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ON REACTION OF A SPINNING
PARTICLE ON THE SPACETIME CURVATURE 1

The reaction of a classical (nonquantum) spinning particle on the spacetime curvature ac-
cording to the Mathisson–Papapetrou equations is analyzed. From the point of view of the
observer comoving with the particle in Schwarzschild’s field, this reaction is a reaction on the
gravitomagnetic components of the gravitational field. The values of these components signifi-
cantly depend on the relativistic Lorentz factor calculated by the particle velocity relative to the
Schwarzschild mass. As a result, the value of the spinning particle acceleration relative to the
geodesic motion is proportional to the second power of the Lorentz factor. At the same time,
the intensity of the electromagnetic radiation of a charged spinning particle is proportional to
the fourth power of this factor. Some numerical estimates are presented.
K e yw o r d s: spinning particle, Mathisson–Papapetrou equations, Schwarzschild’s field,
strong spin-gravity coupling.

1. Introduction

In general relativity, two approaches have been de-
veloped for the description of the spinning particle
behavior in a gravitational field. Chronologically, the
first one was initiated by V. Fock, D. Ivanenko, and
H. Weyl in 1929, when the usual Dirac equation was
generalized for a curved spacetime [1–3]. The sec-
ond classical (nonquantum) approach was proposed
in 1937 by M. Mathisson [4]. Much later it was shown
that, in a certain sense, the classical equations follow
from the general relativistic Dirac equation as a clas-
sical approximation [5, 6]. After M. Mathisson, the
same equations for a macroscopic spinning test body
(particle) were derived by A. Papapetrou by another
method [7]. Therefore, these equations are known
now as the Mathisson–Papapetrou (MP) equations.

In the focus of this article are the MP equations
as an important source of knowledge about the reac-
tion of a spinning particle on the spacetime curvature
which manifests itself in the properties of the particle
motion in Schwarzschild’s background. In Sec. 2, the
MP equations and some their consequences are pre-
sented. The dependence of the spin-gravity coupling
on the particle velocity is considered in Sec. 3. The
estimation of the intensity of the electromagnetic ra-
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diation for a charged spinning particle moving with
ultrarelativistic velocity is given in Sec. 4. Some nu-
merical estimates for electrons, protons, and neutri-
nos are presented in Sec. 5. We conclude in Sec. 6.

2. Mathisson–Papapetrou Equations

The initial form of the MP equations is [4]

𝐷

𝑑𝑠

(︂
𝑚𝑢𝜆 + 𝑢𝜇

𝐷𝑆𝜆𝜇

𝑑𝑠

)︂
= −1

2
𝑢𝜋𝑆𝜌𝜎𝑅𝜆

𝜋𝜌𝜎, (1)

𝐷𝑆𝜇𝜈

𝑑𝑠
+ 𝑢𝜇𝑢𝜎

𝐷𝑆𝜈𝜎

𝑑𝑠
− 𝑢𝜈𝑢𝜎

𝐷𝑆𝜇𝜎

𝑑𝑠
= 0, (2)

𝑆𝜆𝜈𝑢𝜈 = 0, (3)

where 𝑢𝜆 ≡ 𝑑𝑥𝜆/𝑑𝑠 is particle’s 4-velocity, 𝑆𝜇𝜈 is the
antisymmetric tensor of spin, 𝑚 and 𝐷/𝑑𝑠 are the
mass and the covariant derivative along 𝑢𝜆, respec-
tively. Here and in the following, greek indices run
through 1, 2, 3, 4, and latin indices run through 1,
2, 3; the signature of the metric (–, –, –, +) and the
unites 𝑐 = 𝐺 = 1 are chosen. Relation (3) plays the
role of a supplementary condition for Eqs. (1), (2),
and its physical meaning lay in choosing the center of

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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mass of a spinning particle. Often instead of (3), the
relation

𝑆𝜆𝜈𝑃𝜈 = 0,

where 𝑃𝜈 is the particle 4-momentum, is used. In the
linear spin approximation, 𝑃𝜈 is proportional to 𝑢𝜈 .

Equations (1)–(3) have the constant of motion

𝑆2
0 =

1

2
𝑆𝜇𝜈𝑆

𝜇𝜈 , (4)

where |𝑆0| is the absolute value of the spin. The phys-
ical condition for a spinning test particle

|𝑆0|
𝑚𝑟

≡ 𝜀 ≪ 1 (5)

must be taken into account [11], where 𝑟 is the char-
acteristic length scale of the background space-time
(in particular, for the Schwarzschild metric, 𝑟 is the
radial coordinate).

