
Electromigration and Diffusion Researches

doi: 10.15407/ujpe60.10.1027

A.N. MOROZOVSKA,1 V.V. OBUKHOVSKYI,2 O.V. UDOD,3 S.V. KALININ,4

O. TSELEV 4

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauka Ave., Kyiv 03680, Ukraine; e-mail: anna.n.morozovska@gmail.com)

2 Taras Shevchenko National University of Kyiv, Faculty of Radiophysics
(4, Academician Glushkov Ave., Kyiv 03022, Ukraine)

3 I.M. Frantsevych Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
(3, Krzhyzhanivskyi Str., Kyiv 03142, Ukraine)

4 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
(Oak Ridge, TN 37831)

ELECTROMIGRATION AND DIFFUSION
RESEARCHES IN SCANNING PROBE MICROSCOPY
OF SOLID ELECTROLYTES
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The local mechanico-electrochemical response of solid electrolytes has been simulated numer-
ically and analyzed in the Boltzmann–Planck–Nernst–Einstein approximation with regard for
the Vegard mechanism. The geometry of the problem is selected to be typical of electrochemical
strain microscopy (ESM) experiments. The frequency spectra for various components of the
electrolyte surface displacement and the ESM response depth are calculated, as well as the
variations of donor concentrations. The corresponding comparative analysis is carried out.
K e yw o r d s: electrochemical strain microscopy, Boltzmann–Planck–Nernst–Einstein approx-
imation, drift-diffusion theory, Vegard’s law.

1. Introduction

Strong electromechanical coupling in solid electroly-
tes, which are used in storage batteries, can be ap-
plied to locally detect and visualize processes of lithi-
um deintercalation and diffusion on the nanometer
scale. Hence, it allows the mesoscale mechanisms of
battery operation to be analyzed in detail. The tip
of a scanning probe microscope (SPM) with an ap-
plied electric potential operates as a moving elect-
rocatalytic active probe, which examines the local
electrochemical activity of the electrolyte near its
surface. The probe creates a strongly non-uniform
electric field concentrated in a nano-sized volume
of the material. The electric field changes the local
electrochemical potential of lithium ions on the sur-
face and forces them to intercalate or deintercala-
te. As a result, the local concentration of moving
ions changes owing to the migration (field-induced)
and diffusion (concentration-gradient-induced) mech-
anisms. The distance between certain groups of atoms
(the local molar volume) under the tip also varies.
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The corresponding changes of the molar volume [1, 2]
give rise to local electrochemical deformations owing
to a variation in the concentration of ions. The elec-
trochemical deformation of the solid electrolyte sur-
face is measured by SPM at a level of 2–5 pm.

The contact between the tip and the electrolyte can
be described by the model of a harmonic oscillator,
whose resonance frequency is mainly determined by
the Young modulus of this contact region. Using the
phase-sensitive detection, the resonance amplitude of
the surface displacement measured in nano- or pi-
cometer units can be determined with the help of an
SPM tip, thus providing information about local vari-
ations in the lithium concentration induced by elec-
tric potential changes and, hence, about the lithium
transport. This method, which was called the electro-
chemical strain microscopy (ESM) [3–9], is similar to
the piezoelectric power microscopy applied to ferro-
electric materials and devices [10–12]. The ESM can
reveal volume variations corresponding to the total
lithiation and delithiation in a monoatomic layer or
to the 5–10% variation of lithium concentration in
a space interval of 20 nm [3–9]. Electrochemical re-
actions detected with the help of ESM play an im-
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portant role in the operation mechanisms of mem-
ristive elements such as the electroforming and the
further resistive switching [13,14]. The localization of
an ESM signal at interfaces means that the latter are
responsible for the mechanical stability and the irre-
versible power losses, which points to possible ways
to optimize electrolytic substances.

