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A possibility to reveal the entanglement in generalized 𝑛-qubit two-parameter GHZ states, as
well as in any 𝑛-qubit states, with the help of the Mermin and Ardehali inequalities from
the collection generally called the Mermin–Ardehali–Belinskii–Klyshko inequalities has been
studied. Formulas for the calculation of the Mermin and Ardehali correlation functions in any
quantum 𝑛-qubit states are derived, and criteria of the violation of corresponding inequalities
by specific states are obtained. A set of states that are absolutely insensitive to the Mermin and
Ardehali operators is revealed. Modified Mermin and Ardehali operators are proposed, the set
of which makes it possible to extend the class of 𝑛-qubit states, in which quantum correlations
can be revealed.
K e yw o r d s: quantum entanglement, entanglement criteria.

1. Introduction

The multiparticle entanglement of quantum states
plays an important role in both the conceptual prob-
lems of quantum-mechanical theory and the practi-
cal issues of quantum computer science, in particu-
lar, for quantum calculations, quantum cryptography,
and quantum teleportation. The multiparticle entan-
glement has a complicated structure and, hence, is a
difficult object to be studied. Numerous works were
devoted to this topic in recent years. However, the
creation of the theory of multiparticle entanglement
still remains at an early stage. Till now, the entangle-
ment structure has been analyzed in detail only for
a few special cases of confined quantum-mechanical
systems [1,2]. An interested reader can find references
to papers dealing with the problem of multiparticle
entanglement in works [3–5], as an example.

One of the important research directions in the
theory of multiparticle entanglement is the construc-
tion of correlation functions and analogs of Bell in-
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equalities for many-particle systems, which could be
useful in the detection, both theoretically and ex-
perimentally, of the presence of the entanglement in
quantum-mechanical systems. According to the Gisin
theorem [6, 7], any pure two-particle entangled state
violates the Bell inequality for a two-particle corre-
lation function in the Clauser–Horne–Shimony–Holt
(CHSH) form [8].

In work [9], two theorems, which generalize the
Gisin theorem to the case of three-qubit systems, were
formulated.

∙ Theorem 1. All generalized Greenberger–Horne–
Zeilinger (GHZ) states of three-qubit systems violate
the Bell inequalities for probabilities.

∙ Theorem 2. All pure two-particle entangled states
of three-qubit systems violate the Bell inequalities for
probabilities.

In order to generalize the Bell CHSH inequality
to the case of multiqubit quantum systems, a set of
inequalities of the same type was proposed [10–12].
They were called the Mermin–Ardehali–Belinskii–
Klyshko (MABK) inequalities. An advantage of the
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MABK inequalities consists in that their violation by
𝑛-particle GHZ states [13] grows exponentially with
an increase of the number of qubits in the system,
𝑛, thereby demonstrating that, in the general case,
there is no restriction on the ratio demonstrating how
much the magnitude of quantum correlations can ex-
ceed the limiting values of correlations calculated in
the framework of the local realism theory. This prop-
erty is of large importance, because the experimental
testing of the violations of MABK inequalities would
ultimately resolve the issue concerning the ground-
lessness of the so-called “realistic local theories with
latent parameters”.

While attempting to apply the MABK inequalities
to many-qubit systems, Scarani and Gisin [14] unex-
pectedly found that the generalized GHZ states

|Ψ⟩ = cos𝛼|00 ... 0⟩+ sin𝛼|11 ... 1⟩ (1)

do not violate the MABK inequalities, if the param-
eter 𝛼 satisfies the condition sin 2𝛼 ≤ 1√

2𝑛−1
. This

result was obtained numerically for 𝑛 = 3, 4, and 5;
and an assumption was made that it should also be
true for 𝑛 > 5. The result obtained seemed to be un-
expected, because state (1) with 𝑛 = 2 violates the
CHSH inequalities at all allowed 𝛼-values. On the ba-
sis of this fact, Scarani and Gisin drew conclusion that
the MABK inequalities – moreover, inequalities with
two possible measurement values for every qubit – are
not a natural generalization of the CHSH inequalities
to the case of systems with the qubit number 𝑛 > 2.

In this work, we come back to the MABK inequal-
ities in order to ultimately divide all pure 𝑛-qubit
states into two groups: the states that violate the
MABK inequalities and the states that may probably
be entangled, but do not violate them. Using a simple
transparent formalism for the description of the oper-
ators of corresponding correlation functions, we study
firstly the class of generalized GHZ states. Then, we
extend our analysis on any 𝑛-qubit states. In so doing,
under the term “generalized GHZ states”, we under-
stand not one-parameter states (1), but a wider class
of two-parameter states

|𝜒⟩ = cos
Θ

2
|00 ... 0⟩+ 𝑒𝑖𝜑 sin

Θ

2
|11 ... 1⟩

or, equivalently,

|𝜒⟩ = cos
Θ

2
| ↑↑ ... ↑⟩+ 𝑒𝑖𝜑 sin

Θ

2
| ↓↓ ... ↓⟩. (2)

The state parametrization ([2]) is similar to that of
one-qubit states, in which every pair value (Θ, 𝜑)
corresponds to a point on the Bloch sphere. State
(2) is often called the “logic qubit” in the theory
of error correction at the qubit passage in quantum
channels.

Generally speaking about the MABK inequalities,
we will study the Mermin inequality in the form pro-
posed in work [10], as well as the inequality pro-
posed by Ardehali [11]. Those inequalities are simi-
lar to each other, although they are different by the
corresponding specific expressions for the operators
of correlation functions and the forms of GHZ states,
which they will be applied to.

Our task consists in the following: on the basis of
quantum-mechanical theory,

1) to order the structure of operators of the Mermin
and Ardehali correlation functions and to derive the
results in the analytic form;

2) to calculate the values of the Mermin and
Ardehali correlation functions in generalized GHZ
states [2];

3) to compare the obtained results with the results
of calculations carried out in the framework of the
so-called local realism theory and to clarify, at which
values of the parameters Θ and 𝜑, as well as to what
extent, the corresponding inequalities are violated;

4) to repeat analogous researches in the case where
any 𝑛-qubit states rather than states (2) are con-
sidered.

In essence, the Mermin or Ardehali correlation
function determines the planning of an experiment
aimed at the registration of particle states. Therefore,
our calculations should answer the following question:
Can such experiments reveal, in principle, the pres-
ence or absence of the entanglement in a prepared
many-qubit quantum state?

Concerning each of the Bell inequality proposed
for many-qubit systems, the attempt to obtain an
irrefragable answer to the question “What can and
what cannot the operator of correlation function (the
operator 𝐴) for the corresponding inequality reveal?”
is quite natural. More specifically:

∙ Is there a simple criterion to determine, which
states from the whole set of multiqubit states violate
the given inequality and which do not? Furthermore,
if the analyzed state violates the inequality, what is
the degree of this violation?
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∙ Is it possible to reveal a class of wave functions
for qubits, for which the operator 𝐴 cannot reveal
correlations, although the latter do exist?

