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The energy spectrum for a finite one-dimensional ionic conductor with periodic boundary con-
ditions has been calculated using the exact diagonalization technique. The ionic conductor
is described in the framework of the lattice model, with particles obeying the “mixed” Pauli
statistics. The model involves the ion transfer, interaction between neighbor ions, and mod-
ulating field. One-particle spectral densities are calculated, and phase diagrams are plotted
for various temperatures, magnitudes of interaction between particles, and modulating field
strengths. Conditions for the transition from the charge-density-wave phase to the superfluid
one with the Bose–Einstein condensate (it can be an analog of the superionic phase) and to
Mott-insulator type phase are investigated.
K e yw o r d s: ionic conductor, spectral density, hard-core boson model, phase diagrams.

1. Introduction

Ionic conductors comprise a wide class of physical and
biological objects, and a high interest in them is as-
sociated with the possibilities of their practical appli-
cation. Superionic conductors, which contain a high-
temperature phase characterized by a high conductiv-
ity, are one of the most interesting examples of those
objects. In the low-temperature phase, ions occupy
fixed positions. However, after the transition into the
superionic phase, they become distributed chaotically
with that or another probability over several positions
in the elementary cell. A typical example of the su-
perionic crystal can be 𝛼-AgJ, where the superionic
subsystem is formed by silver ions [1]. In superproton
hydrogen-bonded conductors, protons play the role of
charge carriers, and they are redistributed over the
network of virtual hydrogen bonds [2].

The theoretical description of systems with ionic
conductivity is mainly based on lattice models. Some
of them consider ions as Fermi particles and focus at-
tention on such issues as the role of long-range inter-
actions [3–5] or the influence of a particle coupling
with phonons [6, 7]. In a number of recent works,
the attention was paid to short-range interactions be-
tween particles [8–10]. However, it should be noted
that ions and protons can be described more correctly
with the use of the “mixed” Pauli statistics [11], in
which, on the one hand, particles are of the bosonic
nature and, on the other hand, they are subjected
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to Fermi prohibition rules. In comparison with the
fermionic approach, this description generates addi-
tional complications associated with special commu-
tation rules for the Pauli operators. At the same time,
this approach can be more efficient. For instance, it
was demonstrated that the Pauli lattice model en-
ables the emergence of a superfluid(SF)-type state,
i.e. a phase with the Bose condensate, which can be
described even in the absence of a direct interaction
between particles [12–14]. To solve the problems of
this kind, the Hamiltonian written down in terms of
Pauli operators is often reduced with the help of the
fermionization procedure [15] (see also works [16–18])
to a Hamiltonian expressed in terms of Fermi opera-
tors (only for one-dimensional systems).

The lattice model of Pauli particles is similar to the
Bose–Hubbard model in the hard-core boson approx-
imation (provided that the occupation numbers are
restricted; 𝑛𝑖 = 0, 1). This approximation attracts
the attention of researchers due to a wide scope of
issues, where this model can be applied, proceeding
from the theory of quantum-mechanical effects in liq-
uid helium [19, 20]. The model was used to describe
the superconductivity of locally coupled electron pairs
[14], physical properties of Josephson junctions [21],
and ionic conductivity in crystals [11, 12]. The Bose–
Hubbard model also describes a transition from the
Mott insulator (MI) state into a state of the super-
fluid (SF) type [22–28]. For the last years, this ap-
proach renewed its popularity owing to the researches
dealing with the behavior of ultra-cold atoms in op-
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Fig. 1. Model of one-dimensional ionic conductor. Large and
small circles denote heavy ionic groups and light mobile ions,
respectively

tical lattices. As a rule, the Bose–Hubbard model is
used here at arbitrary occupation numbers of local
particle positions (see review [29]). The limiting case
of this model in the limit of a large on-site repulsion
(𝑈 → ∞), when the potential wells are deep enough,
is just the hard-core boson model.

In this work, we plot the state diagrams for the
ionic conductor, in which particles obey the Paule
statistics. Our lattice model makes includes the ion
transfer, interaction between neighbor ions, and mod-
ulating field. By applying the exact diagonalization
technique, we calculate the one-particle spectral den-
sity for finite one-dimensional systems with periodic
boundary conditions and, by analyzing the character
of those spectra, we obtain the corresponding state
diagrams. We also study the conditions required for
the transition from the MI phase into the SF-type one
(which could be considered as an analog of the supe-
rionic phase) to take place, followed by the transi-
tion into a state with charge ordering (charge density
waves, CDWs).

