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THE SNYDER MODEL AND QUANTUM FIELD THEORY 1

We review the main features of the relativistic Snyder model and its generalizations. We discuss
the quantum field theory on this background using the standard formalism of noncommutative
QFT and discuss the possibility of obtaining a finite theory.
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1. Introduction

Since the origin of quantum field theory (QFT), the
proposals have been advanced to add a new scale
of length to the theory in order to solve the prob-
lems connected to UV divergences. Later, the at-
tempts to build a theory of quantum gravity have
proved the necessity of introducing a length scale,
which has been identified with the Planck length
𝐿𝑝 =

√︁
~𝐺
𝑐3 ∼ 1.6 × 10−35 m [1, 2]. A naive appli-

cation of this idea, like a lattice field theory, would
however break the Lorentz invariance. A way to rec-
oncile the discreteness of spacetime with the Lorentz
invariance was proposed by Snyder [3, 4] long time
ago. This was the first example of a noncommutative
geometry: the length scale should enter the theory
through the commutators of spacetime coordinates.

Noncommutative geometries were, however, not in-
vestigated for a long time, but they revived due
to mathematical [5, 6] and physical [7, 8] pro-
gresses. Their present understanding is based on the
formalism of Hopf algebras [9]. In particular, QFT on
noncommutative backgrounds has been largely stud-
ied [7, 8]. In most cases, a surprising phenomenon,
called UV/IR mixing, occurs: the counterterms
needed for the UV regularization diverge for vanish-
ing incoming momenta, inducing an IR divergence.

Noncommutative geometries also admit a sort of
dual representation on the momentum space in theo-
ries of doubly special relativity (DSR) [10]. Here, a
fundamental mass scale is introduced, that causes
the curvature of the momentum space [12, 13], and
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the deformation of both the Poincaré group and
the dispersion relations of the particles. The Snyder
model can also be seen as a DSR model, where the
Poincaré invariance and the dispersion relations are
undeformed.

As mentioned above, Snyder’s idea was almost
abandoned with the introduction of renormalization
techniques, with the exception of some Russian au-
thors in the sixties [14–19]. It revived recently, when
the noncommutative geometry became an important
topic of research. However, in spite of several at-
tempts using various methods [14–21], the issue of
finiteness of the Snyder field theory has not been es-
tablished up to now. Here, we review an attempt to
investigate this topic using the formalism of noncom-
mutative QFT [22–24].

2. The Snyder Model

The most notable feature of the Snyder model is that,
in contrast with most examples of the noncommuta-
tive geometry, it preserves the full Poincaré invari-
ance. In fact, it is based on the Snyder algebra, a de-
formation of the Lorentz algebra acting on the phase
space, generated by positions 𝑥𝜇, momenta 𝑝𝜇, and
Lorentz generators 𝐽𝜇𝜈 , that obey the Poincaré com-
mutation relations

[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝑖
(︀
𝜂𝜇𝜌𝐽𝜈𝜎−𝜂𝜇𝜎𝐽𝜈𝜌+𝜂𝜈𝜌𝐽𝜇𝜎−𝜂𝜈𝜎𝐽𝜇𝜌

)︀
, (1)

[𝑝𝜇, 𝑝𝜈 ] = 0, [𝐽𝜇𝜈 , 𝑝𝜆] = 𝑖 (𝜂𝜇𝜆𝑝𝜈 − 𝜂𝜆𝜈𝑝𝜇), (2)

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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together with the standard Lorentz action on the po-
sition

[𝐽𝜇𝜈 , 𝑥𝜆] = 𝑖 (𝜂𝜇𝜆𝑥𝜈 − 𝜂𝜈𝜆𝑥𝜇), (3)

and a deformation of the Heisenberg algebra (preserv-
ing the Jacobi identities),

[𝑥𝜇, 𝑥𝜈 ] = 𝑖𝛽𝐽𝜇𝜈 , [𝑥𝜇, 𝑝𝜇] = 𝑖(𝜂𝜇𝜈 + 𝛽𝑝𝜇𝑝𝜈), (4)

where 𝛽 is a parameter of the order of the square
of the Planck length, and 𝜂𝜇𝜈 = diag(−1, 1, 1, 1). The
generators 𝐽𝜇𝜈 are realized in the standard way as
𝐽𝜇𝜈 = 𝑥𝜇𝑝𝜈 − 𝑥𝜈𝑝𝜇.

In contrast with most models of the noncommuta-
tive geometry, commutators (4) are functions of the
phase space variables: this allows them to be com-
patible with a linear action of the Lorentz symmetry
on the phase space. However, translations act in a
nontrivial way on position variables.

It is important to remark that, depending on the
sign of the coupling constant 𝛽, two rather different
models can arise:

𝛽 > 0 Snyder model,
𝛽 < 0 anti-Snyder model.

They have very different properties. For example, the
Snyder model has a discrete spatial structure and a
continuous time spectrum, while the opposite holds
for the anti-Snyder one.