∙ Is it possible to indicate those states, which vio-
late the inequality as much as possible?
∙ Can the given inequality be considered as a gen-

eralization of the Bell inequality in the CHSH form
to many-qubit systems?

∙ Full answers to the questions formulated above
will allow conclusions to be made concerning the ex-
pediency of the application of the corresponding in-
equality to specific many-qubit systems.

2. Mermin Inequality

In his work [10], N.D. Mermin proposed a general-
ization of the Bell inequality for a system of 𝑛 par-
ticles with the spin 𝑠 = 1

2 . He proved that quantum
mechanics violates this inequality, with the violation
degree growing exponentially with the number of par-
ticles in the system for GHZ states. The state of a
𝑛-qubit quantum system proposed by Mermin looks
like

|Φ1⟩ =
1√
2
(| ↑↑ ... ↑⟩+ 𝑖| ↓↓ ... ↓⟩) (3)

or, in a more modern notation,

|Φ1⟩ =
1√
2
(|00 ...0⟩+ 𝑖|11 ... 1⟩).

State (3) is a special case of state (2) for the parame-
ters Θ = 𝜋

2 and 𝜑 = 𝜋
2 . On the Bloch sphere, this is a

point, where the sphere is intersected by the axis 𝑂𝑦.
In quantum mechanics, the correlation function in

the Mermin inequality ⟨𝐴⟩ < 1 corresponds to the
Hermitian operator

𝐴 =
1

2𝑖

⎧⎨⎩
𝑛∏︁

𝑗=1

(𝜎𝑗
𝑥 + 𝑖𝜎𝑗

𝑦)−
𝑛∏︁

𝑗=1

(𝜎𝑗
𝑥 − 𝑖𝜎𝑗

𝑦)

⎫⎬⎭, (4)

where 𝜎𝑥 and 𝜎𝑦 are the Pauli operators, and the
superscript 𝑗 enumerates qubits (particles).

In terms of a real experiment, Mermin describes the
situation as follows [10]: 𝑛 particles fly away from
a common source, in which the quantum system of
particles has been prepared in state (3). The state of
each particle is considered in its own coordinate sys-
tem, where the axis 𝑍 can be taken along the particle

motion direction, whereas the axes 𝑋 and 𝑌 have ar-
bitrary directions orthogonal to each other and to the
particle motion direction (one may consider that the
state of each particle is examined in its arbitrary own
Cartesian coordinate system). For each particle, there
is a device that measures the value of spin projection
on the axis 𝑋 or 𝑌 . The results of measurements are
used to calculate the correlation function, which cor-
responds to operator (4) in quantum mechanics.

Mermin showed [10] that, in the framework of the
local realism theory, the absolute value of correlation
function 𝐹 satisfies the inequality

𝐹 ≤ 𝐹max =

{︂
2

𝑛
2 if 𝑛 is even,

2
𝑛−1
2 if 𝑛 is odd.

At the same time, the calculation carried out accord-
ing to the rules of quantum-mechanical theory brings
about the value

𝐹Φ1 = |⟨Φ1|𝐴|Φ1⟩| = 2𝑛−1.

Therefore, for all 𝑛 > 2, the inequality 𝐹Φ1
> 𝐹max

takes place, and the ratio between those quantities,

𝐾 =
𝐹Φ1

𝐹max
=

{︂
2

𝑛
2 −1 if 𝑛 is even,

2
𝑛−1
2 if 𝑛 is odd,

exponentially grows with the increase of 𝑛.
In this work, Mermin’s results obtained for the 𝐹 -

and 𝐹max-values are taken as a fact. Below, they are
compared with the results obtained in the framework
of quantum mechanics.

In order to calculate the correlation function in
the generalized GHZ and arbitrary states, as well as
to make expressions more compact and calculations
more convenient, let us introduce the following nota-
tions:

𝜎+ = 𝜎𝑥 + 𝑖𝜎𝑦, 𝜎− = 𝜎𝑥 − 𝑖𝜎𝑦,

Σ+ =

𝑛∏︁
𝑗=1

𝜎𝑗
+, Σ− =

∏︀𝑛
𝑗=1 𝜎

𝑗
−,

| ⇑⟩ = | ↑↑ ... ↑⟩, | ⇓⟩ = | ↓↓ ... ↓⟩.

Note that the orthonormal character of the | ↑⟩ and
| ↓⟩ states gives rise to the orthonormal character of
the | ⇑⟩ and | ⇓⟩ states:

⟨⇑ | ⇑⟩ = ⟨⇓ | ⇓⟩ = 1, ⟨⇓ | ⇑⟩ = ⟨⇑ | ⇓⟩ = 0.
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In terms of new notations, the state |Φ1⟩ [Eq. (3)] and
the operator 𝐴 [Eq. (4)] look like

|Φ1⟩ =
1√
2
(| ⇑⟩+ 𝑖| ⇓⟩),

𝐴 =
1

2𝑖
(Σ+ − Σ−).

From the properties of the operators 𝜎+ and 𝜎−,

𝜎+| ↑⟩ = 0, 𝜎−| ↑⟩ = 2| ↓⟩,

𝜎+| ↓⟩ = 2| ↑⟩, 𝜎−| ↓⟩ = 0,

we obtain that

Σ+| ⇑⟩ =
𝑛∏︁

𝑗=1

(𝜎𝑗
+| ↑𝑗⟩) = 0,

Σ+| ⇓⟩ =
𝑛∏︁

𝑗=1

(𝜎𝑗
+| ↓𝑗⟩) = 2𝑛| ⇑⟩,

Σ−| ⇑⟩ = 2𝑛| ⇓⟩, Σ−| ⇓⟩ = 0.

Now, it is easy to show that |Φ1⟩ is an eigenvector
of the operator 𝐴 and corresponds to the eigenvalue
𝜆 = 2𝑛−1:

𝐴|Φ1⟩ =
1

2𝑖
(Σ+ − Σ−)

1√
2
(| ⇑⟩+ 𝑖| ⇓⟩) =

=
1

2
√
2
(Σ+| ⇓⟩+ 𝑖Σ−| ⇑⟩) = 2𝑛−1|Φ1⟩.

Hence, the corresponding correlation function in
the state Φ1⟩ equals

|𝐹Φ1 | = |⟨Φ1|𝐴|Φ1⟩| = 2𝑛−1,

which coincides with the result obtained by Mermin
in a different way.

One can easily get convinced that the state

|Φ2⟩ =
1√
2
(| ⇑⟩ − 𝑖| ⇓⟩)

is also an eigenvector of the operator 𝐴 and corre-
sponds to the eigenvalue 𝜆 = −2𝑛−1:

𝐴|Φ2⟩ = −2𝑛−1|Φ2⟩

so that

|𝐹Φ2
| = |⟨Φ2|𝐴|Φ2⟩| = 2𝑛−1.