2. Model of Ionic Conductor

Let us consider the ionic conductor as a chain con-
sisting of heavy motionless ionic groups (large circles
in Fig. 1) and light ions, the latter moving along the
chain and occupying positions designated by small
circles. In such a simplified way, we take into account
the Grotthuss mechanism of ion transport in real sys-
tems. The subsystem of light ions is described by the
Hamiltonian

�̂� = 𝑡
∑︁
𝑖

(𝑐+𝑖 𝑐𝑖+1 + 𝑐+𝑖+1𝑐𝑖) + 𝑉
∑︁
𝑖

𝑛𝑖𝑛𝑖+1 −

−𝜇
∑︁
𝑖

𝑛𝑖 +𝐴
∑︁
𝑖

(−1)𝑖𝑛𝑖. (1)

The model makes allowance for ion motions between
neighbor positions (the ion transfer parameter 𝑡), the
interaction between ions located in neighbor posi-
tions (the interaction parameter 𝑉 ), and the mod-
ulating field (the parameter 𝐴). The field 𝐴 trans-
forms the system into a two-sublattice one and, to a

certain extent, imitates a long-range interaction be-
tween particles, which favors a spatial modulation
of the light-ion distribution in the so-called ordered
phase (the existence of such a phase at low tempera-
tures is a characteristic feature of superionic conduc-
tors). If Hamiltonian (1) is considered in the frame-
work of the Fermi statistics, the corresponding model
is known as a spinless fermionic one. This model is
widely used in the theory of strongly correlated elec-
tron systems [30] and for the description of ionic con-
ductors [31]. A more complicated two-sublattice vari-
ant of this model was applied to describe proton con-
ductors [32]. The approach used in this work is based
on the “mixed” Pauli statistics. In this case, model (1)
is equivalent to the extended hard-core boson model
or the boson Hubbard one with repulsive interaction
between neighbor particles and strong on-site repul-
sion (𝑈 → ∞) [33]. The latter is often used while
studying the Bose-condensation problems.

3. Exact Diagonalization Technique

In order to calculate the energy spectrum and the
spectral densities of a one-dimensional ionic Pauli
conductor described by model (1), let us apply the
exact diagonalization technique. For this purpose, let
us consider a finite chain with periodic boundary con-
ditions. For a chain with 𝑁 sites in the main region,
we introduce the many-particle states

| 𝑛1, 𝑛2, ..., 𝑛𝑁 ⟩. (2)

In the basis of those states, the Hamiltonian is a
2𝑁 × 2𝑁 matrix and can be diagonalized numerically.
This operation corresponds to the transformation

𝑈−1𝐻𝑈 = ̃︀𝐻 =
∑︁
𝑝

𝜆𝑝
̃︀𝑋𝑝𝑝, (3)

where 𝜆𝑝 are the Hamiltonian eigenvalues, and ̃︀𝑋𝑝𝑝

are the Hubbard operators. The same transformation
is applied to the operators of particle creation and
annihilation at the 𝑖-th chain site,

𝑈−1𝑐𝑖𝑈 =
∑︁
𝑝𝑞

𝐴𝑖
𝑝𝑞

̃︀𝑋𝑝𝑞 , 𝑈−1𝑐+𝑖 𝑈 =
∑︁
𝑟𝑠

𝐴𝑖*
𝑟𝑠

̃︀𝑋𝑟𝑠, (4)

which are used to construct two-time temperature
Green’s functions 𝐺𝑖,𝑖 =

⟨︀⟨︀
𝑐𝑖|𝑐+𝑖

⟩︀⟩︀
containing the in-

formation on the one-particle energy spectrum of the
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system. For the Pauli creation and annihilation op-
erators, we introduce Green’s functions of two types,
namely, the commutator Green’s function⟨︀⟨︀
𝑐𝑖(𝑡)|𝑐+𝑖 (𝑡

′)
⟩︀⟩︀(𝑐)

= −𝑖Θ(𝑡− 𝑡′)⟨[𝑐𝑖(𝑡), 𝑐+𝑖 (𝑡
′)]⟩ (5)

and the anticommutator one⟨︀⟨︀
𝑐𝑖(𝑡)|𝑐+𝑖 (𝑡

′)
⟩︀⟩︀(𝑎)