The hysteresis of the surface displacement ampli-
tude as a function of the pulse voltage is observed
in ESM if the voltage variation frequency is close
to the reciprocal characteristic time of the lithium
diffusion [3–9]. Nucleation electric voltages, which
are determined from the inflection points in the for-
ward and backward curves [15], do not depend on the
tip voltage. Such a behavior reminds rate-indepen-
dent thermodynamically confined nucleation-like phe-
nomena. The available theoretical models of ESM re-
sponses are linear [16–19]. The linear models demon-
strate that the correlation between the redistribu-
tions of ions and Vegard stresses results in the ESM
response in those materials. They correctly describe
its frequency spectrum. However, the observed ferroe-
lectric-like hysteresis loops remain mainly uncompre-
hended. Actually, the thermodynamics of electro-me-
chanically coupled mixed ionic-electronic solid elec-
trolytes is governed by Vegard stresses and the fle-
xoelectric effect. [17].

One- [18] and two-dimensional [16] analytical mo-
dels of the linearized diffusion kinetics in the ESM,
as well as a two-dimensional analytical model that
considers the linearized drift-diffusion kinetics [19],
were developed and brought about elliptic loops with
a “coercive” voltage. However, the kinetics actually is
not such one, since it linearly depends on the applied
voltage.

This research is aimed at a self-consistent two-
dimensional simulation of a local mechanic-elect-
rochemical response of solid electrolytes, by using
the kinetic Boltzmann–Planck–Nernst–Einstein theo-
ry. Such a simulation included the simplest kind of
nonlinearity inherent to the examined system.

2. Motivation of Researches
in the Field of Electrochemical
Strain Microscopy

The efficiencies of power supplies and metal-air bat-
teries are considerably confined by the activation of
redox reactions [3–6, 20]. Contrary to the recognized
role of the reaction kinetics in the processes that

run in solid electrolytes at the nano-sized level, their
main mechanisms remain unexplained, being descri-
bed only by macroscopic researches till now. This
shortcoming in the fundamental understanding con-
strains the development of power supplies [3–6, 20].

The detection of electrochemical deformations
within the ESM method allows direct measurements
to be used, while monitoring the course of reactions
on the nanometer scale, i.e. in volumes that are six to
eight orders of magnitude smaller than those, while
applying the standard electrochemical methods. The
nano-sized probing of the electrochemical deforma-
tion kinetics opens a wide spectrum of capabilities
for researching and testing the mechanisms that are
basic for the operation of fuel cells on the basis of
solid electrolytes [4].

Strong coupling between the applied voltage and
the mechanical stress in a material of power supply
electrodes can also be used to measure the local dein-
tercalation distribution and diffusion of lithium on
the nanometer scale. Hence, it allows one to study
the mechanisms of power supply operation. The vi-
sualization of the lithium ion diffusion on separate
grains and fixed intergrain boundaries is a first nec-
essary step toward the understanding of the role of ex-
tended defects in power losses and a reduction of the
power supply capacity. The relevant measurements
show that the diffusion ability of lithium ions is higher
for certain grains and intergrain boundaries. Hence,
the optimization of the ionic conductivity at inter-
faces between the grains should open a direct way to
the enhancement of the electrochemical efficiency of
those materials [3].

In the ESM, the tip of a scanning probe micro-
scope with the applied voltage operates as a mov-
ing electrocatalyticaly active probe to study the lo-
cal electrochemical activity. The probe concentrates
the electric field in a nano-sized volume of the ma-
terial, and nano-sized surface displacements caused
by the applied potential provide information about
local electrochemical processes. This approach allows
the activation processes of reactions to be directly vi-
sualized. It can be expanded onto a wide spectrum
of materials with the oxygen conductivity, as well as
electrocatalytic materials [4].

3. Formulation of the Problem

In order to simulate the ESM signal, let us consider
the case of mixed ionic-electronic conductivity in an
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electrolytic material with moving ionized donors and
electrons. The corresponding concentration fields are
𝑁+

𝑑 (r) and 𝑛(r), respectively. The donors in the ma-
terial concerned are supposed to be either neutral or
singly ionized. The neutral donors are fixed, whereas
the charged ones can move [21]. The geometry of the
problem used in calculations is illustrated in Fig. 1.

