermediates (Scheme 1) has emerged as the most
frequently used, methodologically dominant approach [7-8].

Tailor-made amino acids (AAs) [1] are in high demand

in modern pharmaceutical industry. Along with fluorine [2],
AAs’ residues can be found in a growing number of
marketed drugs and medicinal formulations [3]. The
growing acceptance of peptides and modified peptides as
drugs [4], strongly suggest that the pivotal role of tailor-
made AAs in the design of pharmaceuticals will continue to
increase [5]. Asymmetric synthesis of AAs is a mature
science offering a plethora of various approaches [6]. Over
the last decade, preparation of tailor-made AAs via Ni(ll)

In this approach, chiral tridentate ligands 1 can
be directly used in the reactions with racemic a- and
B-AAs offering highly efficient deracemization, as well as
(S)-to-(R) interconversion protocols [9-10]. In a more
general version, chiral ligands 1 are transformed to Ni(ll)
complexes of glycine Schiff bases 2 by the reaction with
glycine and source of Ni(ll) ions. Compounds 2 are widely
used as chiral nucleophilic glycine equivalents in the alkyl
halide alkylations [11], Michael [12], Mannich [13], aldol
[14] addition reactions, as well as various multi-step
transformations [15]. Products 3 can be conveniently
disassembled to release target AAs 4 along with the

Qﬁﬁfgzgd ;g:gg:gggi recovery and reuse of chiral ligands 1. The overall process
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type of chiral ligands, we designed an aldol-cyclization
reaction cascade in attempt to investigate the effect of the
formation of irreversible final products on the overall
stereochemical outcome of this reaction sequence. The
results reported here expand our knowledge of Ni(ll)
complexes aldol reactivity and highlight noticeably greater
stereocontrolling properties of new type of chiral tridentate

ligands.
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Scheme 1. Asymmetric synthesis of tailor-made amino acids via
homologation of chiral glycine (S)-1 Schiff base.
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Scheme 2. General aspects of aldol addition reactions of Ni(ll)
complexes 5; formation of reversible syn-8 and anti-9, followed by
cyclization to afford irreversible products 10.

From the standpoint of mechanism and stereochemical
outcome, aldol addition reactions of Ni(ll) complexes of
glycine Schiff bases have two distinct patterns (Scheme 2)
depending on the reaction conditions. The first type of
reactivity is observed in the presence of strong bases, such
as alkoxides [17] or DBU [18]. In this case the reactions
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Scheme 3. Aldol addition-cyclization reaction cascade; major (S)(2S,3S)-14 and minor (S)(2S,3R)-15 products and crystallographic

structure of major diastereomer (S)(2S,3S)-14.



proceed with very high diastereoselectivity (> 90% de) and
are virtually irreversible due to the in situ formation of
hydroxy group-coordinated species 6. Upon acidification of
the reaction mixture, during work-up procedure, compounds
6 rearrange to a normal, carboxy group-coordinated
complexes 7. In the second option, under weakly basic
conditions, such as catalyzed by triethylamine, aldol
addition reactions are distinctively reversible with the
equilibrium strongly favoring the starting compounds [19].

Consequently, the reactions usually require over 10-fold
of the corresponding aldehyde to achieve a meaningful
conversion of starting Ni(ll) complexes 5. Furthermore,
under these reaction conditions the thermodynamically
controlled diastereoselectivity (syn-8 and anti-9) is quite
low, ranging from O to 35% de. Considering these
challenging inherent synthetic limitations, we were
interested to know whether or not the stereochemical
outcome can be improved when the aldol addition is
followed by a transformation of reversible products syn-8
and anti-9 to irreversible derivatives 10.

Results and Discussion

We posited that such process can be realized in addition-
cyclization reaction cascade with in situ esterification of the
key hydroxy group critical for the reverse aldol addition. As
presented in Scheme 2, we selected methyl 2-formyl-
benzoate, possessing well-positioned aldehyde and ester
functionalities for the desired addition-cyclization cascade.
As for the starting glycine Schiff base Ni(ll) complex, we
selected recently developed compound (S)-11, derived from
strategically chloro-substituted ligand [20]. Complex (S)-11
has never been used in the aldol additions but showed
superior stereocontrolling properties in the alkyl halide
alkylation [21] and deracemization of unprotected a- [22]
and B-AAs [10].