It is important that the MP equations can be used
for the investigation of spinning particle motions with
any velocity relative to the source of a gravitational
field (e.g., Schwarzschild’s or Kerr’s black hole) up to
the speed of light, similarly as the geodesic equations
are used for a fast moving spinless particle. The first
effects of the spin-gravity interaction following from
the MP equations in Schwarzschild’s background were
considered in [8]. According to this paper, the influ-
ence of spin on particle’s trajectory is too small for
a practical registration. The similar conclusion was
stressed in the known book [9].

Nevertheless, another supposition can be find in
[10]: “The simple act of endowing a black hole with
angular momentum has led to an unexpected richness
of possible physical phenomena. It seems appropriate
to ask whether endowing the test body with intrinsic
spin might not also lead to surprises”. This paper to-
gether with [11], where the spin-spin and spin-orbit
gravitational interactions were considered, gave the
impulse for realizing the program of more detailed
investigations of physical effects following from the
MP equations without a priori restrictions on the in-
fluence of particle’s spin on its trajectory. One of the
first results of a realization of this program was pre-
sented in [12]. It was shown that specific situations in
the spinning particle motions arise, when its becomes
very close to the speed of light [12–14].

In the case where 𝑆𝜇𝜈 = 0, Eqs. (1)–(3) reduce to
the geodesic equations. In the linear spin approxima-

tion, the term on the right-hand side of (1) deter-
mines the main contribution of particle’s spin in the
deviation of its motion from the geodesic one, i.e. the
reaction of a particle on the spacetime curvature.

It is useful to consider the MP equations in their
representation in terms of the local (tetrad) values,
which correspond to the situation where an observer
is comoving with the spinning particle. In the lin-
ear spin approximation, the MP equations yield the
relation [14, 16]

𝛾(𝑖)(4)(4) = −
𝑆(1)

𝑚
𝑅(𝑖)(4)(2)(3), (6)

where 𝛾(𝑘)(1)(4) are the Ricci coefficients of rotation,
and the first local vector (1) is chosen here to be ori-
ented along the particle’s 3-vector of spin (this means
that 𝑆(2) = 0, 𝑆(3) = 0). The value 𝛾(𝑖)(4)(4) is the dy-
namical characteristic of the reference frame, namely,
its acceleration. According to (6), we have

𝑎(𝑖) = −
𝑆(1)

𝑚
𝑅(𝑖)(4)(2)(3), (7)

where 𝑎(𝑖) is the 3-acceleration with which the spin-
ning particle deviates from the free geodesic fall, as
measured by the comoving observer. In the next sec-
tion, we will consider expression (7) at different parti-
cle velocities relative to Schwarzschild’s source of the
gravitational field.

3. Role of the Very High Particle Velocity

To understand an important role of the spinning par-
ticle velocity in the spin-gravity coupling, let us con-
sider the expression for the gravitomagnetic compo-
nents 𝐵

(𝑖)
(𝑘) of the gravitational field [15]

𝐵
(𝑖)
(𝑘) = −1

2
𝑅

(𝑖)(4)
(𝑚)(𝑛)𝜀

(𝑚)(𝑛)
(𝑘) (8)

(here, the parentheses note the local tetrad com-
ponents of the corresponding values; and 𝜀

(𝑚)(𝑛)
(𝑘) is

the Levi-Civita symbol) in the partial case where
the spinning particle is moving in the gravitational
field of Schwarzschild’s mass. We use the standard
Schwarzschild coordinates 𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝜙,
𝑥4 = 𝑡, when the nonzero components of the metric
tensor 𝑔𝜇𝜈 are

𝑔11 = −
(︂
1− 2𝑀

𝑟

)︂−1

, 𝑔22 = −𝑟2,

𝑔33 = −𝑟2 sin2 𝜃, 𝑔44 = 1− 2𝑀

𝑟
,

(9)
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where 𝑀 is the mass of Schwarzschild’s source of the
gravitational field. We consider the case where the
particle moves in the plane 𝜃 = 𝜋/2, and its spin [as
well as the first space local axis (1)] is orthogonal to
this plane. It is convenient to orient the second space
axis (2) along the direction of particle’s motion. Then
we have

𝐵
(1)
(2) = 𝐵

(2)
(1) =

3𝑀

𝑟3
𝑢‖𝑢⊥√︀
𝛾2 − 1

(︂
1− 2𝑀

𝑟

)︂−1/2

, (10)

𝐵
(1)
(3) = 𝐵

(3)
(1) =

3𝑀

𝑟3
𝑢2
⊥𝛾√︀

𝛾2 − 1
, (11)

where 𝛾 is the relativistic Lorentz factor of the mov-
ing particle, as estimated by an observer who is at
rest relative to the source of a gravitational field. The
value of 𝛾 is given by the expression

𝛾 =
1√

1− 𝑣2
, (12)

where 𝑣2 is the second power of particle’s 3-velocity
relative to the observer. In the case of the diagonal
metric, according to the general expression for the
3-velocity components 𝑣𝑖, we have