Owing to the axial symmetry of the contact be-
tween the probe tip and the surface, the mathematical
formulation of the problem becomes simpler in cylin-
drical coordinates. The electric potential 𝜙(r) under
the tip can be calculated self-consistently in the qua-
sistatic approximation, as a solution of the boundary
problem(︂
𝜕2

𝜕 𝑧2
+

1

𝜌

𝜕

𝜕 𝜌

(︂
𝜌
𝜕

𝜕𝜌

)︂)︂
𝜙(r) =

= − 𝑞

𝜀0𝜀

(︀
𝑁+

𝑑 (r)− 𝑛(r)
)︀
, (1a)

𝜙(𝜌, 𝑧 =
√︁
𝑅2

0 − 𝜌2, 𝑡) = 𝑉0(𝑡),

𝜕𝜙

𝜕𝑧
(𝜌 > 0, 𝑧 = 0, 𝑡) = 0, 𝜙(𝜌, 𝑧 = ℎ) = 0,

(1b)

where r = {𝑥, 𝑦, 𝑧} is the radius vector, 𝜌 =
√︀
𝑥2 + 𝑦2

is the radius in the polar coordinate system, 𝑞 =
= 1.6 × 10−19 C is the elementary charge, 𝜀0 =
= 8.854 × 10−12 F/m is the electric permittivity of
vacuum, 𝜀 the relative dielectric permittivity of the
electrolyte, ℎ the electrolyte thickness, and 𝑅0 the ra-
dius of the probe tip at its contact with the electrolyte
surface. The boundary conditions correspond to the
case of ESM experiments without the conducting wa-
ter meniscus [22,23], which is formed at the contact of
the probe tip with the surface in the case of increased
humidity of air around the tip and the hydrophilic
contact. A difference between those cases consists in
that, for the ideal tip-surface contact, the contact ra-
dius amounts to 3–10 nm and can be determined, by
using the classical theory of contact interaction, and
the mechanical stresses are determined over the whole
contact region. In the case of a water droplet, the re-
gion of electric contact is much larger (0.1–1 𝜇m),
and the stresses are determined only over the area of
mechanical contact between the tip and the surface.

For a small periodic electric potential 𝑉0(𝑡) ≈
≈ 𝑉0 exp(𝑖𝜔𝑡), it is supposed that the periodic varia-
tions of 𝑁+

𝑑 (r, 𝑡) and 𝑛(r, 𝑡) are induced by the peri-
odic electric potential of the contact, 𝜙(r, 𝑡); however,
the steric limit is not achieved, and the Boltzmann–
Planck–Nernst–Einstein approximation can be ap-

Fig. 1. Typical geometry of the electrochemical strain mi-
croscopy. The boundary conditions are indicated

plied to the currents and the electric potential. The-
refore, a linear drift-diffusion model is used for the
ionic and electron currents:

𝐽𝑑 ≈ 𝐷𝑑∇𝑁+
𝑑 − 𝜂𝑑𝑁

+
𝑑 ∇𝜙, (2a)

𝐽𝑛 ≈ 𝐷𝑛∇𝑛− 𝜂𝑑𝑛∇𝜙. (2b)

Further, it is supposed that the diffusion, 𝐷𝑑,𝑛, and
mobility, 𝜂𝑛,𝑑, coefficients are constant [24,25]. Then,
the Planck–Nernst–Einstein kinetic equations [26,27]
look like

𝜕 𝑁+
𝑑

𝜕 𝑡
+

1

𝑞
div J𝑑 = 0, (3a)

−𝜕 𝑛

𝜕 𝑡
+

1

𝑞
div J𝑛 = 0. (3b)

On the right-hand sides of Eqs. (3), the terms cor-
responding to ionization and recombination are ne-
glected, assuming that the local equilibrium is main-
tained, and the mobility of ionized donors is high
enough. Those terms have to be taken into account
if the donors are fixed.