Now, let us consider the average value of the oper-
ator 𝐴 in an arbitrary generalized GHZ state (2):

𝐹𝜒 = 𝐴𝜒 = ⟨𝜒|𝐴|𝜒⟩ =

= (cos
Θ

2
⟨⇑ |+ 𝑒−𝑖𝜑 sin

Θ

2
⟨⇓ |) 1

2𝑖
(Σ+ − Σ−)×

× (cos
Θ

2
| ⇑⟩+ 𝑒𝑖𝜑 sin

Θ

2
| ⇓⟩) = 2𝑛−1 sinΘ sin𝜑. (5)

The obtained general expression gives the separate
variants obtained above:

at Θ = 𝜋
2 and 𝜑 = 𝜋

2 ,

|𝜒⟩ → |Φ1⟩, 𝐹𝜒 → 𝐹Φ1 = 2𝑛−1;

and, at Θ = 𝜋
2 and 𝜑 = 3𝜋

2 ,

|𝜒⟩ → |Φ2⟩, 𝐹𝜒 → 𝐹Φ2
= −2𝑛−1.

Now, let us consider the GHZ states:

|𝜒1⟩ =
1√
2
(| ⇑⟩+ | ⇓⟩),

|𝜒2⟩ =
1√
2
(| ⇑⟩ − | ⇓⟩).

They are special cases of state (2) and correspond
to the parameters (Θ1 = 𝜋

2 , 𝜑1 = 0) and (Θ = 𝜋
2 ,

𝜑2 = 𝜋), respectively. Hence, Eq. (5) yields

𝐹𝜒1 = ⟨𝜒1|𝐴|𝜒1⟩ = 2𝑛−1 sin
𝜋

2
sin 0 = 0,

𝐹𝜒2
= ⟨𝜒2|𝐴|𝜒2⟩ = 2𝑛−1 sin

𝜋

2
sin𝜋 = 0.

The value of 𝐹 also equals zero for all Θ-values, if
𝜑 = 0 or 𝜋.

Now, the first conclusions can be drawn:
1. The quantum-mechanical values of the Mermin

correlation function in the generalized GHZ state (2)
are determined by formula (5).

2. In the class of all generalized GHZ states, the
Mermin correlation function is maximum by the ab-
solute value for the states

|Φ1⟩ =
1√
2
(| ⇑⟩+ 𝑖| ⇓⟩),

|Φ2⟩ =
1√
2
(| ⇑⟩ − 𝑖| ⇓⟩).

3. The Mermin operator is absolutely insensitive
to the correlations in states (2) with 𝜑 = 0 or 𝜋.
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For state (2), the domain of Θ- and 𝜑-values, for
which the Mermin inequality is not obeyed, is deter-
mined by the inequalities

|sinΘ sin𝜑| > 1√
2𝑛−1

if 𝑛 is odd,

|sinΘ sin𝜑| > 1√
2𝑛−2

if 𝑛 is even.
(6)

One should pay attention that, for two 𝑛-values that
differ from each other by unity, e.g., 𝑛1 = 2𝑘− 1 and
𝑛2 = 2𝑘, inequality (6) takes the same form:

|sinΘ sin𝜑| > 1√
22(𝑘−1)

.

For example, for 𝑛 = 3 and 4, inequalities (6) are the
same:
|sinΘ sin𝜑| > 1

2
.

Let the point 𝑀 on the Bloch sphere be determined
by its Cartesian coordinates {𝑥𝑚, 𝑦𝑚, 𝑧𝑚}. Then,
from Eq. (6), it follows that the Mermin inequality
becomes violated at

|𝑦𝑚| > 1√
2𝑛−1

if 𝑛 is odd,

|𝑦𝑚| > 1√
2𝑛−2

if 𝑛 is even.

In other words, in the case of odd 𝑛, the planes
𝑦𝑚 = 1√

2𝑛−1
and 𝑦𝑚 = − 1√

2𝑛−1
cut off regions from

the Bloch sphere, and the points in those regions
correspond to states (2) that violate the Mermin in-
equality. For even 𝑛, this role is played by the planes
𝑦𝑚 = 1√

2𝑛−2
and 𝑦𝑚 = − 1√

2𝑛−2
.

Figures 1 to 3 demonstrate the corresponding re-
gions on the Bloch sphere for 𝑛 = 3 and 4 (Fig. 1), 5
and 6 (Fig. 2), and 9 and 10 (Fig. 3). A comparison of
the figures makes it evident that the distinguished re-
gions increase with the growth of 𝑛, so that the whole
Bloch sphere becomes filled at 𝑛 → ∞.

Let us express the generalized GHZ states in the
form

|𝜒⟩ = 𝛼| ⇑⟩+ 𝛽| ⇓⟩, |𝛼|2 + |𝛽|2 = 1, (7)

where the coefficient 𝛼 is considered to be a real num-
ber. Then the correlation function looks like

𝐹𝜒 = ⟨𝜒|𝐴|𝜒⟩ = 2𝑛𝛼 Im(𝛽).

Fig. 1. Regions on the Bloch sphere, where the corresponding
states violate the Mermin inequality for the case of 3 and 4
qubits

Fig. 2. The same as in Fig. 1, but for the case of 5 and 6
qubits

Hence, we obtain that 𝐹𝜒 is distinct from zero, only
if the parameter 𝛽 has an imaginary part.

Let us consider a more general situation. Let an ar-
bitrary 𝑛-qubit state |Ψ⟩ be given. What is the value
𝐹Ψ = ⟨Ψ|𝐴|Ψ⟩ of the Mermin correlation function in
this state? Does this state violate the Mermin in-
equality?

In the 2𝑛-dimensional Hilbert space of 𝑛-qubit
states, let us choose a basis, each state of which is
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Fig. 3. The same as in Fig. 1, but for the case of 9 and 10
qubits

the product of one-qubit states | ↑⟩ and | ↓⟩ (or |0⟩
and |1⟩):

|𝜉1⟩ = | ↑↑ ... ↑↑⟩,
|𝜉2⟩ = | ↑↑ ... ↑↓⟩,
|𝜉3⟩ = | ↑↑ ... ↓↑⟩,
...
|𝜉2𝑛⟩ = | ↓↓ ... ↓↓⟩

or

|𝜉1⟩ = |00 ... 00⟩,
|𝜉2⟩ = |00 ... 01⟩,
|𝜉3⟩ = |00 ... 10⟩,
...
|𝜉2𝑛⟩ = |11 ... 11⟩.

This basis is usually called the standard or compu-
tational basis. The expansion of an arbitrary vector
|Ψ⟩ describing an 𝑛-qubit state in this complete basis
can be presented in the form

|Ψ⟩ = 𝑎|𝜒⟩+ 𝑏|�̃�⟩, (8)

where

|𝜒⟩ = 𝛼| ↑↑ ... ↑⟩+ 𝛽| ↓↓ ... ↓⟩ = 𝛼| ⇑⟩+ 𝛽| ⇓⟩,

|𝛼|2 + |𝛽|2 = 1,
(9)

and

|�̃�⟩ =
2𝑛−1∑︁
𝑖=2

𝛾𝑖|𝜉𝑖⟩,
2𝑛−1∑︁
𝑖=2

|𝛾𝑖|2 = 1.