= −𝑖Θ(𝑡− 𝑡′)⟨{𝑐𝑖(𝑡), 𝑐+𝑖 (𝑡
′)}⟩. (6)

The imaginary parts of those Green’s functions de-
termine one-particle spectral densities,

𝜌(𝜔) = − 1

𝜋𝑁

𝑁∑︁
𝑗=1

Im⟨⟨𝑐𝑗 |𝑐+𝑗 ⟩⟩𝜔+𝑖𝜀 =

= − 1

𝜋𝑁

𝑁∑︁
𝑗=1

Im

[︃
1

𝑍

∑︁
𝑝𝑞

𝐴𝑗
𝑝𝑞𝐴

𝑗*
𝑝𝑞

𝑒−𝛽𝜆𝑝−𝜂𝑒−𝛽𝜆𝑞

𝜔−(𝜆𝑞 − 𝜆𝑝) + 𝑖𝜀

]︃
.

(7)
Here, 𝑍 =

∑︀
𝑝 𝑒

−𝛽𝜆𝑝 .
The spectral densities in Eq. (7), which were cal-

culated for the commutator (𝜂 = 1, Eq. (5)) and an-
ticommutator (𝜂 = −1, Eq. (6)) Green’s functions,
have a discrete structure that includes a number of
𝛿-peaks owing to the finite chain size. If the chain size
(the number of sites 𝑁) increases, the 𝛿-peaks are lo-
cated more densely and, at 𝑁 → ∞, form a band
structure. In our calculations, we confined ourselves
to the case 𝑁 = 10. The small parameter Δ was also
introduced to broaden the 𝛿-peaks in accordance with
the Lorentz distribution

𝛿(𝜔) → 1

𝜋

Δ

𝜔2 +Δ2
. (8)

4. Ion Spectral Densities and State Diagrams

Experimental researches of some specific crystals
[34, 35], as well as quantum chemical calculations
[36], enable the correlation constant to be evaluated
as 𝑉 = 3000 ÷ 10000 cm−1. At the same time, the
ion transfer parameter can vary within wide limits,
𝑡 = 40 ÷ 2500 cm−1, depending on the specific ob-
jects. Those facts testify that, in real systems, there
exists a strong correlation between ions, and this cor-
relation substantially affects the structure and energy
spectrum of the system.

We calculated one-particle spectral density (7) in
a wide range of magnitudes for the short-range in-
teraction between ions and at various temperatures

Fig. 2. State diagrams for a one-dimensional ionic conductor
at various modulating field magnitudes 𝐴 = 0 (1 ) and 1 (2 ). In
both cases, 𝑉 = 4, 𝑡 = 1, and 𝛿 = 𝑛− 1/2

and chemical potentials. In particular, in this work,
𝑉/𝑡 = 0, 1, ..., 6. All energy parameters, including
𝑘𝑇 , were normalized by the parameter 𝑡, which was,
hence, considered as an energy unit. By analyzing
the changes in the shape and the character of the
calculated frequency dependent spectral densities ob-
tained while varying the model parameters, we plot-
ted the corresponding state diagram (Fig. 2). The
average occupation number of the state at a given
𝜇 was calculated according to the spectral theorem,
𝑛 =

∫︀∞
−∞

𝜌𝑎(𝜔)d𝜔
e𝛽𝜔+1

, where 𝜌𝑎 is the anticommutator
spectral density (the density of states).

When determining the regions of existence for some
or other system states (phases), we used the fact that
a characteristic feature of the commutator spectral
density in the superfluid (SF) phase is the presence
of a negative branch (𝜔 < 0), which is a continuous
continuation of the positive branch at the point 𝜔 = 0
(see, e.g., work [37]). In the case of the phase with
charge ordering (CDW), this branch, on the contrary,
is separated from the positive one by a gap. Here, the
split of the spectrum into two subbands and the emer-
gence of a modulated state with the doubled lattice
period are observed.

