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DIELECTRIC MODEL OF ENERGY LOSSES
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THROUGH COLD MAGNETIZED PLASMAPACS 52.35.-g, 52.40.Mj

Energy losses by a charged particle moving in infinite magnetized plasma have been calculated
in the framework of the dielectric model and with the use of the correspondence principle.
This principle enabled us not to use a phenomenological cutoff parameter for matching with
the theory of binary collisions. Analytical expressions for energy losses were derived for the
motions of a particle directed along and perpendicularly to the magnetic field. They were
confirmed by numerical calculations for a charged particle moving in a magnetic field of an
arbitrary strength and at an arbitrary angle to the field direction. The results obtained are
compared with those obtained in quantum field theory.
K e yw o r d s: dielectric model, cutoff parameter, energy losses, principle of correspondence,
binary collisions, magnetized plasma.

1. Introduction

Interaction of beams of charged particles with mat-
ter has been a subject of active scientific researches
during the whole century. Owing to the development
of accelerators and detectors of charged particles, a
large practical contribution has been made not only
to the fundamental physics, but also to medical radi-
ology, materials science, thermonuclear physics, and
so forth. In all those cases, a comprehensive and ad-
equate understanding of processes that take place in
the course of interaction between charged particles
and various substances is required.

Recently, a large attention has been paid to the
processes, in which strong magnetic fields (so strong
that the cyclotron radius of electrons is much smaller
than the linear scales of the examined processes, and
the cyclotron period is much shorter than the runtime
of those processes) play a crucial role. Such fields are
used in installations for the magnetic confinement of
thermonuclear plasma [1, 2], for holding electrons in
electron coolers in storage rings [1–12]

As for the interaction between a heavy charged par-
ticle and magnetized plasma, the project FAIR (Fa-
cility for Antiproton and Ion Research, Darmstadt),
where an electron cooler will be used to accumulate
antiprotons, is of interest. In the PANDA (Antipro-
ton Annihilation at Darmstadt) experiment on the
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High Energy Storage Ring (HESR), owing to the com-
bination of two ways (the electron cooling and the
stochastic one) to reduce the phase volume of exper-
imental charged-particle beams, the expected spread
of antiproton momenta should be Δ𝑝

𝑝 ∼ 10−5 [2]. The
accumulation of antiprotons is a very complicated
process. On the one hand, the number of antiprotons
is small, since the coefficient of proton–antiproton
conversion in nuclear reactions on the target does not
exceed 10−7. On the other hand, antiprotons that are
created from the initial proton beam fly out within a
wide solid angle and have a large energy spread. For
this reason, the process of cooling in storage rings
is desirable for protons and vitally important for an-
tiprotons [9]. In addition, protons (antiprotons) will
be cooled down by relativistic electron beams with
the relativistic parameter 𝛾 = 9.5.

The interaction between an incident charged parti-
cle and the substance, for example, when considering
the slowing-down (cooling) of heavy ions in electron
plasma, can be described in the framework of two the-
oretical models that supplement each other. These
are the dielectric (plasma) model, where the decel-
eration of a charged particle is associated with the
excitation of electron plasma oscillations by the par-
ticle itself [13], and the theory of binary collisions,
in which the particle loses its energy at consecutive
binary collisions at small impact parameters. The
plasma approach demands that small impact param-
eters should be cut off, because perturbation theory
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works properly only if the energy transferred by the
particle to an electron at their interaction is much
lower than the particle’s energy itself.

Collisions at small impact parameters can be taken
into account in the framework of the binary collision
theory. By cutting off the large values of impact pa-
rameters in the theory of binary collisions, we con-
sider, in such a manner, the process of charge screen-
ing by plasma electrons. The total energy losses by a
particle at its motion in electron plasma become equal
to the sum of results obtained by both methods after
the matching procedure [13].

The energy losses by a charged particle in mag-
netized plasma at the electron cooling can be calcu-
lated with the use of the numerical simulation PIC
(particle-in-cell) [7], the Monte Carlo method (clas-
sical trajectories), or the software package BetaCool
[14]. The latter is based on formulas obtained by
Budker [4, 10], Parkhomchuk, or Derbenev–Skrinskii
[14] in the framework of binary collision theory. How-
ever, as was shown by Alfvén and Spitzer [15,16], the
contribution of collective scattering processes at small
angles to total energy losses is of the same order as
that of binary collisions in plasma with a medium
concentration, and by an order of magnitude larger
in rarefied plasma.

Therefore, when considering the scattering of an
ion at electrons, it is important to consider the contri-
bution made by collective processes. For the cases of
strong magnetic fields and the absence of a magnetic
field, the analysis of energy losses in the framework
of the plasma model was done in works [1, 13] and,
in the case of weak fields, in work [7]. The case of
the motion along the magnetic field was analyzed in
works [17–21].