After a series of preliminary experiments, we established
that 6 equivalents of triethylamine, as a base, and 2
equivalents of methyl 2-formylbenzoate can be suitably
used as the starting point in the investigation. As presented
in Table 1, screening the reaction solvents, such as
dichloromethane (entryl), acetone (entry 2), acetonitrile
(entry 3) and methanol (entry 4) at ambient temperature
gave more or less similar results in term of
diastereoselectivity affording (S)(2S,3S)-complex 14 as the
major reaction product. Diastereomers (S)(2S,3S)-14 and
(S)(2S,3R)-15 were separated by column chromatography
and fully characterized. Absolute configuration of major
(S)(2S,35)-14 was established by single crystal X-ray
analysis (Scheme 3 and SlI). Absolute configuration of
minor product (S)(2S,3R)-15 was inferred based on its
optical rotation ([o]° = +1811.8), suggesting the (2S)
stereochemistry and the (3R) by the deduction. No products
with the (2R) absolute configuration, showing negative sign
[19] of optical rotation, were found in the reaction mixture.

Considering entries 1-4, we concluded that the reaction
solvent has virtually no effect on the diastereoselectivity of
this aldol additions providing products (S)(2S,3S)-14 and

Yu. Zou, Z. Yin, H. Mei et al.

Table 1. Optimization of reaction conditions?.

Entry Temp Solvent Ester Yield Dr¢
(°C) (equiv) (%)

1 rt CH,Cl, 2.0 21 32:68
2 rt aceton 2.0 16 28:72
3 rt MeCN 2.0 12 34.66
4 rt MeOH 2.0 53 37:63
5 -20 MeOH 2.0 66 64:36
6 0 MeOH 2.0 76 54:46
7 40 MeOH 2.0 58 2575
8 60 MeOH 2.0 50 22:78
9 80 MeOH 2.0 45 19:81
10 40 MeOH 3.0 7 13:87
11 40 MeOH 5.0 93 20:80
12 40 MeOH 10.0 93 26:74
13¢ 40 MeOH 5.0 89 21:79
144 40 MeOH 2.0 79 22:78

2 Reaction conditions: S-CBPB 11 (0.1 mmol), methyl 2-formyl-
benzoate, triethylamine (6 eq.), solvent (2.5 mL), 12 h;

® Isolated yield;

¢ Dr was determined by *H NMR;

d Ethyl 2-formylbenzoate was used.

(S)(2S,3R)-15 in ratios between 28:72 and 37:63. By
contrast, the chemical vyields ranged much more
prominently depending the reaction solvent (entry 3 vs. 4),
suggesting methanol as an optimal choice (entry 4). Thus
using menthol as a solvent, we explored the effect of the
reaction temperature on the diastereoselectivity. Quite
unexpectedly, the reaction of glycine Schiff base Ni(ll)
complex (S)-2 with methyl 2-formylbenzoate conducted at
-20 °C gave rise to the reverse diastereomeric preferences
affording (S)(2S,3R)-15 as a major product (entry 5). The
same trend of the diastereoselectivity was still observed in
the reaction conducted at 0 °C, albeit the preference for
diastereomer (S)(2S,3R)-15 was significantly reduced (entry
6). In sharp contrast the aldol addition performed at
elevated temperature (40 °C, entry 7). Further increase of
the reaction temperature to 60 °C (entry 8) and 80 °C (entry
9) led to gradual increase in (2S,3S) diastereoselectivity
recording the diastereomeric ratios of 22:78 and 19:81,
respectively. On the other hand, the chemical yield followed
the opposite trend gradually decreasing from 76% (entry 6)
to 45% (entry 9).

Based on these results, we concluded that the optimal
temperature for these aldol reactions should be 40 °C (entry
7). It should be noted that the reactions were quite sluggish
and the starting materials were never fully converted to
products (S)(2S,35)-14 and (S)(2S,3R)-15 within the
standard 12 hours of the reaction time. Accordingly, we
conducted series of reactions using greater than 2
equivalents excess of methyl 2-formylbenzoate. As
presented in entries 10-12 the increase in the aldehyde
stoichiometry allowed for noticeable improvement of the
chemical yield to a respected 93% (entries 11, 12),
suggesting 5 equivalents of the aldehyde as the optimal
condition. Similar results were observed with application of
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ethyl 2-formylbenzoate in the place of methyl 2-formyl-
benzoate (entries 13, 14).