In the so-called Mott insulator (MI) state, the com-
mutator spectral density has a branch of only one
sign. This branch is located at a certain distance from
the point 𝜔 = 0, which is associated with the location
of the chemical potential of particles on the energy
scale. The CDW phase is typical of states with the
half-filling at 𝑇 = 0. In this case, the chemical poten-
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Fig. 3. Commutator one-particle spectral density for various
states of a one-dimensional ionic conductor. 𝑇 = 0, 𝑉 = 4,
𝐴 = 1, 𝑡 = 1, and Δ = 0.25. The chemical potential level
is located at 𝜔 = 0. Panel indices (a to d) coincide with the
notation of positions in the diagram in Fig. 2

tial level is located in the energy gap. If the level goes
down and moves away from the gap, a transition into
the SF phase is observed, with the positive branch
continuously transforming into the negative one at
𝜔 = 0. If the chemical potential level goes down fur-
ther, the negative branch disappears, and a transition
from the superfluid phase to the phase of the Mott
insulator (MI) type takes place, when the chemical
potential is located below the lower subband. In this
state, a certain activation energy is needed to stimu-
late the ion transfer. The commutator spectral den-
sity has only a positive branch at that. A state of the
MI type can also be observed in the case where the
chemical potential is located above the upper sub-
band, and the commutator Green’s function has only
a negative branch.

For the one-dimensional structure under consider-
ation, the CDW, SF, and MI phases described above
and the phase transitions between them exist only at
zero temperature. At 𝑇 ̸= 0, we can distinguish the
regions of existence for the states of the CDW, SF,
and MI types (see Fig. 2) as such in which the forms
of spectral functions characteristic of those phases re-
main approximately as at 𝑇 = 0. In this case, the
transition between the regions is not a true phase
transition, but has a crossover character.

Figure 3 exhibits the commutator spectral densi-
ties at 𝑇 = 0. The panel indices a to d correspond to
the notation of points on the diagram in Fig. 2. The
chemical potential position corresponds to the fre-
quency 𝜔 = 0. For the sake of convenience, the quan-
tity 𝜇′ = 𝜇− 𝑉 was introduced.

Panel a in Fig. 3 is related to the CDW phase,
and panels b and c to the SF one, when the nega-
tive branch of the commutator spectral density trans-
forms at 𝜔 = 0 into the positive one and the gap be-
tween them is absent. Panel d corresponds to the MI
phase; here, the chemical potential is located below
the bottom of the lower subband, and the commu-
tator spectral density has only a positive branch. As
one can see from the state diagram (Fig. 2), if 𝑇 = 0,
the CDW phase exists only in states with half-filling
(𝑛 = 1/2). In this case, −4.1 ≤ 𝜇′ ≤ 4.1 for the pa-
rameter values 𝑉 = 4 and 𝐴 = 1 (at those 𝑉 - and 𝐴-
values, the transition CDW–SF occurs at 𝜇′ = −4.1
and +4.1).

If the temperature grows, the region of existence
for the CDW phase becomes smeared, so that it
can exist not only at 𝑛 = 1/2, and we obtain
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the effect of a temperature-induced transition of the
insulator-conductor type (the so-called Mott tran-
sition). A possibility for this effect to take place
in the objects examined in this work was demon-
strated in work [9]. For a similar system described
by the Fermi statistics, the existence of this effect
was proved with the help of numerical calculations
[38]. The mentioned effect can be illustrated with the
use of temperature-induced variations in the anticom-
mutator one-particle spectral density (the density of
states) (see Fig. 4) calculated on the basis of formula
(7). The gap observed in the spectrum (𝜌𝑎 = 0) at low
temperatures and the half-filling is associated with
the emergence of a charge-ordered state. The latter
originates from the repulsive short-range interaction
between particles, which is responsible for the forma-
tion of the ground state of this type in the system. At
𝑇 ̸= 0, the gap vanishes. On the diagram of states
(Fig. 2), the curves correspond to this crossover tran-
sition and separate regions, in which the forms of the
commutator spectral density 𝜌𝑐 are closer to those
of the function 𝜌𝑐 for the CDW and SF phases, re-
spectively. The same is also valid for the transitions
between the SF and MI phase regions.