If |𝑎|2 + |𝑏|2 = 1, then |Ψ⟩ is normalized to unity. In
each basis state |𝜉𝑖⟩ (here, 𝑖 = 2, 3, ..., 2𝑛 − 1), the
“spin projection” of at least one particle is opposite
to the “spin projections” of other particles. As a con-
sequence, we have

Σ+|𝜉𝑖⟩ = 0, Σ−|𝜉𝑖⟩ = 0, 𝑖 = 2, 3, ..., 2𝑛 − 1.

Therefore,

Σ+|�̃�⟩ = Σ−|�̃�⟩ = 𝐴|�̃�⟩ = 0.

Then we evidently obtain that

𝐴|Ψ⟩ = 𝑎𝐴|𝜒⟩

and

𝐹Ψ = ⟨Ψ|𝐴|Ψ⟩ = |𝑎|2⟨𝜒|𝐴|𝜒⟩.

Expressing the vector |𝜒⟩ in form (2), we have

𝐹Ψ = |𝑎|22𝑛−1 sinΘ sin𝜑, 𝑎 = ⟨𝜒|Ψ⟩.

The state |Ψ⟩ can also be presented in the form

|Ψ⟩ = 𝑎1| ⇑⟩+ 𝑎2| ⇓⟩+ 𝑏|�̃�⟩,

where

𝑎1 = ⟨⇑ |Ψ⟩ = |𝑎1|𝑒𝑖𝜑1 , 𝑎2 = ⟨⇓ |Ψ⟩ = |𝑎2|𝑒𝑖𝜑2 . (10)

Then

|Ψ⟩ = 𝑒𝑖𝜑1(|𝑎1| · | ⇑⟩+ 𝑒𝑖(𝜑2−𝜑1)|𝑎2| · | ⇓⟩) + 𝑏|�̃�⟩. (11)

A comparison of Eqs. (11) and (8) with regard for
Eqs. (2), (9), and (10) allows the following relations
between various parameters to be written down:

𝜑 = 𝜑2 − 𝜑1, 𝑎 = 𝑒𝑖𝜑1
√︀

|𝑎1|2 + |𝑎2|2,

𝛼 =
|𝑎1|√︀

|𝑎1|2 + |𝑎2|2
, 𝛽 = 𝑒𝑖𝜑

|𝑎2|√︀
|𝑎1|2 + |𝑎2|2

,

cos
Θ

2
=

|𝑎1|√︀
|𝑎1|2 + |𝑎2|2

, sin
Θ

2
=

|𝑎2|√︀
|𝑎1|2 + |𝑎2|2

,

sinΘ =
2|𝑎1𝑎2|

|𝑎1|2 + |𝑎2|2
.

Finally, let us propose a simple algorithm for the
calculation of the Mermin correlation function for an
arbitrary vector of the 𝑛-qubit state |Ψ⟩:

1. For the given |Ψ⟩, we find 𝑎1 = ⟨⇑ |Ψ⟩ and 𝑎2 =
⟨⇓ |Ψ⟩.

2. Then we determine |𝑎1|, |𝑎2|, 𝜑1 = arg(𝑎1), 𝜑2 =
arg(𝑎2), and 𝜑 = 𝜑1 − 𝜑2.

3. Afterward, we obtain sinΘ = 2|𝑎1𝑎2|
|𝑎1|2+|𝑎2|2 .

4. Finally, we calculate

𝐹Ψ = ⟨Ψ|𝐴|Ψ⟩ = (|𝑎1|2 + |𝑎2|2)2𝑛−1 sinΘ sin𝜑 =

= 2𝑛|𝑎1𝑎2| sin𝜑.
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In this case, the criterion that the state |Ψ⟩ violates
the Mermin inequality looks like⃒⃒⃒⃒
⃒ 𝐹Ψ

𝐹max

⃒⃒⃒⃒
⃒ > 1 ⇒

{︂
2

𝑛+1
2 |𝑎1𝑎2 sin𝜑| > 1 if 𝑛 is odd,

2
𝑛
2 |𝑎1𝑎2 sin𝜑| > 1 if 𝑛 is even.

(12)

The obtained relations completely resolve the prob-
lem about a possibility to reveal the entanglement (or
non-locality) in 𝑛-qubit systems with the use of the
Mermin inequality. From Eq. (12), it follows that, if
𝑛 is large enough, every state |Ψ⟩ with 𝜑 ̸= 0 or 𝜋,
but simultaneously with 𝑎1 ̸= 0 and 𝑎2 ̸= 0, violates
the Mermin inequality. If at least one of the equali-
ties 𝜑 = 0, 𝜑 = 𝜋, 𝑎1 = 0, or 𝑎2 = 0 takes place, the
Mermin operator (4) cannot reveal correlations. Of
all 𝑛-qubit states, the states |Φ1⟩ and |Φ2⟩ violate the
Mermin inequality to the largest extent. If the state
|Ψ⟩ does not violate the Mermin inequality, this fact
does not testify that it is free of entanglement. This is
only the evidence that the Mermin operator 𝐴 cannot
reveal the presence or absence of the entanglement in
this state in principle.

3. Ardehali Inequality

An inequality for many-qubit systems was proposed
in Ardehali’s work [11]. It is similar to the Mermin
equality considered in the previous section. Owing to
this similarity, some details will be omitted in this
section to avoid repetitions. Nevertheless, the nota-
tions from the previous section will be retained. Our
purpose is also to find violation criteria for the Arde-
hali inequality: first, in the class of generalized GHZ
states, and then for an arbitrary 𝑛-qubit state.

The operator of the 𝑛-qubit Ardehali correlation
function looks like

𝐴 = 𝐴1 +𝐴2,

where

𝐴1 = (−𝜎1
𝑥𝜎

2
𝑥𝜎

3
𝑥 ... 𝜎

𝑛−1
𝑥 + 𝜎1

𝑦𝜎
2
𝑦𝜎

3
𝑥 ... 𝜎

𝑛−1
𝑥 + ...−

−𝜎1
𝑦𝜎

2
𝑦𝜎

3
𝑦𝜎

4
𝑦𝜎

5
𝑥 ... 𝜎

𝑛−1
𝑥 − ...+

+𝜎1
𝑦 ... 𝜎

6
𝑦𝜎

7
𝑥 ... 𝜎

𝑛−1
𝑥 + ...− ...)(𝜎𝑛

𝑎 − 𝜎𝑛
𝑏 ),

𝐴2 = (𝜎1
𝑦𝜎

2
𝑥 ... 𝜎

𝑛−1
𝑥 + ...− 𝜎1

𝑦𝜎
2
𝑦𝜎

3
𝑦𝜎

4
𝑥 ... 𝜎

𝑛−1
𝑥 − ...+

+𝜎1
𝑦 ... 𝜎

5
𝑦𝜎

6
𝑥 ... 𝜎

𝑛−1
𝑥 + ...−

−𝜎1
𝑦 ... 𝜎

7
𝑦𝜎

8
𝑥 ... 𝜎

𝑛−1
𝑥 − ...+ ...)(𝜎𝑛

𝑎 + 𝜎𝑛
𝑏 ),

(13)

the meaning of the plus and minus signs is explained
in Appendix, and 𝜎𝑗

𝑥 and 𝜎𝑗
𝑦 are the Pauli operators

for the 𝑗-th particle. The operators 𝜎𝑎 and 𝜎𝑏 are de-
fined by the following expressions:

𝜎𝑎 = 𝜎 · a = 𝜎
1√
2
(e𝑥 + e𝑦) =

1√
2
(𝜎𝑥 + 𝜎𝑦),

𝜎𝑏 = 𝜎 · b = 𝜎
1√
2
(−e𝑥 + e𝑦) =

1√
2
(−𝜎𝑥 + 𝜎𝑦),

𝜎𝑎 + 𝜎𝑏 =
√
2𝜎𝑦 =

1

𝑖
√
2
(𝜎+ − 𝜎−),

𝜎𝑎 − 𝜎𝑏 =
√
2𝜎𝑥 =

1√
2
(𝜎+ + 𝜎−),

where 𝜎+ = 𝜎𝑥 + 𝑖𝜎𝑦 and 𝜎− = 𝜎𝑥 − 𝑖𝜎𝑦 are the op-
erators, whose properties were described in the pre-
vious section. The unit vectors a and b are oriented
in the plane 𝑂𝑥𝑦 and form angles of 45∘ and 135∘,
respectively, with the axis 𝑂𝑥; i.e.

a =
1√
2
(e𝑥 + e𝑦), b =

1√
2
(−e𝑥 + e𝑦).

This structure of the operator 𝐴 corresponds to an
experiment, in which the spin projections on the di-
rections of the axes 𝑋 and 𝑌 are measured for 𝑛− 1
particles, and the spin projections on the directions
of the unit vectors a and b are measured for the 𝑛-th
particle.

M. Ardehali considered an 𝑛-qubit state corre-
sponding to the vector

|𝜒2⟩ =
1√
2
(| ↑↑ ... ↑⟩ − | ↓↓ ... ↓⟩),

or
|𝜒2⟩ =

1√
2
(| ⇑⟩ − | ⇓⟩) (14)

in the notations adopted above. M. Ardehali showed
that, in the framework of the local realism theory, the
correlation function that corresponds to the operator
𝐴 [Eq. (13)] is limited by the values

𝐹 ≤ 𝐹max =

{︂
2

𝑛
2 if 𝑛 is even,

2
𝑛+1
2 if 𝑛 is odd.

At the same time, the calculation carried out accord-
ing to the rules of quantum-mechanical theory brings
about the value

𝐹𝜒2
= ⟨𝜒2|𝐴|𝜒2⟩ = 2𝑛−

1
2 .

Therefore, the quantum-mechanical value of 𝐹𝜒2
ex-

ceeds the 𝐹 -value by a factor of 𝐾, where

𝐾 =
𝐹𝜒2

𝐹max
=

{︂
2

𝑛−1
2 if 𝑛 is even,

2
𝑛
2 −1 if 𝑛 is odd.

(15)
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We should consistently perform the following oper-
ations:

1. Operator (13) is transformed to a form that is
similar to the Mermin operator (see the previous
section). Below, we will show in a simple way that
𝐹𝜒2 = 2𝑛−

1
2 .

2. The quantum-mechanical value of the correla-
tion function is calculated for the generalized GHZ
state [Eqs. (2) and (7)]:⎧⎨⎩|𝜒⟩ = 𝛼| ⇑⟩+ 𝛽| ⇓⟩, |𝛼|2 + |𝛽|2 = 1

|𝜒⟩ = cos
Θ

2
| ⇑⟩+ 𝑒𝑖𝜑 sin

Θ

2
| ⇓⟩.

3. The values of the correlation function are deter-
mined in arbitrary 𝑛-qubit states |Ψ⟩.

4. A set of 𝑛-qubit states that violate the Ardehali
inequality is found, and the degree of this violation is
determined.

Now, the operators 𝐴1 and 𝐴2 [Eq. (13)] can be
presented in the following form (see Appendix):

𝐴1 = −
1

2

(︃
𝑛−1∏︁
𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

)︃
1
√
2

(︀
𝜎𝑛
+ + 𝜎𝑛

−
)︀
,

𝐴2 =
1

2𝑖

(︃
𝑛−1∏︁
𝑗=1

𝜎𝑗
+ −

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

)︃
1

𝑖
√
2
(𝜎𝑛

+ − 𝜎𝑛
−),

𝐴 = 𝐴1 +𝐴2 = −
1

2
√
2

{︃(︃
𝑛−1∏︁
𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

)︃
×

× (𝜎𝑛
+ + 𝜎𝑛

−) +

(︃
𝑛−1∏︁
𝑗=1

𝜎𝑗
+ −

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

)︃
(𝜎𝑛

+ − 𝜎𝑛
−)

}︃
=

= −
1

2
√
2

{︃
𝑛∏︁

𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−𝜎

𝑛
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
+𝜎

𝑛
− +

+

𝑛∏︁
𝑗=1

𝜎𝑗
− +

𝑛∏︁
𝑗=1

𝜎𝑗
+ −

𝑛−1∏︁
𝑗=1

𝜎𝑗
−𝜎

𝑛
+ −

−
𝑛−1∏︁
𝑗=1

𝜎𝑗
+𝜎

𝑛
− +

𝑛∏︁
𝑗=1

𝜎𝑗
−

}︃
.

After cancellations, we obtain

𝐴 = −
1
√
2

⎛⎝ 𝑛∏︁
𝑗=1

𝜎𝑗
+ +

𝑛∏︁
𝑗=1

𝜎𝑗
−

⎞⎠,
or, using the notations given above,

𝐴 = −
1
√
2
(Σ+ +Σ−).

The obtained expression for the operator 𝐴 is very
simple and makes it possible to easily verify that the
state vector |𝜒2⟩ [Eq. (14)] is an eigenvector of this
operator:

𝐴|𝜒2⟩ = −
1
√
2
(Σ+ +Σ−)

1
√
2
(| ⇑⟩ − | ⇓⟩) =

1

2
(Σ+| ⇓⟩ − Σ−| ⇑⟩) = 2𝑛−1(| ⇑⟩ − | ⇓⟩) = 2𝑛−

1
2 |𝜒2⟩,

Therefore, we obtain 𝐹𝜒2
= ⟨𝜒2|𝐴|𝜒2⟩ = 2𝑛−

1
2 . This

is no more than the Ardehali result, but calculated in
a different way.