In this work, we develop the results of work [9],
where the polarization losses of a charged particle in
electron plasma were found in the framework of the
dielectric model for the case of the motion of a parti-
cle at an arbitrary angle with respect to the external
magnetic field with an arbitrary strength. In work
[9], the method of matching the far- and near-range
asymptotics was used to find total losses, which is a
conventional practice in such problems. A shortcom-
ing of this method consists in that the introduction of
an intermediate phenomenological cutting parameter
is required, which gives rise to a necessity of engag-
ing the results obtained in the framework of another
theory, the theory of binary collisions [1, 7, 9, 13]. In

this work, we propose a different approach to avoid
this shortcoming. The results obtained are verified on
the basis of the correspondence principle, according
to which the results obtained in a more complicated
case should not contradict to a simpler theory if the
passage to the corresponding limit is made.

The case with a zero magnetic field is considered in
Section 3. Analytical expressions for the energy losses
by a heavy charged particle at its motion along and
across the magnetic field are obtained in Sections 4
and 5, respectively. We show that, in accordance with
the correspondence principle, when the external mag-
netic field is “switched-off”, we arrive at a simpler case
without magnetic field [1, 13]. In Section 6, the con-
tribution of collective effects is numerically calculated
and analyzed in the framework of the dielectric model
for a test particle that moves at an arbitrary angle
(0 < 𝛼 < 𝜋/2) in external uniform magnetic fields of
various strengths. The results obtained are compared
with those obtained in work [13] in the framework of
a more general quantum field theory.

2. Formulation of the Problem

For the sake of completeness, we repeat some calcu-
lations from the previous work [9].

Let a charged particle (a proton, an antiproton) of
mass 𝑀 and charge 𝑞 move at a constant relative ve-
locity V0 = v𝑖−v𝑒 in infinite uniform electron plasma
(𝜆D ≪ 𝑙) at the angle 𝛼 with respect to an external
uniform magnetic field H. The following assumptions
are made:

1. The linear dimensions of electron plasma, 𝑙, con-
siderably exceed the Debye radius 𝜆D, so the bound-
ary conditions can be neglected.

2. The initial electron concentration 𝑛𝑒 is spatially
uniform.

3. The perturbation of plasma induced by the mov-
ing ion is insignificant, i.e. the perturbed electron
concentration is relatively small in comparison with
the initial concentration, 𝛿𝑛𝑒 ≪ 𝑛0𝑒;

4. The external magnetic field is uniform, with its
strength and direction being constant.

5. Since the ion is a heavy particle, its velocity can
be taken as constant on the scale of the ion-electron
interaction.

6. The quasineutrality of electron plasma is pro-
vided by external fields.
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The initial system of equations includes the follow-
ing components:

1. The Vlasov–Boltzmann equation for collisionless
electron plasma,

𝑑𝑓𝑒
𝑑𝑡

=
𝜕𝑓𝑒
𝜕𝑡

+ v
𝜕𝑓𝑒
𝜕r

− 𝑒

𝑚

(︂
E+

1

𝑐
[v ×B]

)︂
𝜕𝑓𝑒
𝜕v

= 0,

(2.1)

where 𝑓𝑒 = 𝑓0𝑒 + 𝛿𝑓𝑒 is the distribution function,
𝑓0𝑒 and 𝛿𝑓𝑒 are its equilibrium and perturbed com-
ponents, and

(︀
E+ 1

𝑐 [v ×B]
)︀

is the Lorentz force that
acts on plasma electrons;

2. The Poisson equation,

Δ𝜙 = −4𝜋𝑞𝛿(r−V0𝑡)− 4𝜋𝑒𝑛𝑒(r, 𝑡), (2.2)

where 𝑞𝛿(r−V0𝑡) is the charge of the incoming parti-
cle, V0 its velocity, 𝑒𝑛𝑒(r, 𝑡) the electron charge, and
𝛿(𝑥) the delta-function;

3. The equation of motion for electron plasma,

𝑑V𝑒

𝑑𝑡
= − 𝑒

𝑚
E− 𝑒

𝑚
[V𝑒H0]; (2.3)

4. The continuity equation for electron plasma,

𝜕𝑛𝑒

𝜕𝑡
+ div(𝑛𝑒V𝑒) = 0, (2.4)

where 𝑛 = 𝑛0𝑒 + 𝛿𝑛𝑒 is the electron concentration,
𝑛0𝑒 is its equilibrium component, and 𝛿𝑛𝑒 is the con-
centration of perturbed electrons.

On the basis of the initial system of equations
(2.1)–(2.4) and the assumptions made above, the en-
ergy losses by a charged particle in electron plasma
can be written down in the tensor form as follows [25]:

−𝑑ℰ
𝑑𝑡

=
𝑖𝑞2

2𝜋2

∞∫︁
−∞

kV0

𝜀𝛼𝛽𝑘𝛼𝑘𝛽
𝑑3𝑘. (2.5)

For making the further calculations more conve-
nient, let us change to dimensionless counterparts of
the quantities in the integrand. The dimensionless
wave vector w equals

k = w
𝜔P

𝑉0
, (2.6)

where 𝜔P is the plasma frequency of the electron com-
ponent, and 𝑉0 the ion velocity. The magnetic field
parameter is

ℎ =
𝜔𝐻

𝜔P
. (2.7)

Using Eq. (2.6), we obtain

𝑑3𝑘 = 𝑑3𝑤

(︂
𝜔P

𝑉0

)︂3
(2.8)

and

kV0 = 𝜔Pwn0 ⇒ wn0 =
𝑤

𝜔P
, (2.9)

where n0 = V0/𝑉0.
The dielectric permittivity tensor 𝜀𝛼𝛽 for a cold

magnetoactive electron plasma looks like [13]