The boundary conditions for the kinetic equations
(3) are as follows: the tip-surface interface is consid-
ered to be impenetrable for donor ions and, conse-
quently, there are no ionic currents through the in-
terface:

𝐽𝑑𝑧(𝜌, 𝑧 = 0, 𝑡) = 0, 𝐽𝑑𝑧(𝜌, 𝑧 = ℎ, 𝑡) → 0. (4a)

Since we assume that the lateral surfaces of the spec-
imen are located in a dielectric environment, circular
currents are absent. Therefore,

J𝑑(𝜌 → ∞, 𝑡) = 0, J𝑛(𝜌 → ∞, 𝑡) = 0. (4b)
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Parameter Range of possible values Values used for illustration

Contact radius of the probe 𝑅0 1–1000 nm 5 nm
Relative dielectric permittivity 𝜀 1–100 10
Film thickness ℎ 10 nm–100 𝜇m 150 nm
Applied voltage amplitude 𝑉0 0.01–10 V 1 V
Voltage oscillation frequency 𝜔 1 Hz–1 MHz 300 kHz, period 0.333× 10−6 s
Concentrations �̄�+

𝑑 and �̄� 1023–1026 m−3 1.661 mol/m3 (≡1024 m−3)
Donor diffusion coefficient 𝐷𝑑 10−16–10−12 m2/s 10−14 m2/s
Electron diffusion coefficient 𝐷𝑛 𝐷𝑛 ∝ (10–103)𝐷𝑑 10−12 m2/s

Mobilities 𝜂𝑛,𝑑 𝜂𝑛 = 𝑞𝐷𝑛/𝑘B𝑇 4.0091× 10−16 s·mol/kg
𝜂𝑑 = 𝑞𝐷𝑑/𝑘B𝑇 4.0091× 10−18 s·mol/kg

Coefficients in Chang–Yaffe equation 𝑤0,1 0, in the case 𝐽𝑛𝑧(𝜌, 0) = 𝐽𝑛𝑧(𝜌, ℎ) = 0

∞, in the case 𝑛(𝜌, 0, 𝑡) = 𝑛(𝜌, ℎ, 𝑡) = 𝑛0 10−3 m/s

Concentration 𝑛0 1027–1029 m−3 1024 m−3

Poisson’s ratio 𝜈 0.25–3 0.25

Vergard tensor 𝛽𝑖𝑗 0.1–0.01 m3/mol
for simplification, 𝛽11 = 𝛽33 0.1 m3/mol

Density (1–3)× 103 kg/m3 2× 103 kg/m3

The boundary conditions for the electron current are
taken in the Chang–Jaffe linearized form [28]:

𝐽𝑛𝑧(𝜌, 𝑧 = 0) = 𝑤0 (𝑛(𝜌, 𝑧 = 0, 𝑡)− 𝑛0),

𝐽𝑛𝑧(𝜌, 𝑧 = ℎ) = 𝑤1 (𝑛(𝜌, 𝑧 = ℎ, 𝑡)− 𝑛1).
(4c)

The constants 𝑤0,1 are the positive quantities re-
lated to the surface recombination rate of electrons
and holes, respectively [29]. Their specific numerical
values are determined by materials of the electrode
and the studied specimen. If they are infinitely large,
the equilibrium concentration of electrons at the con-
tacts are determined by the electrodes and do not
depend on the applied voltage [30]. Therefore, con-
dition (4c) contains a continuous transition from an
“open” ohmic contact (𝑤 → ∞ ⇒ 𝛿𝑛(𝜌, 0, 𝑡) = 0) to
an interface with a confined kinetics (𝑤 > 0) and to
a completely “blocking” contact (𝑤 = 0).