A simple test demonstrates that |𝜒1⟩ = 1√
2
(| ⇑⟩+

+ | ⇓⟩) is also an eigenvector of the operator 𝐴:

𝐴|𝜒1⟩ = −2𝑛−
1
2 |𝜒1⟩,

so that the value of the correlation function is equal
to

𝐹𝜒1
= ⟨𝜒1|𝐴|𝜒1⟩ = −2𝑛−

1
2

in this state and to

𝐹𝜒 = ⟨𝜒|𝐴|𝜒⟩ = −2𝑛+
1
2𝛼Re𝛽 = −2𝑛−

1
2 sinΘ cos𝜑

in the generalized GHZ state (2). The vectors |𝜒1⟩
and |𝜒2⟩ are special cases of the state |𝜒⟩: at Θ = 𝜋

2
and 𝜑 = 𝜋,

|𝜒⟩ → |𝜒2⟩,

𝐹𝜒 → 𝐹𝜒2
= −2𝑛−

1
2 sin

𝜋

2
cos𝜋 = 2𝑛−

1
2 ;

and at Θ = 𝜋
2 and 𝜑 = 0,

|𝜒⟩ → |𝜒1⟩,

𝐹𝜒 → 𝐹𝜒1
= −2𝑛−

1
2 sin

𝜋

2
cos 0 = −2𝑛−

1
2 .

The condition that the state |𝜒⟩ violates the Arde-
hali inequality looks like

𝐾 =

⃒⃒⃒⃒
⃒ 𝐹𝜒

𝐹max

⃒⃒⃒⃒
⃒ > 1 ⇒

⇒
{︂
2

𝑛−1
2 |sinΘ cos𝜑| > 1 if 𝑛 is even,

2
𝑛
2 −1 |sinΘ cos𝜑| > 1 if 𝑛 is odd.

The regions on the Bloch sphere corresponding to
the states |𝜒⟩ that violate the Ardehali inequality are
cut off by planes oriented perpendicularly to the axis
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𝑂𝑥, unlike the case of Mermin’s inequality, when the
corresponding regions are cut off by planes that are
oriented perpendicularly to the axis 𝑂𝑦 (see Figs. 1
to 3). As the number of particles 𝑛 grows, the corre-
sponding regions also increase and, as 𝑛 → ∞, occupy
the whole Bloch sphere.

Now, we determine the value 𝐹Ψ = ⟨Ψ|𝐴|Ψ⟩ for
an arbitrary 𝑛-qubit state |Ψ⟩. Representing the lat-
ter in form (8), taking into account that 𝐴|�̃�⟩ = 0,
and making allowance for relation (11) between the
parameters, we obtain

𝐹Ψ = −2𝑛+
1
2 |𝑎1𝑎2| cos𝜑

or, equivalently,

𝐹Ψ = −2𝑛−
1
2 (|𝑎1|2 + |𝑎2|2) sinΘ cos𝜑.

Then the condition that the given 𝑛-qubit state vio-
lates the Ardehali inequality looks like⃒⃒⃒⃒
⃒ 𝐹Ψ

𝐹max

⃒⃒⃒⃒
⃒ > 1 ⇒

{︂
2

𝑛+1
2 |𝑎1𝑎2 cos𝜑| > 1 if 𝑛 is even,

2
𝑛
2 |𝑎1𝑎2 cos𝜑| > 1 if 𝑛 is odd;

or, equivalently,{︂
2

𝑛−1
2 (|𝑎1|2+ |𝑎2|2) |sinΘ cos𝜑| > 1 if 𝑛 is even,

2
𝑛
2 −1(|𝑎1|2+ |𝑎2|2) |sinΘ cos𝜑| > 1 if 𝑛 is odd.

(16)

The conclusions that follow from inequalities (15)
and (16) are analogous to those made above for
the Mermin inequality. (i) At large enough 𝑛-values,
all |Ψ⟩-states, for which 𝑄 = (|𝑎1|2 + |𝑎2|2)×
×| sinΘ cos𝜑| ̸= 0, violate the Ardehali inequality.
(ii) In the states, for which 𝑄 = 0, the Ardehali op-
erator is absolutely incapable of revealing the corre-
lations. (iii) Of all 𝑛-qubit states, the states |𝜒1⟩ and
|𝜒2⟩ violate the Ardehali inequality most strongly.

Now, let us try to extend the class of vectors cor-
responding to the states of 𝑛-qubit systems, in which
correlations can be revealed. For this purpose, some
𝜎𝑗
+-multipliers in the first term of the Ardehali oper-

ator

𝐴 = −
1
√
2

⎛⎝ 𝑛∏︁
𝑗=1

𝜎𝑗
+ +

𝑛∏︁
𝑗=1

𝜎𝑗
−

⎞⎠
should be substituted by the 𝜎𝑗

−-ones, and, simultane-
ously, the corresponding multipliers 𝜎𝑗

− in the second

term should be substituted by the 𝜎𝑗
+-ones:

𝐴 → ˜̂
𝐴 = −

1
√
2
(
∏︀𝑚

𝑗=1 𝜎
𝑗
− ⊗

∏︀𝑚
𝑗=𝑚+1 𝜎

𝑗
++

+
∏︀𝑚

𝑗=1 𝜎
𝑗
+ ⊗

∏︀𝑚
𝑗=𝑚+1 𝜎

𝑗
−).

Additionally, the corresponding one-particle states
in the state |𝜒2⟩ [Eq. (14)] should be exchanged,
| ↑⟩ ↔ | ↓⟩:

|𝜒2⟩ → |�̃�2⟩ = 1√
2
(| ↓↓ ... ↓⟩⏟  ⏞  

𝑚

⊗ | ↑↑ ... ↑⟩⏟  ⏞  
𝑛−𝑚

−

− | ↑↑ ... ↑⟩⏟  ⏞  
𝑚

⊗ | ↓↓ ... ↓⟩⏟  ⏞  
𝑛−𝑚

).

It is evident that

⟨�̃�2| ˜̂𝐴|�̃�2⟩ = ⟨𝜒2|𝐴|𝜒2⟩ = 2𝑛−
1
2 .