The subalgebra generated by 𝐽𝜇𝜈 and 𝑥𝜇 is isomor-
phic to the de Sitter/anti-de Sitter algebra. Hence,
the Snyder/anti-Snyder momentum spaces have the
same geometry as the de Sitter/anti-de Sitter space-
time. In fact, the Snyder momentum space can be
represented as a hyperboloid ℋ of the equation

𝜁2𝐴 = 1/𝛽 (5)

embedded in a 5D space of coordinates 𝜁𝐴 with signa-
ture (−,+,+,+,+) or, equivalently, as a coset space
SO(1,4)/SO(1,3).

The Snyder commutation relations are recovered
through the choice of isotropic (Beltrami) coordinates
on ℋ

𝑝𝜇 = 𝜁𝜇/𝜁4 (6)

and the identification

𝑥𝜇 =𝑀𝜇4, 𝐽𝜇𝜈 =𝑀𝜇𝜈 , (7)

where 𝑀𝐴𝐵 are the Lorentz generators in 5D. Note
that this construction implies that 𝑝2 < 1/𝛽 and,
hence, the existence of a maximal mass of the order
of the Planck mass for elementary particles. This is a
common feature in models with a curved momentum
space [12, 13].

The momentum space of the anti-Snyder model
can be represented analogously, as a hyperboloid of
Eq. (5) with 𝛽 < 0, embedded in a 5D space of coor-
dinates 𝜁𝐴 with signature (+,−,−,−,+) or, equiv-
alently, as a coset space SO(2,3)/SO(1,3). Again,
the anti-Snyder commutation relations are recovered
through the choice of isotropic coordinates (6) and
identification (7). An important difference from the
previous case is that the momentum squared is now
unbounded. In the following, we shall concentrate on
the Snyder space, but most results hold also for 𝛽 < 0.

3. Generalizations of the Snyder Model

The Snyder model can be generalized by choos-
ing different isotropic parametrizations of the mo-
mentum space, but maintaining the identification
𝑥𝜇 =𝑀𝜇4. In this way, Eqs. (1)–(3) and the position
commutation relations still hold, but [𝑥𝜇, 𝑝𝜈 ] is de-
formed. For example, choosing 𝑝𝜇 = 𝜁𝜇, one obtains
[25, 26]

[𝑥𝜇, 𝑥𝜈 ] = 𝑖𝛽𝐽𝜇𝜈 , [𝑥𝜇, 𝑝𝜈 ] = 𝑖
√︀
1 + 𝛽𝑝2 𝜂𝜇𝜈 . (8)

The most general choice that preserves the Poincaré
invariance is [27]

𝑝𝜇 = 𝑓(𝜁2)𝜁𝜇, 𝑥𝜇 = 𝑔(𝜁2)𝑀𝜇4. (9)

Algebraically, the same models can also be ob-
tained by deforming the Heisenberg algebra as [25,
26, 28]

[𝑥𝜇, 𝑥𝜈 ] = 𝑖𝛽𝐽𝜇𝜈 𝜓(𝛽𝑝
2),

[𝑥𝜇, 𝑝𝜈 ] = 𝑖
[︀
𝜂𝜇𝜈𝜑1(𝛽𝑝

2) + 𝛽𝑝𝜇𝑝𝜈𝜑2(𝛽𝑝
2)
]︀
.

(10)

The functions 𝜑1 and 𝜑2 are arbitrary, but the Jacobi
identity yields
𝜓 = 𝜑1𝜑2 − 2(𝜑1 + 𝛽𝑝2𝜑2)

𝑑𝜑1
𝑑(𝛽𝑝2)

. (11)

A different kind of generalization is obtained by
choosing a curved spacetime (de Sitter) background,
imposing nontrivial commutation relations between
the momentum variables,

[𝑝𝜇, 𝑝𝜈 ] = 𝑖𝛼𝐽𝜇𝜈 , (12)

992 ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 11



The Snyder Model and Quantum Field Theory

with 𝛼 proportional to the cosmological constant.
This idea goes back to Yang [29], but was later elab-
orated in a more compelling way in [30]. We call this
generalization the Snyder–de Sitter (SdS) model.

The other commutation relations are unchanged,
except for that now, by the Jacobi identities,

[𝑥𝜇, 𝑝𝜈 ] = 𝑖
(︁
𝜂𝜇𝜈 + 𝛼𝑥𝜇𝑥𝜈 + 𝛽𝑝𝜇𝑝𝜈 +

+
√︀
𝛼𝛽(𝑥𝜇𝑝𝜈 + 𝑝𝜇𝑥𝜈)

)︁
. (13)

This model depends on two invariant scales besides
the speed of light, that are usually identified with
the Planck mass and the cosmological constant, from
which the alternative name is triply special relativ-
ity, proposed in [30]. It must be noted that, in or-
der to have real structure constants, both 𝛼 and 𝛽
must have the same sign. There are indications that
the introduction of 𝛼 might be necessary to obtain
a well-behaved low-energy limit of quantum gravity
theories [30].