𝜀𝛼𝛽 =

⎛⎝ 𝜀⊥ 𝑖𝑔 0
−𝑖𝑔 𝜀⊥ 0
0 0 𝜀‖

⎞⎠, (2.10)

where, with regard for Eqs. (2.6) and (2.7), we obtain
the following expressions for the components of the
dielectric permittivity tensor (2.10):

𝜀⊥ = 1− 1

(wn0)
2 − ℎ2

,

𝜀‖ = 1− 1

(wn0)
2 ,

𝑔 = − ℎ

(wn0) ((wn0)− ℎ2)
.

(2.11)

Let us introduce the notation

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔P

𝑉0

1

2𝜋2
ℑ

∞∫︁
−∞

𝑤

𝜀𝛼𝛽𝑤𝛼𝑤𝛽
𝑑3𝑤 =

𝑞2𝜔P

𝑉0
𝑆,

(2.12)

where the polarization energy losses 𝑆 normalized to
𝑞2𝜔P/𝑉0 read

𝑆 = − 𝑖

2𝜋2

∞∫︁
−∞

𝑤

𝜀𝛼𝛽𝑤𝛼𝑤𝛽
𝑑3𝑤. (2.13)

3. Energy Losses by a Particle in Plasma
without External Magnetic Field

Consider a case where the external magnetic field is
absent, i.e. ℎ = 0. Then the components of the
dielectric permittivity tensor look like

𝜀11 = 𝜀22 = 𝜀33 = 𝜀 = 1− 𝜔2
P

𝜔2
=

(wn0)
2 − 1

(wn0)
2 . (3.1)
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Let us select a coordinate system so that e𝑧 � n0.
Then

𝜀 =
𝑤2

𝑧 − 1

𝑤2
𝑧

, (3.2)

and the polarization energy losses 𝑆 equal [19, 25]

𝑆 =

∞∫︁
0

𝑑𝑤

𝑤
. (3.3)

Using the relation 𝜔 = kV0 = 𝑘𝑉0 cos 𝜃, equal-
ity (3.2) can be written down in the form 𝜀 = 1−
−(𝑘𝜆𝑎 cos 𝜃)

−2, which means that if the ion velocity
considerably exceeds the velocity of electron thermal
motion, v𝑖 ≫ v𝑒, the field around the ion becomes
insensible at distances of an order of the adiabatic
cut-off parameter 𝜆𝑎 = 𝑉0/𝜔𝑝 [1]. This result cor-
responds to the binary collision theory. Hence, the
parameter

𝑆 =

∞∫︁
1

𝑑𝑤

𝑤
= ln𝑤max = ln

𝑘max𝑉0

𝜔P
(3.4)

is a logarithm of the ratio between the maximum and
minimum impact parameters, which looks like [13]

𝑤max =
𝑚𝑒𝑀𝑉 3

0

(𝑀 +𝑚𝑒)𝑞2𝜔P
. (3.5)

Below, to avoid the necessity of using the procedure
of matching for the determination of 𝑤max and, ac-
cordingly, engaging the theory of binary collisions, we
use the method of correspondence. This means that
if the magnetic field is switched off, the results ob-
tained should correspond to the case where the mag-
netic field is absent, and 𝑤max will be determined
from Eq. (3.5).

4. Particle Motion along the Magnetic
Field, V0 � B (𝛼 = 0)

If the external longitudinal magnetic field B is intro-
duced into a system of an interacting heavy charged
particle and electron plasma–e.g., to hold electrons
in the cooling section–and this magnetic field is so
strong that 𝜔𝐻 > 𝜔P, the experiment shows that the
cooling scenario substantially changes [4].

In the theory of binary collisions, two limiting cases
are distinguished [11, 23]. These are rapid collisions

that occur without the participation of an external
magnetic field (𝜔−1

𝐻 = ∞) and slow ones, for which
B is considered as infinitely large (𝜔−1

𝐻 = 0). This
classification is incorrect, especially for slow colli-
sions that are characteristic of slow ions and occur
in rather a narrow interval of the impact parameters
(the Coulomb logarithm 𝐿C ≈ 2) [23]. Moreover,
a drastic difference between the impact parameters
may give rise to mystical corrections to the friction
force. For non-zero magnetic fields, there also arises
an issue concerning the screening of electric fields [1].