Conclusions

In conclusion, in this methodological work we explored
the triethylamine-catalyzed addition-cyclization reaction
cascade between a new type of chiral Ni(ll) complex of
glycine Schiff and methyl/ethyl 2-formylbenzoates. The
results obtained point to the thermodynamically controlled
diastereoselectivity due to the much greater reaction rates of
the reversible aldol additions vs. irreversible cyclizations.
Nevertheless, the  observed temperature-dependent
oscillation of the stereochemical preferences, giving
preference for (2S,3R) at low and (2S,3S) at elevated
temperatures, was quite unexpected. Furthermore, the
achieved 4/1 level of diastereoselectivity with over 90%
chemical yields suggest synthetic potential of these
reactions clearly deserving more comprehensive and
focused investigation.

Experimental section

All the commercial reagents including solvents were
used directly without further purification. All the
experiments were monitored by thin layer chromatography
(TLC) with UV light. The TLC employed 0.25 mm silica
gel coated on glass plates. Column chromatography was
performed with silica gel 60 (300-400 mesh). NMR spectra
were recorded on Bruker 600 MHz spectrometers. Mass
spectra (MS) were measured on Shimadzu LCMS-2020
with an etrospray ionization (ESI) probe operating in
positive mode. Values of optical rotation were measured on
Automatic Polarimeter SGW-531.

General procedures for the reaction between methyl
2-formylbenzoate and (S)-11

Into a 10 mL vial were taken (S)-11 (0.1 mmol), methyl
2-formylbenzoate (5 equiv), triethylamine (6 equiv),
methanol (2.5 mL). The mixture was stirred at 40 °C for
12 h. Then the reaction was concentrated in vacuo. The
residue was purified by column chromatography using
DCM/EtOAc (1:1, viv) as eluent to afford the desired
product.

Compound (S)(2S3S)-14: red solid, mp 168-169 °C;
[¢]o® +2514.4 (c 0.09, MeOH). 'H NMR (600 MHz,
CDCl3) 6 8.99 (d, J 2.04 Hz, 1H), 8.14 (d, J 9.24 Hz, 1H),
7.88-7.86 (m, 1H), 7.80-7.79 (m, 1H), 7.77-7.74 (m, 1H),
7.72-7.69 (m, 1H), 7.60-7.57 (m, 1H), 7.54-7.48 (m, 2H),
7.45-7.43 (m, 1H), 7.41 (d, J 8.16 Hz, 1H), 7.19-7.17 (m,
1H), 7.10-7.08 (m, 1H), 6.73 (d, J 2.58 Hz, 1H), 6.40-6.39
(m, 1H), 5.29 (s, 1H), 4.51 (d, J 1.74 Hz, 1H), 4.27 (d,
J 12.66 Hz, 1H), 4.19-4.11 (m, 1H), 3.61-3.58 (m, 1H),
3.41-3.38 (m, 1H), 3.21 (d, J 12.72 Hz, 1H), 2.94-2.88 (m,
1H), 2.68-2.60 (m, 1H), 2.31-2.27 (m, 1H), 2.12-2.06 (m,
1H). BC{*H} NMR (150 MHz, CDCls) ¢ 180.5, 172.3,
171.4, 169.3, 145.2, 1415, 135.2, 134.3, 133.8, 133.4,
133.2, 133.1, 132.9, 132.1, 131.0, 130.7, 130.1, 129.9,

129.8, 127.4, 127.1, 127.0, 125.9, 125.7, 125.5, 124.7,
121.6, 81.6, 728, 71.7, 63.0, 58.9, 31.3, 29.9, 23.2.
MS (ES|) m/z Calcd. for CssH27CIsN3sNiOs* ['\/H'H]Jr 732.0.
Found 732.0.