𝑣𝑖 =
𝑑𝑥𝑖

√
𝑔44𝑑𝑡

. (13)

For 𝑣2, we write

𝑣2 = 𝑣𝑖𝑣
𝑖 = 𝛾𝑖𝑘𝑣

𝑖𝑣𝑘, (14)

where 𝛾𝑖𝑘 is the 3-space metric tensor, with the fol-
lowing relation between 𝛾𝑖𝑘 and 𝑔𝜇𝜈 for the diag-
onal metric: 𝛾𝑖𝑘 = −𝑔𝑖𝑘. Relations (12)–(14) with
𝑢𝜇𝑢

𝜇 = 1 imply that

𝛾 =
√︀
𝑢4𝑢4. (15)

Let us compare the values from (10) and (11) at
low and high velocities. When the velocity is low with
𝑢‖ = 𝛿1, 𝑢⊥ = 𝛿2, |𝛿1| ≪ 1, |𝛿2| ≪ 1, and 𝛾2 − 1 =
Δ2 ≪ 1, where

Δ2 =

(︂
1− 2𝑀

𝑟

)︂−1

𝛿21 + 𝛿22 , (16)

it follows from (10) and (11) that

𝐵
(1)
(2) = 𝐵

(2)
(1) ≈

3𝑀

𝑟3
𝛿1𝛿2
Δ

(︂
1− 2𝑀

𝑟

)︂−1/2

, (17)

𝐵
(1)
(3) = 𝐵

(3)
(1) ≈

3𝑀

𝑟3
𝛿22
Δ

. (18)

In other words, at low velocities, the common term
3𝑀/𝑟3 in the expressions for the gravitomagnetic
components (17) and (18) is multiplied by corre-
sponding small factors:⃒⃒⃒⃒
𝛿1𝛿2
Δ

⃒⃒⃒⃒
≪ 1,

⃒⃒⃒⃒
𝛿22
Δ

⃒⃒⃒⃒
≪ 1.

In the highly relativistic region, when 𝛾2 ≫ 1 and
both 𝑢2

‖ and 𝑢2
⊥ have order 𝛾2, it follows from (10),

(11) that

𝐵
(1)
(2) = 𝐵

(2)
(1) ∼

3𝑀

𝑟3

(︂
1− 2𝑀

𝑟

)︂−1/2

𝛾, (19)

𝐵
(1)
(3) = 𝐵

(3)
(1) ∼

3𝑀

𝑟3
𝛾2. (20)

When only 𝑢2
⊥ ≫ 1, with 𝑢2

‖ ≪ 𝑢2
⊥, the values from

(19) are proportional to 𝑢‖, and the values from (20)
are proportional to 𝛾2. In the case where 𝑢2

‖ ≫ 1 and
𝑢2
⊥ ≪ 𝑢2

‖, the values from (19) and (20) are propor-
tional to 𝑢⊥ and 𝑢2

⊥, respectively.
Now, we take into account that, according to (7)

and (8), just the gravitomagnetic components (8) de-
termine the values of the acceleration 𝑎(𝑖) from (7) by
the expression

𝑎(𝑖) = −
𝑆(1)

𝑚
𝐵

(1)
(𝑖) . (21)

Then, for the absolute value of the acceleration

|a| =
√︁
𝑎2(1) + 𝑎2(2) + 𝑎2(3)

in view of (19)–(21), we have

|a| = 3𝑀

𝑟2
|𝑆0|
𝑚𝑟

|𝑢⊥|
√︁
1 + 𝑢2

⊥, (22)

and the vector a is oriented along the radial direc-
tion. According to (22), |a| does not depend on the
radial component of the particle velocity and essen-
tially depends on its tangential velocity. In the case of
the highly relativistic motion with 𝑢2

⊥ ≫ 1, relation
(22) yields

|a| = 3𝑀

𝑟2
𝜀𝛾2, (23)

where 𝛾 is the Lorentz factor calculated by the tan-
gential velocity 𝑢⊥, and 𝜀 is determined in (7). (Note
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that, in the above considered partial case of the
particle motion in Schwarzschild’s field, the relation
|𝑆(1)| = |𝑆0| is valid).

So, according to (23), the absolute value of the par-
ticle acceleration becomes much greater at highly rel-
ativistic velocities of the spinning particle than at low
velocities. This means that the smallness of 𝜀 from
(5) does not lead to the conclusion about the small
influence of the particle spin on its acceleration, as
estimated by the comoving observer.

From (23), we get the qualitative criterion that in-
dicates the value of 𝛾 at which the reaction of a spin-
ning particle on the spacetime curvature is signifi-
cant. Indeed, if 𝛾 is of order 1/

√
𝜀, the value of |a|

is of order 𝑀/𝑟2 by (23) and is equal to the known
value of the acceleration of a free fall in the Newto-
nian theory of gravity.