All these difficulties bring about a necessity to use
the dielectric model for the description of the electron
cooling in an external magnetic field. Let us select a
coordinate system so that wn0 = 𝑤𝑧, i.e. let the par-
ticle move in parallel to the force line of the external
uniform magnetic field. Then the components of the
dielectric permittivity tensor have the form

𝜀‖ =
𝑤2

𝑧 − 1

𝑤2
𝑧

, 𝜀⊥ =
𝑤2

𝑧 − 1− ℎ2

𝑤2
𝑧 − ℎ2

. (4.1)

In the cylindrical coordinates, the normalized energy
losses (2.13) look like

𝑆 = − 𝑖

2𝜋2

2𝜋∫︁
0

𝑑𝜙

∞∫︁
0

𝑑𝑤𝑤2

𝜋∫︁
0

sin 𝜃𝑑𝜃
𝑤 cos 𝜃

𝑔(𝑤, 𝜃)
, (4.2)

where

𝑔(𝑤, 𝜃) =
𝑤2
(︁
𝑤2 cos2 𝜃 − 1− ℎ2 + ℎ2

𝑤2

)︁
𝑤2 cos2 𝜃 − ℎ2

. (4.3)

Integration over 𝜙 gives

𝑆 = − 𝑖

𝜋

∞∫︁
0

𝑑𝑤

𝑤

𝜋∫︁
0

𝑑𝜃
sin 𝜃𝑤 cos 𝜃

(︀
𝑤2 cos2 𝜃 − ℎ2

)︀
𝑤2
(︀
𝑤2 cos2 𝜃 − 1− ℎ2 + ℎ2

𝑤2

)︀ .
(4.4)

Changing the variables,

𝑡 = 𝑤 cos 𝜃; 𝑑𝑡 = −𝑤 sin 𝜃𝑑𝜃, (4.5)

we obtain

𝑆 = − 𝑖

𝜋

∞∫︁
0

𝑑𝑤

𝑤

𝑤∫︁
−𝑤

𝑡
(︀
𝑡2 − ℎ2

)︀
𝑡2 − 𝑡20

, (4.6)
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where 𝑡20 = 1 + ℎ2 − ℎ2/𝑤2. The variable 𝑡 depends
on the variable 𝑤. The analysis of the integration re-
gion shows that the additional conditions are imposed
on Eq. (4.6) after the integration over 𝑡: normalized
losses are real-valued in the regions, where

0 ≤ 𝑡20 ≤ 𝑤2. (4.7)

Figure 1 illustrates the dependence of 𝑡20 on 𝑤2. Con-
tributions are given by those regions, in which the
curve passes under the line 𝑡2 = 𝑤2. With the use of
the dependence 𝑡20(𝑤

2
0) = 0, we obtain

𝑤2
0 = ℎ2/(1 + ℎ2). (4.8)

The points of intersection between the 𝑡20-curve and
the line 𝑡2 = 𝑤2 are determined from the condition
𝑡20 = 𝑤2. If ℎ > 1,

𝑤2
1 = 1;

𝑤2
2 = ℎ2.

(4.9)

From condition (4.7), it follows that the integration
interval should be broken into two sections. Taking
advantage of the theory of residues, let us write down
the normalized losses as a sum

𝑆 =

∞∫︁
𝑤2

𝑑𝑤

𝑤

(︂
1− ℎ2

𝑤2

)︂
−

𝑤1∫︁
𝑤0

𝑑𝑤

𝑤

(︂
1− ℎ2

𝑤2

)︂
. (4.10)

The ultimate expression for the normalized energy
losses is obtained by integrating Eq. (4.10) over 𝑤:

𝑆 = ln𝑤max − ln
√︀

1 + ℎ2. (4.11)

Having comparing expressions (3.3) and (4.11) for
the energy losses, we can write down

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔2

P

𝑉0
(ln𝑤max − 𝑓(ℎ)), (4.12)

where

𝑓(ℎ) = ln
√︀

1 + ℎ2. (4.13)

The result obtained for the case of the longitudi-
nal motion of a charged particle with respect to
the magnetic field in electron plasma corresponds
to those obtained in the framework of quantum
electrodynamics [13].

If we put ℎ = 0 (no external magnetic field), then
𝑓(ℎ) = 0, and Eq. (4.12), in accordance with the cor-
respondence principle, transforms into Eq. (3.3), with
the phenomenological parameter 𝑤max being deter-
mined by equality (3.5).

5. Particle Motion across the Magnetic Field,
V0 ⊥ B (𝛼 = 𝜋/2)

Now consider the case of a heavy charged particle
moving with velocity V0 in the direction perpendic-
ular to the external longitudinal magnetic field H in
a magnetized electron gas. The properties of the lat-
ter are described by the dielectric permittivity tensor
𝜀𝛼𝛽 , the explicit expressions for which in the case of
cold magnetized electron plasma are given by formu-
las (2.10) and (2.11). Let us select the coordinate
system so that the axis 𝑧 coincides with the direc-
tion of the external magnetic field H, and the axis
𝑥 with the direction of the charged particle motion,
wn0 = 𝑤𝑥. Then

𝜀𝛼𝛽𝑤𝛼𝑤𝛽 = 𝜀⊥
(︀
𝑤2

𝑥 + 𝑤2
𝑦

)︀
+ 𝜀‖𝑤

2
𝑧 . (5.1)

For further calculations, it is convenient to rotate the
system until 𝑤𝑦 � B. Then

𝜀𝛼𝛽𝑤𝛼𝑤𝛽 = 𝑤2 − 𝑤2
⊥

(︂
1

𝑤2
𝑧 − ℎ2

)︂
− 𝑤2

‖
1

𝑤2
𝑧

, (5.2)

where 𝑤2
⊥ = 𝑤2

𝑧 + 𝑤2
𝑥 and 𝑤2

‖ = 𝑤2
𝑦. Now, we should

change to the spherical coordinate system,

𝑆 = − 𝑖

2𝜋2

2𝜋∫︁
0

𝑑𝜙

∞∫︁
0

𝑑𝑤

𝜋∫︁
0

𝑤2 sin 𝜃𝑑𝜃
𝑤 cos 𝜃

𝜀
, (5.3)

where

𝜀 =
𝑤2𝑤4

𝑧 − 𝑤2𝑤2
𝑧ℎ

2 − 𝑤2
𝑧𝑤

2
𝑥 − 𝑤4

𝑧 − 𝑤2
𝑦𝑤

2
𝑧 + 𝑤2

𝑦ℎ
2

𝑤2
𝑧 (𝑤

2
𝑧 − ℎ2)

.