Compound (S)(2S3R)-15: red solid, mp 142-144 °C;
[¢]o® +1811.8 (c 0.06, MeOH). 'H NMR (600 MHz,
CDCls) 6 9.00 (d, J 2.04 Hz, 1H), 8.18 (d, J 9.36 Hz, 1H),
7.82-7.80 (m, 1H), 7.75-7.73 (m, 1H), 7.50-7.42 (m, 4H),
7.32 (d, J 8.22 Hz, 1H), 7.27-7.25 (m, 1H), 7.15-7.12 (m,
1H), 7.07-7.05 (m, 1H), 6.92-6.91 (m, 1H), 6.41 (d, J 2.58
Hz, 1H), 6.06 (d, J 3.84 Hz, 1H), 6.00-5.98 (m, 1H), 4.50
(d, J 3.9 Hz, 1H), 4.29 (d, J 12.6 Hz, 1H), 4.11-4.05 (m,
1H), 3.58-3.56 (m, 1H), 3.40-3.37 (m, 1H), 3.18-3.14 (m,
2H), 2.73-2.66 (m, 1H), 2.29-2.22 (m, 1H), 2.16-2.11 (m,
1H). BC{*H} NMR (150 MHz, CDCls) ¢ 179.8, 175.4,
172.4, 168.6, 144.9, 1417, 135.2, 134.5, 133.6, 133.4,
133.3, 132.9, 132.8, 132.3, 131.1, 130.2, 129.8, 129.7,
129.6, 129.2, 128.8, 127.2, 127.1, 125.9, 125.8, 125.4,
123.5, 123.4, 80.5, 72.1, 71.8, 63.3, 58.9, 30.6, 29.7, 23.3.
MS (ESI) m/z Calcd. for C3sH27ClsNsNiOs* [M+H]* 732.0.
Found 732.7.
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Kackani peakiiii ajib10J5HOTO MPUETHAHHS Ta ITUKII13allii HA OCHOB1 X1paJIbHOTO
komiutekcy Ni(ll) ocuosu Hluda roinuny
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Pestome: Ha 6a3i xipansroro kommutekcy Ni(Il) ocHosu Iluda rniupny HOBOro Trity 0ysi0o po3po0iieHO KacKa/iHi peakiii IpueaHaHHS-IMKITi3alii 3 MEeTor
BUBYCHHS aCIEKTiB KiHETHYHOrO/TepMOAMHAMIYHOTO yTBOpeHHs BigmoBigaux (S)(2S,3S)/(S)(2S,3R) miacrepeomepiB. Byno 3HaiineHo, 1o yrBopeHi
JIAKTOHM B 3HAYHIA Mipi € MPOAYKTAMH TEPMOJHHAMIYHO KOHTPOJBbOBAHOI JAIACTEPEOCENCKTHBHOCTI 3aBASKH 3HAYHOMY BHECKY 3BOPOTHBOI peaxiii
AIIBIONBHOTO TPHEJHAHHS MOPIBHSHO i3 MOJAJBIION LUKTi3auiclo. JJocuTh HeCcMmogiBaHUM BHSIBUBCS (DAKT TEMIIEPAaTYPHOI 3aJ€KHOCTI CTEPEOXIMIYHUX
CHiBBIAHOLICHb NPOJYKTIB peakiil: MpH HU3bKiil TeMreparypi yrBoproBascs nepeBaxHo (2S,3R) miacrepeomep, y Toil 4ac sik npu migsimeniit — (25,3S).
CrocrepexxyBana JiactepeocenektuBHicTh craHoBuia 4/1 (S)(2S,3S)/(S)(2S,3R), 1m0 € 3HAUHO KpaIUM MOKA3HMKOM HOPIBHSHO i3 NONEPEAHIMU JaHUMH
(1.7/1). Toni6Huit piBeHb AiacTEPEOCENeKTHBHOCTI, @ TAKOXK CyMapHHMii BHXiJ MpOAyKTiB peakuii (6iabur Hix 90%), cBifYaTh PO BENHKUN CHHTETUYHHMI
MOTEHI[iaJl JAHOr'O METOY, 10 OJHO3HAYHO 3aCIIYroBye Ha BceOiuHe Ta LIECHPIMOBAHE JOCIIKEHHSL.

KuiouoBi c10Ba: acMMETPUYHUH CHUHTE3; alblojbHE NpUeaHaHHs; creuudiuni Henpuponsi aminokuciortu; Ni(ll) xommiekcu; ocuosu Iluda;
KaCKaJIHi/TOMiHO/TaHJEMHI PEaKIIii.