For the specific case where the chemical contribu-
tion is a dominating mechanism for the emergence
of a mechanical stress, the generalized Hooke law
for a chemically active solid elastic medium includes
stresses caused by a variation of the ionic concentra-
tion 𝛿𝑁+

𝑑 (r, 𝑡) =
(︀
𝑁+

𝑑 (r, 𝑡)− �̄�+
𝑑

)︀
, the mechanical

stress tensor 𝜎𝑖𝑗 , and the elastic strain 𝑢𝑖𝑗 [2, 16]:

𝑢𝑖𝑗(r, 𝑡) = 𝛽𝑖𝑗 𝛿𝑁
+
𝑑 (r, 𝑡) + 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙(r, 𝑡), (5)

where 𝑠𝑖𝑗𝑘𝑙 is the elastic compliance tensor, and 𝛽𝑖𝑗

the Vegard tensor, which is also known as the elastic
dipole.

As a rule, the size of a contact region in the ESM
experiment is considerably smaller than one micron.
The corresponding characteristic resonance frequen-
cies of the material are in the GHz range, which is
much higher than practically important restrictions
imposed on both the dynamics of ions and the ESM-
based detection of localized mechanical vibrations.
This fact allows the quasistatic approximation to be
applied to mechanical phenomena. The general equa-
tion of mechanical equilibrium, 𝜕𝜎𝑖𝑗/𝜕𝜎𝑖𝑗𝜕𝑥𝑗 = 0,
was solved in the quasistatic case. This equation gives
rise to an equation for the vector of mechanical dis-
placement 𝑢𝑖 in the main part of the system,

𝑐𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘

𝜕𝑥𝑗𝜕𝑥𝑙
− 𝑐𝑖𝑗𝑘𝑙 𝛽𝑘𝑙

𝜕𝛿𝑁+
𝑑

𝜕𝑥𝑗
= 0. (6a)

The boundary conditions at the free surface look like(︂
𝑐𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
− 𝑐𝑖𝑗𝑘𝑘 𝛽𝑘𝑙 𝛿𝑁

+
𝑑

)︂
𝑛𝑗

⃒⃒⃒⃒
𝑧=0

= 0, (6b)

where 𝑐𝑖𝑗𝑘𝑙 is the mechanical rigidity tensor, and 𝑛𝑗

are the components of a normal to the surface.
Below, we will confine the consideration to the

transversely isotropic Vegard tensor, 𝛽𝑖𝑗 = 𝛿𝑖𝑗𝛽𝑖𝑖,
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Fig. 2. Time dependences of the applied voltage (a), vertical displacement of the electrolyte (b), and electron (c) and donor (d)
concentrations calculated at various distances from the surface 𝑧 = 0, 2, 4, 6, and 8 Å (indicated by numbers near the curves)
along the probe axis (𝜌 = 0). Distributions of electrons (e) and donors (f ) near the tip-surface contact (𝜌 = 0) at various time
moments (various curves with a time step of 10−6 s). The diffusion coefficient ratio 𝐷𝑛/𝐷𝑑 = 103

with 𝛽11 = 𝛽22 ̸= 𝛽33. The spectrum of surface dis-
placements at the tip-surface contact (𝑧 = 0), which
is induced by the redistribution of moving donors and
can be measured by the SPM electronics, is determi-
ned in the case of elastic-homogeneous half-space by
the formula [31]

𝑢3(𝜌, 0, 𝜔) =

∞∫︁
0

𝑑𝑘𝐽0(𝑘𝜌)𝑘

∞∫︁
0

𝑑𝑧
(︀
𝛽33(1 + 𝑘 𝑧)+

+𝛽11(1 + 2𝜈 − 𝑘 𝑧)
)︀
exp(−𝑘 𝑧)𝛿�̃�+

𝑑 (𝑘, 𝑧, 𝜔). (7)

Here, 𝜈 is Poisson’s ratio, 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦, 𝛿�̃�
+
𝑑 (𝑘, 𝑧, 𝜔)

is the two-dimensional Fourier transform and the fre-

quency spectrum of the deviation field of the ion
concentration 𝛿𝑁+

𝑑 (r, 𝑡), and 𝐽0(𝑥) is the Bessel
function of the zero order. The boundary conditions
𝜎3𝑗(𝑧 = 0, 𝑡) = 0 correspond to a mechanically free
surface at 𝑧 = 0.