(5.4)

Fig. 1. Dependence 𝑡20(𝑤
2). 𝑡20(𝑤

2
0) = 0. At 𝑤2 = 𝑤2

1 and
𝑤2 = 𝑤2

2 , the curve 𝑡20(𝑤
2) intersects the straight line 𝑡2 = 𝑤2
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Fig. 2. Dependences 𝑡21(𝑤
2) and 𝑡22(𝑤

2). At 𝑤2 = 𝑤2
3 . the

curve 𝑡22(𝑤
2) intersects the straight line 𝑡2 = 𝑤2

Changing the variables according to formulas (4.5),
we rewrite Eq. (5.3) the new coordinates as follows:

𝑆 = − 𝑖

2𝜋2

2𝜋∫︁
0

𝑑𝜙

∞∫︁
0

𝑑𝑤

𝑤

𝑤∫︁
−𝑤

𝑡3
(︀
𝑡2 − ℎ2

)︀
𝑑𝑡

𝑔(𝑡, 𝑤, 𝜙)
, (5.5)

where

𝑔(𝑡, 𝑤, 𝜙) = 𝑡4 − 𝑡2
(︀
ℎ2 + 1

)︀
+ ℎ2

(︀
1− 𝑡2/𝑤2

)︀
sin2 𝜙.

(5.6)

The roots of the function 𝑔(𝑡, 𝑤, 𝜙) are

𝑡21,2 =
1

2

(︂
1 + ℎ2 +

ℎ2 sin2 𝜙

𝑤2

)︂
∓

∓1

2

√︃(︂
1 + ℎ2 +

ℎ2 sin2 𝜙

𝑤2

)︂2
− 4ℎ2 sin2 𝜙. (5.7)

The variable 𝑡 depends on 𝑤. The analysis of the
integration region shows that two cases are possible
for the integration over 𝑡 (see Fig. 2).

1. In the interval
[︀
0, 𝑤2

3

]︀
, the integral equals the

residue at 𝑡1 (𝑡1 < 𝑤 < 𝑡2) . At 𝑤2
3, the curve 𝑡22 inter-

sects the line 𝑡2 = 𝑤2.
𝑤∫︁
0

𝑑𝑡 𝑓(𝑡) =

∫︁
𝜋𝑖 res[𝑓(𝑡), 𝑡1]; (5.8)

2. In the interval from 𝑤3 to ∞, the both zeros of
the function 𝑔(𝑡, 𝑤, 𝜙) (𝑡1 < 𝑡2 < 𝑤) give a contribu-
tion,
𝑤∫︁
0

𝑑𝑡 𝑓(𝑡) = 𝜋𝑖

2∑︁
𝑛=1

res[𝑓(𝑡), 𝑡𝑛]. (5.9)

Actually, we may write down

𝑆 = − 𝑖

2𝜋2

2𝜋∫︁
0

𝑑𝜙

⎛⎝ 𝑤3∫︁
0

+

∞∫︁
𝑤3

⎞⎠𝑑𝑤

𝑤

𝑤∫︁
−𝑤

𝑡3
(︀
𝑡2 − ℎ2

)︀
𝑑𝑡

(𝑡2 − 𝑡21) (𝑡
2 − 𝑡22)

,

(5.10)

where, with regard for the condition 𝑡22 = 𝑤2,
𝑤2

3 = 1 + ℎ2.
1. If 𝑡1 < 𝑤 < 𝑡2, the integral equals

𝑤∫︁
0

𝑑𝑡 𝑓(𝑡) = 𝜋𝑖 res[𝑓(𝑡), 𝑡1] = 𝜋𝑖
𝑡21
(︀
𝑡21 − ℎ2

)︀
𝑡21 − 𝑡22

. (5.11)

2. At 𝑡1 < 𝑡2 < 𝑤, substituting the values of
residues at 𝑡1 and 𝑡2 into Eq. (5.9), we obtain

𝑤∫︁
0

𝑑𝑡 𝑓(𝑡) = 𝜋𝑖

2∑︁
𝑛=1

res[𝑓(𝑡), 𝑡𝑛] = 𝜋𝑖
(︀
𝑡22 + 𝑡21 − ℎ2

)︀
.