The results presented in this section describe the
spin-gravity coupling in the proper frame of the
spinning particle. At the same time, it is neces-
sary to study the influence of the spin-gravity cou-
pling on the particle trajectories, especially when
its velocity is very high. Various cases of the es-
sentially nongeodesic orbits of a highly relativistic
spinning particle in Schwarzschild’s field, which fol-
lows from the MP equations, are investigated in
[16–21]. In particular, it is shown that, due to the
strong action of the highly relativistic spin-gravity
coupling, there are circular orbits of a spinning par-
ticle in the Schwarzschild field which significantly
differ from the circular orbits of a spinless parti-
cle in this field. For a realization of these orbits,
the spinning particle must possess the high veloc-
ity which corresponds to the value of 𝛾 of the
order 1/

√
𝜀.

4. On Electromagnetic Radiation
of a Charged Spinning Particle

We use expression (23) to estimate the electromag-
netic radiation of a spinning particle which pos-
sesses the electric charge 𝑞. Indeed, according to the
known result of the classical electrodynamics, the
intensity 𝐼 of the electromagnetic radiation in the
frame, where the velocity of a charge particle is equal
to 0 with nonzero acceleration 𝑤, is given by the
expression

𝐼 =
2𝑞2𝑤2

3𝑐3
, (24)

where 𝑐 is the speed of light. Inserting expression (23)
as 𝑤 in units with 𝑐 = 1 into (24), we get

𝐼 = 6𝑞2
𝑀2

𝑟4
𝜀2𝛾4. (25)

Equation (25) shows that, due the term 𝛾4, the value
𝐼 can be significant for some high tangential velocities
even for small values of 𝜀 and far from Schwarzschild’s
horizon (𝑟 ≫ 2𝑀).

5. Numerical Estimates

In addition to the small value of 𝜀 from (5), it is
convenient to consider the value of 𝜀0 determined by

𝜀0 ≡ |𝑆0|
𝑚𝑀

.

In contrast to 𝜀, the value of 𝜀0 does not depend on
the coordinate 𝑟. It is easy to check that, for an elec-
tron in the gravitational field of a black hole with
three masses of the Sun, the value of 𝜀0 is equal to
4 × 10−17. Then the necessary value of the 𝛾-factor
for a realization of some highly relativistic orbits by
the electron near this black hole is of order 108. This
𝛾-factor corresponds to the energy of the electron free
motion of order 1014 eV. Analogously, for a proton in
the field of such black hole, the corresponding energy
is of order 1018 eV. For the massive black hole, those
values are greater: for example, if 𝑀 is equal to 106

of Sun’s mass, the corresponding value of the energy
is of order 1017 eV for an electron and is 1021 eV for
a proton. Naturally, far from the black hole, these
values are greater, because the necessary 𝛾-factor is
proportional to

√
𝑟.

Note that, for a neutrino near the black hole with
three masses of the Sun, the necessary values of its
𝛾-factor for motions on highly relativistic orbits cor-
respond to neutrino’s energy of a free motion of order
105 eV. If black hole’s mass is of order 106 of Sun’s
mass, the corresponding value is of order 108 eV.

6. Conclusions

It follows from the MP equations that, due to the
reaction of a spinning particle on the spacetime cur-
vature, its motion differs from the motion of a spinless
particle. This deviation is small, when the velocity of
a spinning particle relative to the Schwarzschild mass
is not very high and becomes much greater at the
velocities which are close to the speed of light. As a
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result, the ultrarelativistic charged spinning particle
can generate the intense electromagnetic radiation,
according to Eq. (25).

By the numerical estimates, one can suppose that
the strong reaction of ultrarelativistic electrons and
protons on the spacetime curvature can be manifest
itself in their motions near some black holes, in par-
ticular, through the specific features of their electro-
magnetic radiation.
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ПРО РЕАКЦIЮ СПIНОВОЇ
ЧАСТИНКИ НА КРИВИНУ ПРОСТОРУ-ЧАСУ

Р е з ю м е

Проаналiзовано реакцiю класичної (неквантової) спiнової
частинки на кривину простору-часу згiдно з рiвняннями
Матiсона–Папапетру. З точки зору спостерiгача, супутньо-
го до частинки у полi Шварцшильда, вона визначається
гравiтомагнiтними компонентами гравiтацiйного поля. Ве-
личини цих компонент суттєво залежать вiд релятивiст-
ського фактора Лоренца, обчисленого за швидкiстю ча-
стинки вiдносно шварцшильдiвської маси. Як наслiдок,
прискорення спiнової частинки вiдносно геодезичного ру-
ху є пропорцiйним до квадрата фактора Лоренца. Водночас
iнтенсивнiсть електромагнiтного випромiнювання зарядже-
ної спiнової частинки пропорцiйна до четвертого степеня
цього фактора.
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