4. Self-Consistent Simulation of an ESM
Local Response in Solid Electrolytes with
regard for First-Order Nonlinear Effects

The numerical solution of the system of equations
(1)–(6) was carried out with the help of the soft-
ware package COMSOL Multiphysics for the param-
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Fig. 3. Distribution maps in the (𝑥, 𝑧)-coordinates for the electric potential 𝜙 near the ESM
probe calculated for various time moments 𝑡 = 0.1 (a), 0.35 (b), 0.65 (c), and 0.9 ms (d).
The period of applied alternating voltage is 1 ms

eters quoted in Table. A potential periodic in time,
𝑉0(𝑡) ∝ sin(𝜔𝑡), and modulated by a smooth func-
tion similar to tanh in order to minimize the excita-
tion of vibrations of the system during the simula-
tion was applied to the probe. The transient process
is supposed to terminate, and Figs. 3 to 6 illustrate
only steady-state vibrations in the case of ion- and
electron-blocking electrodes.

The results of numerical simulation are depicted
in Fig. 2. The applied voltage 𝑉0(𝑡) modulated by
a tanh-shaped function is shown in Fig. 2, a. It is
worth emphasizing that the electric potential 𝜙(𝑡) is
almost identical to 𝑉0(𝑡) in a thin layer under the elec-
trolyte surface. However, the vertical mechanical dis-
placement of the electrolyte (actually, this is an ESM
signal) and the concentration of donors tend rather
quickly to the corresponding bulk values within the
limits of this layer (see Figs. 2, b and c). A compari-
son of Fig. 2, c and d shows that electrons and donors
oscillate in antiphase, whereas the oscillations of the
donor concentration are cophased with the vertical
displacement (but in antiphase with the applied volt-
age). The difference between the penetration depths
of electron and donor concentration waves is deter-
mined by the difference between the electron and

donor diffusion coefficients, which are related, in turn,
to the corresponding diffusion lengths proportional to√
𝜔𝐷𝑖 (cf. Figs. 2, e and f ).
In Fig. 3, the distribution of the electric poten-

tial under the ESM probe at various time moments
within a period of the applied voltage is shown. At the
initial moment, the value of electric potential under
the probe equals 60 mV (Fig. 3, a). After a quarter
period, the maximum value of the potential reaches
80 mV (Fig. 3, b). During the next 0.3 ms, the elec-
tric potential under the probe decreases to −80 mV
(Fig. 3, c). At the end of the period, the potential
grows to −60 mV (Fig. 3, d).

In Fig. 4, the distribution of the electron concentra-
tion at various time moments within a period of the
applied voltage is shown. At the initial moment, the
electron concentration under the ESM probe equals
2 mol/m3 (Fig. 4, a). Then it grows by 10% as a result
of the electric potential increase (Fig. 4, b). When the
potential decreases, the electron concentration near
the probe falls down to 1.26 mol/m3 (Fig. 4, c). At the
end of the applied voltage period, the electron con-
centration starts to grow to 1.33 mol/m3 (Fig. 4, d).

The distribution of the ion concentration near the
ESM probe at various time moments is depicted in
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Fig. 4. The same as in Fig. 3, but for the electron concentration 𝑛

Fig. 5. The same as in Fig. 3, but for the ion concentration 𝑁+
𝑑

Fig. 5. At first, the maximum concentration of ions
under the probe equals 1.38 mol/m3 (Fig. 5, a). Du-
ring the first part of the period, it decreases by 15%
(Fig. 5, b); then it increases to 2.17 mol/m3, when
the electric potential decreases (Fig. 5, c). At the last

moment, the ion concentration near the probe falls
down to 2.14 mol/m3 (Fig. 5, d).