(5.12)

Consider two limiting cases: weak and strong mag-
netic fields. If ℎ ≫ 1, the final integral looks like

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔𝑝

𝑉0

(︂
ln |𝑤max| −

1

4
− 1

2
ln

ℎ

2

)︂
. (5.13)

In the case ℎ ≪ 1, we obtain

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔𝑝

𝑉0

(︂
ln |𝑤max| −

ℎ2

4
− ℎ4

8
ln

ℎ

2

)︂
. (5.14)

From formula (5.14), one can see that, putting ℎ =
0, we obtain–in accordance with the correspondence
principle–results without magnetic field (3.3), where
𝑤max is determined by equality (3.5).

6. General Case

Now, let us consider the case of the motion of a parti-
cle at an arbitrary angle with respect to the magnetic
field (V0H = = |𝑉0||𝐻| cos𝛼). As was done above,
the coordinate system is so selected that H � z.

The energy losses by an ion in the cold magnetized
electron plasma are given by expression (2.5). Let us
rotate the coordinate frame around the axis 0𝑦 until
V0 � 𝑧; then wnV0 = 𝑤𝑧, equation

𝑤𝑥 = 𝑤′
𝑥 cos𝛼+ 𝑤′

𝑧 sin𝛼,

𝑤𝑧 = −𝑤′
𝑥 sin𝛼+ 𝑤′

𝑧 cos𝛼,

𝑤𝑦 = 𝑤′
𝑦.

(6.1)
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With the use of Eq. (2.10), let us rewrite the expres-
sion for the energy losses in the new coordinates (for
convenience, the primes at the variables are omitted),

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔2

P

𝑉0

1

2𝜋2
ℑ
∫︁∫︁∫︁

𝑤𝑧 𝑑
3𝑤

𝑔0(𝑤𝑥, 𝑤𝑦, 𝑤𝑧)
=

𝑞2𝜔2
P

𝑉0
𝑆,

(6.2)

where the denominator 𝑔0(𝑤𝑥, 𝑤𝑦, 𝑤𝑧) in the inte-
grand, in view of Eq. (6.1), looks like

𝑔0(𝑤𝑥, 𝑤𝑦, 𝑤𝑧) = 𝜀⊥
(︀
𝑤2

𝑦 − 𝑤2
𝑦0

)︀
, (6.3)

where
𝑤2

𝑦0 = −
𝜀⊥ cos2 𝛼+ 𝜀‖ sin

2 𝛼

𝜀⊥
(𝑤𝑥 − 𝑤𝑥1) (𝑤𝑥 − 𝑤𝑥2),

(6.4)
and

𝑤𝑥1,2 = −𝑤𝑧

cos𝛼 sin𝛼
(︀
𝜀⊥ − 𝜀‖

)︀
𝜀⊥ cos2 𝛼+ 𝜀‖ sin

2 𝛼
∓

∓𝑤𝑧

⎯⎸⎸⎷(︃cos𝛼 sin𝛼
(︀
𝜀⊥−𝜀‖

)︀
𝜀⊥ cos2 𝛼+𝜀‖ sin

2 𝛼

)︃2
−
𝜀‖ cos2 𝛼+𝜀⊥ sin2 𝛼

𝜀⊥ cos2 𝛼+𝜀‖ sin
2 𝛼

.

(6.5)

In the case V0 � 𝑧, the components of the dielectric
permittivity tensor are

𝜀⊥ =
𝑧2 − 𝜔3

2

𝑧2 − ℎ2
,

𝜀‖ =
𝑧2 − 1

𝑧2
.

(6.6)

After some simplifications with regard for Eq. (6.6),
Eqs. (6.4) and (6.5) read

𝑤𝑥1,2 =
𝑤𝑧

(𝑤2
𝑧 − 𝜔2

1) (𝑤
2
𝑧 − 𝜔2

2)
×

×
(︂
ℎ2 sin𝛼 cos𝛼∓ 𝑤𝑧

√︁
(𝜔2

3−𝑤2
𝑧)(𝑤

2
𝑧−ℎ2)(𝑤2

𝑧−1)

)︂
,

(6.7)

𝑤2
𝑦0 =

(︀
𝑤2

𝑧 − 𝜔2
1

)︀(︀
𝑤2

𝑧 − 𝜔2
2

)︀
𝑤2

𝑧 (𝜔
2
3 − 𝑤2

𝑧)
(𝑤𝑥 − 𝑤𝑥1)(𝑤𝑥 − 𝑤𝑥2).

(6.8)

Expressions (6.7) and (6.8) include the character-
istic quantities of the problem,

𝜔2
1,2 =

1

2
(𝜔2

3 ∓
√︁
𝜔4
3 − 4ℎ2 sin2 𝛼), (6.9)

where 𝜔2
3 = 1 + ℎ2. The dimensionless frequencies

𝜔1 and 𝜔2 are plasma resonances. Plasma resonances
play a substantial role in the propagation of electro-
magnetic waves in plasma. In particular, the wave
attenuation and the noise level drastically grow in
their vicinity. The refractive index of electromagnetic
waves is large (𝑛 ≫ 1) near those resonances, and the
phase velocity is much less than the light one; i.e. the
waves become slow, and, accordingly, the interaction
between charged particles is the most effective near
plasma resonances [13, 24]. The frequency 𝜔1 corre-
sponds to lower hybrid frequencies, whose spectrum
spans the interval 0 6 𝑤 6 min[1, ℎ], whereas the fre-
quency 𝜔2 corresponds to upper hybrid frequencies
with the spectrum at max[1, ℎ] 6 𝑤 6 𝑤3.