Let us divide the complete standard basis in the
2𝑛-dimensional Hilbert space of 𝑛-qubit systems into
ordered pairs {|𝜂𝑘⟩, |𝜂𝑘⟩}, where the vector |𝜂𝑘⟩ is ob-
tained from the vector |𝜂1⟩ = | ↑↑↑ ... ↑↑⟩ by substi-
tuting a certain set of 𝑚 ≤ 2𝑛−1 one-particle states
| ↑⟩ with the numbers 𝑗1, 𝑗2, ..., 𝑗𝑚 by opposite states
| ↓⟩, and the vector |𝜂𝑘⟩ is obtained from the vec-
tor |𝜂𝑘⟩ by substituting all one-particle states in the
latter by opposite ones: | ↑⟩ ↔ | ↓⟩. For example,

|𝜂1⟩ = | ↑↑↑ ... ↑↑⟩ → |𝜂1⟩ = | ↓↓↓ ... ↓↓⟩,
|𝜂2⟩ = | ↑↑↑ ... ↑↓⟩ → |𝜂2⟩ = | ↓↓↓ ... ↓↑⟩,

and so on. In terms of those notations, 𝑘 is a set
of the numbers (𝑗1, 𝑗2, ..., 𝑗𝑚) of those qubits, whose
states were changed. It is evident that, in such a way,
the complete basis is used to form 2𝑛−1 pairs of ba-
sis states. Accordingly, the notation 𝐴𝑘 will mean
an operator that is formed from the operator 𝐴1 by
substituting one-particle operators with the numbers
𝑗1, 𝑗2, ..., 𝑗𝑚 by opposite ones, 𝜎𝑗

+ ↔ 𝜎𝑗
−. The opera-

tors 𝐴𝑘 will be conditionally called the modified Arde-
hali operators.

Now, an arbitrary 𝑛-qubit state |Ψ⟩ can be written
as the expansion

|Ψ⟩ =
2𝑛−1∑︁
𝑘=1

(𝑎1𝑘|𝜂𝑘⟩+𝑎2𝑘|𝜂𝑘⟩),
2𝑛−1∑︁
𝑘=1

(|𝑎1𝑘|2+|𝑎2𝑘|2) = 1.

(17)
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Introducing the notation

|𝜇𝑘⟩ = 𝑎1𝑘|𝜂𝑘⟩+ 𝑎2𝑘|𝜂𝑘⟩,

and taking into account that ⟨𝜇𝑘|𝐴𝑘′ |𝜇𝑘⟩ = 0 at 𝑘 ̸=
̸= 𝑘′, it is possible to write

⟨Ψ|𝐴𝑘|Ψ⟩ = ⟨𝜇𝑘|𝐴𝑘|𝜇𝑘⟩ = 𝐹𝑘 = −2𝑛+
1
2 |𝑎1𝑘𝑎2𝑘| cos𝜑𝑘,

(18)

where 𝑎1𝑘 = ⟨𝜂𝑘|Ψ⟩ = |𝑎1𝑘|𝑒𝑖𝜑1𝑘 , 𝑎2𝑘 = ⟨𝜂𝑘|Ψ⟩ =
= |𝑎2𝑘|𝑒𝑖𝜑2𝑘 , and 𝜑𝑘 = 𝜑2𝑘 − 𝜑1𝑘. Hence, having cal-
culated all projections of the vector |Ψ⟩ onto the ba-
sis states of the standard basis, we can determine
all 𝐹𝑘-values and, by their comparison, their maxi-
mum. Result (18) is classed to the 𝐴𝑘-type of Arde-
hali operators.

It is evident that similar vectors |𝜇𝑘⟩ and oper-
ators 𝐴𝑘 could be introduced, when considering the
Mermin inequality. The determination of 𝐹𝑘-values is
an additional way to reveal the correlations in the
state |Ψ⟩.

Thus, if the whole set {𝐴𝑘} of modified operators,
rather than the Ardehali (Mermin) operator, is ap-
plied, the class of vectors describing the states of 𝑛-
qubit systems, in which the correlations can be re-
vealed on the basis of the violation of corresponding
inequalities, can be extended. However, it should be
noted that even the whole set of operators 𝐴𝑘 can-
not reveal all kinds of the entanglement in 𝑛-qubit
states. For instance, if either all coefficients 𝑎1𝑘 or all
coefficients 𝑎2𝑘 in Eq. (17) equal zero, the whole set
of generalized operators 𝐴𝑘 cannot reveal the corre-
lations in the corresponding states |Ψ⟩. Furthermore,
the operators 𝐴𝑘 cannot reveal the correlations in the
Wigner generalized state

|Ψ𝑤⟩ = (𝛼1| ↑↑ ... ↑↑↓⟩+ 𝛼2| ↑↑ ... ↑↓↑⟩+ ...+

+𝛼𝑛| ↓↑ ... ↑↑↑⟩).

This fact means that the Ardehali and Mermin in-
equalities cannot be regarded as a generalization of
the Bell inequality in the CHSH form to the case of 𝑛-
qubit quantum systems. Nevertheless, those inequal-
ities are a powerful tool for revealing the correlations
in a certain class of 𝑛-qubit systems.

4. Conclusions

In this work, a comprehensive analysis is carried out
for the capability of the known operators of the Mer-

min and Ardehali correlation functions to reveal the
quantum correlations (entanglement) in generalized
two-parameter states of 𝑛-qubit GHZ states, as well
as in arbitrary 𝑛-qubit states. The domains of values
for the parameters of state vectors are determined
separately for the Mermin and Ardehali inequalities,
at which those inequalities become violated. The ex-
pressions determining the degree of corresponding vi-
olation are derived. A set of state vectors is deter-
mined, for which the Mermin and Ardehali operators
are absolutely insensitive, i.e. the operators cannot
reveal the correlations that are actually present. The
proposed generalization of the Mermin and Ardehali
operators make it possible to extend the class of 𝑛-
qubit states, in which the quantum correlations can
be revealed. To our opinion, this work completely an-
swered the question about the expediency of the ap-
plication of the Mermin and Ardehali inequalities to
that or another class of multiqubit states.

APPENDIX

Let us demonstrate that the introduced correlation-function
operator

𝐴 = 𝐴1 +𝐴2,

where

𝐴1 = −
1

2

⎛⎝𝑛−1∏︁
𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

⎞⎠ 1
√
2
(𝜎𝑛

+ + 𝜎𝑛
−),

𝐴2 =
1

2𝑖

⎛⎝𝑛−1∏︁
𝑗=1

𝜎𝑗
+ −

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

⎞⎠ 1

𝑖
√
2
(𝜎𝑛

+ − 𝜎𝑛
−)

(19)

completely corresponds to the Ardehali operator (13).
Let us write down the Ardehali operator in its original form

from work [11] and analyze its structure:

𝐴 = 𝐴1 +𝐴2,

where

𝐴1 = (−𝜎1
𝑥𝜎

2
𝑥𝜎

3
𝑥 ... 𝜎𝑛−1

𝑥 + 𝜎1
𝑦𝜎

2
𝑦𝜎

3
𝑥 ... 𝜎𝑛−1

𝑥 + ...−

−𝜎1
𝑦𝜎

2
𝑦𝜎

3
𝑦𝜎

4
𝑦𝜎

5
𝑥 ... 𝜎𝑛−1

𝑥 − ...+

+𝜎1
𝑦 ... 𝜎6

𝑦𝜎
7
𝑥 ... 𝜎𝑛−1

𝑥 + ...− ...)(𝜎𝑛
𝑎 − 𝜎𝑛

𝑏 ), (20)