The evolution of the distribution of the vertical
displacement 𝑢3(𝜌, 𝑧) near the ESM probe is illus-
trated in Fig. 6. At the initial time moment, the ver-
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Fig. 6. The same as in Fig. 3, but for the vertical displacement 𝑢3

Fig. 7. Dependences of the ESM response depth on the ap-
plied voltage frequency 𝑓 for ratios 𝐷𝑛/𝐷𝑑 = 102 and 104. The
diffusion coefficient for electrons equals 𝐷𝑛 = 10−12, and the
voltage amplitude is 10 mV

tical displacement under the probe equals −0.11 nm
(Fig. 6, a). Then, it decreases further to −0.25 nm
due to the reduction of the ion concentration by
15% (Fig. 6, b). Afterward, it grows to 0.18 nm fol-
lowing the ion concentration growth to 2.17 mol/m3

(Fig. 6, c). At the end of the period, the vertical dis-
placement grows by 33% and ultimately equals 0
24 nm, which corresponds to an ion concentration
of 2.14 mol/m3 (Fig. 6, d). While calculating the po-
tential and the motion of free carriers, this small dis-
placement of the surface – it is at least an order of
magnitude smaller than the thickness of the layer, in
which carriers undergo a substantial influence of the
probe field – was not taken into account.

We also analyzed the properties of the ESM re-
sponse depth as a function of the frequency 𝑓 of the
alternating voltage and the variation of the donor dif-
fusion coefficient 𝐷𝑑. Typical results are exhibited in
Fig. 7 for frequencies of 0.1 Hz–1 MHz. At frequen-
cies lower than 10 Hz, the numerical convergence was
obtained, only when the voltage amplitude 𝑉0 was
reduced (by the way, this result agrees with the di-
vergence in the static limit predicted theoretically
in work [19]). The frequency spectra of the ESM re-
sponse depth 𝐿 obey the law 𝐿(𝑓) ∝ 1/

√
𝑓 at high

frequencies, irrespective of the ratio 𝐷𝑛/𝐷𝑑. As was
expected, the low-frequency static limit 𝑢3 does not
depend on the transport characteristics such as the
diffusion coefficients and their ratio. The static limit
𝑢3 is determined by the change of the total electric
charge of ions [17].
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5. Conclusions

An additional module to the software package Com-
sol Multiphysics has been developed and used to self-
consistently simulate the SPM local response (the lo-
cal displacement of the electrolyte surface) in solid
electrolytes with regard for nonlinear effects, by us-
ing the Boltzmann–Planck–Nernst–Einstein approxi-
mation and the Vegard mechanism. Vegard deforma-
tions caused by the migration of ions are shown to
really stimulate the elastic displacement of the elec-
trolyte surface, which can be directly measured by the
SPM. It is demonstrated that the frequency spectrum
of both vertical displacement and response depth is
saturated at low frequencies of the electric field ap-
plied to the SPM probe and satisfies a power law at
high ones. It is shown that the SPM local response is
not proportional to the average deviation of the donor
concentration. In the case of low electric fields, there
is a constant phase shift between the SPM response
and the voltage applied to the probe. The results of
the nonlinear theory agree well with those obtained in
the specific case of low electric fields in the framework
of the linear drift-diffusion theory.
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Г.М.Moрозовська, В.В.Oбуховський,
О.В.Удод, С.В.Kaлiнiн, О.Целев

ДОСЛIДЖЕННЯ ЕЛЕКТРОМIГРАЦIЇ
ТА ДИФУЗIЇ В СКАНУЮЧIЙ ЗОНДОВIЙ
МIКРОСКОПIЇ ТВЕРДИХ ЕЛЕКТРОЛIТIВ

Р е з ю м е

Проведено чисельне моделювання та аналiз локального ме-
хано-електро-хiмiчного вiдгуку твердих електролiтiв в на-
ближеннi Больцмана–Планка–Нернста–Ейнштейна з ура-
хуванням вегардiвського механiзму. Розрахована геоме-
трiя є типовою для експериментiв у галузi скануючої зон-
дової мiкроскопiї електрохiмiчних деформацiй (СЗМЕД).
Розраховано частотнi спектри рiзних компонент змiщен-
ня поверхнi електролiту та глибини вiдгуку СЗМЕД, а та-
кож змiни концентрацiй донорiв, i проведено їх порiвняль-
ний аналiз.
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