The quantities 𝑤𝑥1, 𝑤𝑥2, 𝜔1, 𝜔2, and 𝜔3 define the
integration region. If ℎ > 1, the obtained character-
istic quantities are related to one another as follows:

𝜔3 > 𝜔2 > ℎ > 1 > 𝜔1.

Let us integrate in Eq. (6.2) over the variable 𝑤𝑦.
According to the theory of residues, we obtain

𝑆 =
1

2𝜋

∫︁∫︁
𝜎

𝑑𝑤𝑧
𝑤2

𝑧(𝑤
2
𝑧 − ℎ2)√︀

(𝜔2
3 − 𝑤2

𝑧)(𝑤
2
𝑧 − 𝜔2

2)(𝑤
2
𝑧 − 𝜔2

1)
×

× 𝑑𝑤𝑥√︀
(𝑤𝑥 − 𝑤𝑥1)(𝑤𝑥 − 𝑤𝑥2)

(6.10)

The integral differs from zero if

𝑤2
𝑦0(𝑤𝑥, 𝑤𝑧) > 0. (6.11)

The cross-section of the integration region at
𝑤𝑦0(𝑤𝑥, 𝑤𝑧) = 0 is depicted in Figs. 3 and 4. At
the points 𝑤𝑧 = ℎ, 𝑤𝑧 = 1, and 𝑤𝑧 = 𝜔3, the curves
𝑤𝑥1(𝑤𝑧) and 𝑤𝑥2(𝑤𝑧) transform into each other.

The integration region 𝜎 is determined by inequal-
ity (6.11). On the (𝑤𝑥, 𝑤𝑧)-plane, this region is con-
fined by the curves 𝑤𝑥1(𝑧) and 𝑤𝑥2(𝑧). Note that
the functions 𝑥1(𝑧) and 𝑥2(𝑧) are real-valued in the
frequency intervals

0 6 𝜔1 6 min(1, ℎ), max(1, ℎ) 6 𝜔2 6 𝜔3.

In the case of longitudinal motion (𝛼 = 0), the
intervals 𝑤1 ≤ 𝑤 ≤ 1 and ℎ ≤ 𝑤 ≤ 𝑤2 contribute
to the energy losses; in the case of transverse one
(𝛼 = 𝜋/2), these are the intervals 0 ≤ 𝑤 ≤ 𝑤1 and
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a b

c d
Fig. 3. Cross-section of the integration region (𝑤𝑦0(𝑤𝑥, 𝑤𝑧) = 0), ℎ = 𝜔𝐻/𝜔P = 0.7: (a) 𝛼 = 0, (b) 𝛼 = 𝜋/18, (c) 𝛼 = 𝜋/4,
and (d) 𝛼 = 𝜋/2. Regions with real roots are colored

a b
Fig. 4. Cross-section of the integration region (𝑤𝑦0(𝑤𝑥, 𝑤𝑧) = 0), 𝛼 = 60: (a) ℎ = 0 and (b) ℎ = 1.7. Regions with real roots
are colored

𝑤2 ≤ 𝑤 ≤ 𝑤3. In the general case, the energy losses
are a sum of contributions from all four intervals,

𝑆 =
1

𝜋

4∑︁
𝛽=1

𝐼𝛽 , (6.12)

where

𝐼1 =

𝜔1∫︁
0

𝑑𝑤𝑧
𝑤2

𝑧(ℎ
2 − 𝑤2

𝑧)√︀
𝑃 (𝑤𝑧)

×

×

⎛⎝ 𝑤𝑥1∫︁
−∞

𝑑𝑤𝑥√︀
𝑅(𝑤𝑥, 𝑤𝑧)

+

∞∫︁
𝑤𝑥2

𝑑𝑤𝑥√︀
𝑅(𝑤𝑥, 𝑤𝑧)

⎞⎠, (6.13)

𝐼2 =

min(1,ℎ)∫︁
𝜔1

𝑑𝑤𝑧
𝑤2

𝑧(ℎ
2 − 𝑤2

𝑧)√︀
−𝑃 (𝑤𝑧)

𝑤𝑥1∫︁
𝑤𝑥2

𝑑𝑤𝑥√︀
−𝑅(𝑤𝑥, 𝑤𝑧)

, (6.14)

𝐼3 =

𝜔2∫︁
max(1,ℎ)

𝑑𝑤𝑧
𝑤2

𝑧(𝑤
2
𝑧 − ℎ2)√︀

−𝑃 (𝑤𝑧)

𝑤𝑥1∫︁
𝑤𝑥2

𝑑𝑤𝑥√︀
−𝑅(𝑤𝑥, 𝑤𝑧)