An important feature characteristic of the true SF
phase is a divergence in the Fourier transform of
the real part of commutator Green’s function at zero
frequency (𝜔 = 0) and zero wave vector (𝑘 = 0),
i.e. Re 𝐺𝑘=0(𝜔 = 0) → ∞. In the case of the ana-
lyzed finite-chain model,

𝐺𝑘=0(𝜔 = 0) =

=
1

𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

[︃
1

𝑍

∑︁
𝑝𝑞

𝐴𝑖
𝑝𝑞𝐴

𝑗*
𝑝𝑞

𝑒−𝛽𝜆𝑝 − 𝑒−𝛽𝜆𝑞

𝜆𝑝 − 𝜆𝑞 + 𝑖𝜀

]︃
. (9)

A numerical calculation shows that the function
Re 𝐺𝑘=0(𝜔 = 0) has finite values in the SF re-
gion at 𝑇 ̸= 0 (see Fig. 5). This fact confirms that
the SF phase is “nongenuine” here; we may call it
a phase of the superfluid (“SF”) type. The quantity
Re 𝐺𝑘=0(𝜔 = 0), being regarded as a function of the
temperature 𝑇 , diverges only in the limit 𝑇 → 0 for
some intervals of the chemical potential values, which
testifies to an instability of the phase with respect to
the appearance of a Bose-condensate in it. However,
in the case of a higher space dimension (𝑑 = 2 or 3),
the SF phase can exist at 𝑇 ̸= 0 as well.

We calculated the quantity Re 𝐺𝑘=0(𝜔 = 0) for
various values of parameter 𝑉 describing the interac-

Fig. 4. Closure of the gap in the spectrum of a one-
dimensional ionic conductor, as the temperature grows. The
case of the half-filling, 𝑛 = 1/2, 𝜇′ = 0, 𝑉 = 4, 𝐴 = 1, and
𝑡 = 1. The chemical potential level is located at 𝜔 = 0

tion between ions and for various magnitudes of the
modulating field 𝐴. In all cases, a considerable growth
(the maximum) of the function Re 𝐺𝑘=0(𝜔 = 0) in
the “SF” phase region was obtained. However, no pe-
culiarity (the divergence) was observed at 𝑇 ̸= 0, and
the maximum became smeared out as the tempera-
ture increased (see Fig. 5).

Switching-on the modulating field 𝐴 makes the
neighbor positions of ions unequal, and the lattice
becomes partitioned in two sublattices with different
ionic populations. The modulating field expands the
CDW phase region, by simultaneously decreasing the
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Fig. 5. Fourier transform of the real part of commutator
Green’s function at zero frequency (𝜔 = 0) and zero wave
vector (𝑘 = 0), Re 𝐺𝑘=0(𝜔 = 0), for various magnitudes of
the interaction between particles, 𝑉 , and the modulating field,
𝐴. 𝑇 = 0.2 (1 ), 0.5 (2 ), 1 (3 ), 1.5 (4 ), and 2 (5 ). Δ = 1×10−6

Fig. 6. State diagrams for a one-dimensional ionic conductor
in the (𝜇′, 𝑉 ) coordinates in the absence (𝐴 = 0) and presence
(𝐴 = 1) of a modulating field. 𝑇 = 0

SF one. In work [39], the case 𝑇 > 0 was examined. In
this work, the calculations were also carried out for
the case 𝑇 = 0. We obtained diagrams that allow one
to determine the state of the system at 𝑇 = 0 for a
given magnitude of short-range interaction between
ions, 𝑉 , if the modulating field 𝐴 is either switched-
on or -off (Fig. 6). The curve that separates the SF
and MI phases was demonstrated to be a straight line,
i.e. the value of chemical potential at the transition
point is proportional to 𝑉 .

If either the interaction constant 𝑉 or the pa-
rameter 𝐴 grows, the gap in the CDW phase spec-
trum increases. The widening of the gap in the spec-
trum at growing 𝑉 was also obtained in previous
researches. However, this result was obtained in the
case of the Fermi statistics, i.e. in the framework of
the spinless fermion model [10, 38]. We also plotted
state diagrams for various magnitudes of modulating
field 𝐴 (Fig. 7). In contrast to the previous diagrams,
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Fig. 7. State diagrams for a one-dimensional ionic conductor
in the (𝜇′, 𝐴) coordinates in the absence (𝑉 = 0) and presence
(𝑉 = 4) of interaction between ions. 𝑇 = 0

here, for the case 𝑉 = 0, the straight line separates
the CDW and SF phases, whereas the curves that
separate the SF and MI phases are characterized by
a certain curvature.