𝐴2 = (𝜎1
𝑦𝜎

2
𝑥 ... 𝜎𝑛−1

𝑥 + ...− 𝜎1
𝑦𝜎

2
𝑦𝜎

3
𝑦𝜎

4
𝑥 ... 𝜎𝑛−1

𝑥 − ...+

+𝜎1
𝑦 ... 𝜎5

𝑦𝜎
6
𝑥 ... 𝜎𝑛−1

𝑥 + ...−
−𝜎1

𝑦 ... 𝜎7
𝑦𝜎

8
𝑥 ... 𝜎𝑛−1

𝑥 − ...+ ...)(𝜎𝑛
𝑎 + 𝜎𝑛

𝑏 ). (21)

Consider the structure of the expression in the first parenthe-
ses in 𝐴1. The first term does not contain 𝜎𝑦-multipliers. The
second term contains two 𝜎𝑦-multipliers. The notation “+...”
means that terms with two multipliers 𝜎𝑖

𝑦𝜎
𝑗
𝑦 and all possible

superscripts 𝑖 < 𝑗 should be included. The number of those
terms is equal to the number of 2-combinations from a set of
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𝑛 − 1 elements (i.e. the binomial coefficient). The next terms
in the considered expression contain all possible combinations
with four multipliers, 𝜎𝑖

𝑦𝜎
𝑗
𝑦𝜎

𝑘
𝑦𝜎

𝑙
𝑦 (𝑖 < 𝑗 < 𝑘 < 𝑙). The number

of those terms is equal to the number of 4-combinations from
a set of 𝑛 − 1 elements. Note that all terms with the number
of 𝜎𝑦-multipliers multiple of 4 – i.e. 𝑁 = 4𝑘, where 𝑘 = 0, 1,
2, ... – enter 𝐴1 with the minus sign, whereas the others with
the plus sign.

Analogously, the terms in 𝐴2 are all possible combinations
of 𝜎𝑦-multipliers, with the number of multipliers in each term
being odd and not exceeding 𝑛− 1. The terms with the num-
ber of 𝜎𝑦-multipliers equal to 𝑁 = 4𝑘 + 1 (𝑘 = 0, 1, 2, ...)
enter 𝐴2 with the plus sign, whereas the others with the mi-
nus sign.

As an example, we give the complete expressions for 𝐴1

and 𝐴2 in the case 𝑛 = 6 (𝑛 − 1 = 5). To simplify them, we
assume that the particle numbers are arranged in the ascending
order, so that those numbers are not written down explicitly;
for example, 𝜎1

𝑦𝜎
2
𝑥𝜎

3
𝑦𝜎

4
𝑥𝜎

5
𝑥 = 𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑥. Then

𝐴1 = (−𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥 + 𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑥 + 𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑥 +

+𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑥 + 𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑥 +

+𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑥 + 𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑥 +

+𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑦 − 𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑥 −

−𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑦 − 𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑦 −

−𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑦)(𝜎
𝑛
𝑎 − 𝜎𝑛

𝑏 ),

𝐴2 = (+𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥 + 𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑥 + 𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑥 +

+𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑥 + 𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑥 −

−𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑥 − 𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑥 −

−𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑦 − 𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑥 −

−𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑥𝜎𝑦 − 𝜎𝑥𝜎𝑦𝜎𝑥𝜎𝑦𝜎𝑦 − 𝜎𝑥𝜎𝑥𝜎𝑦𝜎𝑦𝜎𝑦 +

+𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑦𝜎𝑦)(𝜎
𝑛
𝑎 + 𝜎𝑛

𝑏 ).

Now, consider the expression for 𝐴1. It can be rewritten in
the form

𝐴1 = −
1

2

⎛⎝𝑛−1∏︁
𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

⎞⎠ 1
√
2
(𝜎𝑛

+ + 𝜎𝑛
−). (22)

The expression in the first parentheses equals

�̂� =

⎛⎝𝑛−1∏︁
𝑗=1

𝜎𝑗
+ +

𝑛−1∏︁
𝑗=1

𝜎𝑗
−

⎞⎠ =

= (𝜎1
𝑥 + 𝑖𝜎1

𝑦)(𝜎
2
𝑥 + 𝑖𝜎2

𝑦) (𝜎
3
𝑥 + 𝑖𝜎3

𝑦)... (𝜎
𝑛−1
𝑥 + 𝑖𝜎𝑛−1

𝑦 )+

+ (𝜎1
𝑥 − 𝑖𝜎1

𝑦)(𝜎
2
𝑥 − 𝑖𝜎2

𝑦)(𝜎
3
𝑥 − 𝑖𝜎3

𝑦) ... (𝜎
𝑛−1
𝑥 − 𝑖𝜎𝑛−1

𝑦 ).

Let us forget, for the present, the true meaning of 𝜎𝑥 and
𝜎𝑦 , and let us consider them to be certain real-valued param-
eters. Then

�̂� = 2Re
{︀
(𝜎1

𝑥 + 𝑖𝜎1
𝑦)(𝜎

2
𝑥 + 𝑖𝜎2

𝑦)×

× (𝜎3
𝑥 + 𝑖𝜎3

𝑦) ... (𝜎
𝑛−1
𝑥 + 𝑖𝜎𝑛−1

𝑦 )
}︀
.

Removing the parentheses and calculating the real part of
the obtained expression, as well as taking into account that
𝑖4𝑘 = (−𝑖)4𝑘 = 1 for 𝑘 = 0, 1, 2, ..., whereas 𝑖2(2𝑘+1) = −1, we
obtain that Eq. (22) accurately coincides with Eq. (20). A simi-
lar consideration demonstrates that 𝐴2 in form (19) accurately
coincides with 𝐴2 introduced by M. Ardehali [Eq. (21)].
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ДЕТЕКТУВАННЯ ЗАПЛУТАНОСТI
БАГАТОКУБIТОВИХ КВАНТОВИХ СИСТЕМ
ЗА КРИТЕРIЯМИ МЕРМIНА I АРДЕХАЛI

Р е з ю м е

У роботi дослiджується можливiсть виявлення заплутано-
стi в 𝑛-кубiтових узагальнених двопараметричних GHZ-
станах, а також в довiльних 𝑛-кубiтових станах за допомо-
гою нерiвностi Мермiна i нерiвностi Ардехалi з числа отри-

мавших узагальнену назву нерiвностей Мермiна–Ардехалi–
Белiнського–Клишко. Отримано формули для розрахунку
значень кореляцiйних функцiй Мермiна i Ардехалi в до-
вiльних квантових 𝑛-кубiтових станах та критерiй поруше-
ння вiдповiдних нерiвностей конкретними станами. Виявле-
но сукупнiсть станiв, абсолютно нечутливих до операторiв
Мермiна i Ардехалi. Запропоновано (модифiкованi) опера-
тори Мермiна i Ардехалi, сукупнiсть яких дозволяє розши-
рити клас 𝑛-кубiтових станiв, в яких можна виявити наяв-
нiсть квантових кореляцiй.
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