, (6.15)
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a b

Fig. 5. Angular dependences of the function 𝑓(𝛼, ℎ) at (a) 𝜔𝐻/𝜔P = 10 and (b) 𝜔𝐻/𝜔P = 10. The solid curve corresponds to
the results of quantum field theory [13], squares to 𝛼 = 0 and expression (4.13), triangles to 𝛼 = 𝜋/2 and expression (5.13) at
ℎ ≫ 1, and circles to the dielectric model

a b

Fig. 6. Dependenced of the function 𝑓(𝛼, ℎ) on the magnetic field parameter ℎ = 𝜔𝐻/𝜔P at (a) 𝛼 = 𝜋/4 and (b) 𝛼 = 𝜋/2. The
solid curve corresponds to the results of quantum field theory [13], and circles to the dielectric model

𝐼4 =

𝜔3∫︁
𝜔2

𝑑𝑤𝑧
𝑤2

𝑧(𝑤
2
𝑧 − ℎ2)√︀
𝑃 (𝑤𝑧)

×

×

⎛⎝ 𝑤𝑥1∫︁
−∞

𝑑𝑤𝑥√︀
𝑅(𝑤𝑥, 𝑤𝑧)

+

∞∫︁
𝑤𝑥2

𝑑𝑤𝑥√︀
𝑅(𝑤𝑥, 𝑤𝑧)

⎞⎠, (6.16)

𝑃 (𝑤𝑧) = (𝜔2
3 − 𝑤2

𝑧)(𝑤
2
𝑧 − 𝜔2

2)(𝑤
2
𝑧 − 𝜔2

1), and
𝑅(𝑤𝑥, 𝑤𝑧) = (𝑤𝑥−𝑤𝑥1)(𝑤𝑥−𝑤𝑥2). Equations (6.13)
and (6.14) describe the contributions from lower hy-
brid oscillations, and Eqs. (6.15) and (6.16) from
upper ones. Using the correspondence principle,
Eq. (6.12) can be rewritten in the form

−𝑑ℰ
𝑑𝑡

=
𝑞2𝜔2

P

𝑉0
(ln𝑤max − 𝑓(ℎ, 𝛼)). (6.17)

The exact expression (6.12) was analyzed numer-
ically to find the normalized polarization losses, its

dependence on the magnetic field parameter ℎ =
= 𝜔𝐻/𝜔P, and the arrival angle of a test particle.
The numerical results obtained for the additional
term 𝑓(ℎ, 𝛼) are depicted in Figs. 5 and 6. In par-
ticular, Fig. 5 demonstrates that, if the angle be-
tween the motion direction of the test charged parti-
cle and the force lines of the external magnetic field
increases, the additive 𝑓(ℎ, 𝛼) decreases. In other
words, the transverse energy losses by the particle
are larger than the longitudinal ones. Figure 6 illus-
trates the dependence of the function 𝑓(ℎ, 𝛼) on the
external magnetic field strength. At low field values,
ℎ ≪ 1, the additional term tends to zero in accor-
dance with the correspondence principle. At large
field values, ℎ ≫ 1, the correction monotonously
grows. The results of numerical calculations were
compared with the analytical results obtained in the
cases of both transverse (𝛼 = 𝜋/2) and longitudinal
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(𝛼 = 0) motions of a particle with respect to the
magnetic field.

7. Conclusions

The dielectric model of energy losses by a charged
particle at its motion in magnetized electron plasma
has been developed. A new criterion for the verifica-
tion of the reliability of the results obtained has been
proposed in the accordance with the correspondence
principle, which does not demand engaging other the-
oretical models. Analytical expressions were derived
for the cases of no magnetic field and a magnetic field
with a particle moving along and across it. The re-
sults obtained are confirmed by the numerical calcu-
lations carried out for the cases of a charged particle
moving at an arbitrary angle with respect to the mag-
netic field and an arbitrary magnetic field strength.
The validity of the dielectric model for the descrip-
tion of energy losses by collective effects is ultimately
confirmed by a comparison of the results obtained
in the framework of this model and the quantum
field theory.

The authors express their gratitude to O.P. No-
vak for the advice and the useful discussion and to
V.Yu. Storizhko for valuable remarks.
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О.В. Хелемеля, Р.I. Холодов, В.I. Мирошнiченко

ДIЕЛЕКТРИЧНА МОДЕЛЬ ЕНЕРГЕТИЧНИХ
ВТРАТ ВАЖКОЇ ЗАРЯДЖЕНОЇ ЧАСТИНКИ
ПРИ РУСI В ХОЛОДНОМУ ЗАМАГНIЧЕНОМУ
ЕЛЕКТРОННОМУ ГАЗI

Р е з ю м е

У рамках дiелектричної моделi знайдено втрати енергiї для
зарядженої частинки у нескiнченнiй замагнiченiй електрон-
нiй плазмi. В роботi використано принцип вiдповiдностi,
що дало змогу не залучати феноменологiчного параметра
обрiзання для зшивки з теорiєю парних зiткнень. Отрима-
но аналiтичнi вирази для втрат енергiї у випадку поздов-
жнього та поперечного магнiтному полю рухiв зарядженої
частинки. Аналiтичнi результати пiдтвердженi чисельними
розрахунками, проведеними для випадку руху зарядженої
частинки пiд довiльним кутом до магнiтного поля, довiль-
ної напруженостi. Проведено порiвняння втрат енергiї за-
рядженою частинкою, отриманих в рамках дiелектричної
моделi, з результатами квантової теорiї поля.
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