The width of the existence region for the CDW
phase grows if the magnitude of either the short-range
interaction constant 𝑉 or the modulating field 𝐴 in-
creases. At 𝑉 = 0, the width of this region is pro-
portional to the modulating field magnitude 𝐴 (the
equations describing the lines separating the CDW
and SF phases look like 𝜇′ = 𝐴 and 𝜇′ = −𝐴). In this
context, the diagram exhibited in Fig. 7 for the case
𝑉 = 0 coincides with the exact diagram obtained an-
alytically in a number of works dealing with the one-
dimensional case (see work [40]). In those works, only
the case 𝑉 = 0 was considered, and the diagram was
plotted in coordinates different from ours. The exact
analytical solution can be obtained in this case, by
applying the Jordan–Wigner transformation, which

makes it possible to change from the Hamiltonian of
hard-core bosons to the Hamiltonian of noninteract-
ing spinless fermions. Similar researches were carried
out in work [12].

5. Conclusions

The results of calculations of the one-particle spectral
densities 𝜌𝑐(𝜔) for a finite one-dimensional ionic con-
ductor carried out in the framework of the hard-core
ion model have shown that, depending on the mag-
nitudes of particle chemical potential, short-range in-
teraction constant, and temperature, the form of the
function 𝜌𝑐(𝜔) can change. At 𝑇 = 0, this form cor-
responds to either the charge-ordered (CDW) or the
Mott insulator (MI) phase, or to the so-called super-
fluid (SF) phase with the Bose condensate. A true
CDW phase is realized only at zero temperature and
the half-filling of ionic sites (𝑛 = 1/2). At 𝑇 ̸= 0, the
interphase boundaries become smeared, and the cor-
responding phase transitions have a crossover charac-
ter, i.e. they are not genuine phase transitions. The
state diagram in the plane (𝑇, 𝑛) is plotted, where
the existence regions for the phases of the CDW, MI,
and SF types are indicated.

The repulsive short-range interaction between par-
ticles (𝑉 > 0) is shown to result in the emergence
of a gap in their energy spectrum at the half-filling
of the state. A similar effect also takes place under
the influence of the modulating field 𝐴, which can
be associated with an internal field that appears ow-
ing to the long-range interaction (e.g., in the case of
a quasi-one-dimensional system composed of chains,
the field 𝐴 can emerge as a result of the interaction
between chains). This effect clearly manifests itself at
𝑇 = 0. However, as the temperature grows, the gap
becomes gradually filled and, finally, disappears. The
increase of the interaction constant 𝑉 , as well as the
field 𝐴, makes the gap width wider. At 𝑇 = 0, this
circumstance results in that the region of chemical
potential values, for which the CDW phase exists,
expands.

The Fourier transform of the real part of commu-
tator Green’s function of bosons, Re 𝐺𝑘=0(𝜔 = 0),
which is responsible for the static susceptibility of
ionic subsystem to the action of the field associated
with the creation and annihilation of particles and
which describes the system instability with respect to
the emergence of a Bose condensate in it, reaches its
maximum values in the interval corresponding to the
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superfluid (SF) state. At 𝑇 = 0, those values remain
finite, which is a result of the restriction imposed on
the chain size. On the other hand, as the temperature
grows, the maximum of the function Re 𝐺𝑘=0(𝜔 = 0)
becomes smeared, and the tendency to the mentioned
instability disappears. This is an additional evidence
that the Bose condensate is not formed in the “SF”
region in the one-dimensional case and at 𝑇 ̸= 0, al-
though the spectral density 𝜌𝑐(𝜔) is close by its form
to the function 𝜌𝑐(𝜔) for the true SF phase.
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Р.Я.Стецiв, I.В. Стасюк, О.Воробйов

ЕНЕРГЕТИЧНИЙ СПЕКТР I ДIАГРАМИ
СТАНУ ОДНОВИМIРНОГО IОННОГО ПРОВIДНИКА

Р е з ю м е

Методом точної дiагоналiзацiї розраховано енергетичний
спектр скiнченних одновимiрних iонних провiдникiв з пе-
рiодичними граничними умовами. Iонний провiдник опису-
ється ґратковою моделлю, в якiй частинки пiдлягають “змi-
шанiй” статистицi Паулi. У моделi враховується iонне пере-
несення, взаємодiя мiж сусiднiми iонами, а також модулюю-
че поле. Розраховано одночастинковi спектральнi густини
i отримано дiаграми стану для рiзних температур, рiзних
величин взаємодiї i модулюючого поля. Дослiджено умови
переходу вiд зарядовпорядкованої фази (CDW) до фази з
бозе-конденсатом типу суперфлюїду (SF), яка може бути
аналогом суперiонної фази та до фази типу моттiвського
дiелектрика (MI).
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