An interesting property of the SdS model is its du-
ality for the exchange 𝛼𝑥↔ 𝛽𝑝 [31], that realizes the
Born reciprocity [32]. The phase space can be embed-
ded in a 6D space as SO(1,5)

SO(1,3)×O(2) , if 𝛼, 𝛽 > 0, or as
SO(2,4)

SO(1,3)×O(2) , if 𝛼, 𝛽 < 0 [33].
Alternatively, one can construct the SdS algebra

directly from that of Snyder by the nonunitary trans-
formation
𝑥𝜇 = �̂�𝜇 + 𝜆

𝛽

𝛼
𝑝𝜇, 𝑝𝜇 = (1− 𝜆)𝑝𝜇 − 𝛼

𝛽
�̂�𝜇, (14)

where �̂�𝜇, 𝑝𝜇 are generators of the Snyder algebra and
𝜆 is a free parameter [33].

4. Phenomenological Applications

A wide literature considers the phenomenological im-
plications of the nonrelativistic Snyder model, espe-
cially in connection with the generalized uncertainty
principle (GUP) [34, 35]. However, we are interested
in the relativistic case, which has obtained much less
consideration. Some consequences are:

∙ Deformed relativistic uncertainty relations: from
the deformed Heisenberg algebra, one gets

Δ𝑥𝜇Δ𝑝𝜈 ≥ 1

2
(𝜂𝜇𝜈 + 𝛽Δ𝑝𝜇Δ𝑝𝜈). (15)

The spatial components essentially coincide with
those considered in GUP.

∙ Modification of the perihelion shift of planetary
orbits [36]: provided that the model is applicable to
macroscopic phenomena, on a Schwarzschild back-
ground, the perihelion shift gets an additional contri-
bution, 𝛿𝜃 = 𝛿𝜃𝑟𝑒𝑙

(︀
1 + 5

3𝛽𝑚
2
)︀
, where 𝑚 is the planet

mass. This correction clearly breaks the equivalence
principle on Planck scales.

∙ DSR-like effects [37,38]: no effects of time delay of
cosmological photons occur, contrary to other models
derived from a noncommutative geometry [39], but
some higher-order effects are still present.

5. Hopf Algebras

In the study of noncommutative models, an impor-
tant tool is given by the Hopf algebra formalism [9],
especially in relation with QFT.

Since, in a noncommutative geometry, spacetime
coordinates are noncommuting operators, the com-
position of two plane waves 𝑒𝑖𝑝 𝑥 and 𝑒𝑖𝑞 𝑥 gives rise
to nontrivial addition rules for the momenta denoted
by 𝑝 ⊕ 𝑞, that are described by the coproduct struc-
ture of a Hopf algebra Δ(𝑝, 𝑞). The addition law is in
general noncommutative.

Moreover, the opposite of the momentum is deter-
mined by the antipode of the Hopf algebra, 𝑆(𝑝), such
that 𝑝⊕ 𝑆(𝑝) = 𝑆(𝑝)⊕ 𝑝 = 0.

The algebra associated to the Snyder model can be
calculated (classically) using the geometric represen-
tation of the momentum space as a coset space men-
tioned above and calculating the action of the group
multiplication on it [40].

Alternatively, one can use the algebraic formalism
of realizations [25, 26]: a realization of the noncom-
mutative coordinates 𝑥𝜇 is defined in terms of coordi-
nates 𝜉𝜇, 𝑝𝜇 that satisfy the canonical commutation
relations

[𝜉𝜇, 𝜉𝜈 ] = [𝑝𝜇, 𝑝𝜈 ] = 0, [𝜉𝜇, 𝑝𝜈 ] = 𝜂𝜇𝜈 , (16)

by assigning a function 𝑥𝜇(𝜉𝜇, 𝑝𝜇) that satisfies the
Snyder commutation relations.

The 𝑥𝜇 and 𝑝𝜇 are now interpreted as operators
acting on a function of 𝑥𝜇, as

𝜉𝜇 B 𝑓(𝜉) = 𝜉𝜇𝑓(𝜉), 𝑝𝜇 B 𝑓(𝜉) = −𝑖𝜕𝑓(𝜉)/𝜕𝜉𝜇.

In particular, it is easy to show that the most general
realization of the Snyder model is given by [28]

𝑥𝜇 = 𝜉𝜇 + 𝛽 𝜉 ·𝑝 𝑝𝜇 + 𝛽𝜒(𝛽𝑝2) 𝑝𝜇, (17)
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where the function 𝜒(𝛽𝑝2) is arbitrary and does not
contribute to the commutators, but takes into ac-
count the ambiguities arising from the operator or-
dering of 𝜉𝜇 and 𝑝𝜇 into account.

In general, it can be shown that, for any noncom-
mutative model [41],

𝑒𝑖𝑘 𝑥 B 𝑒𝑖𝑞 𝜉 = 𝑒𝑖𝒫(𝑘,𝑞) 𝜉+𝑖𝒬(𝑘,𝑞), (18)

where the functions 𝒫𝜇 and 𝒬 can be deduced from
the realization. Moreover,

𝑒𝑖𝑘 𝑥 B 1 = 𝑒𝑖𝒦(𝑘) 𝜉+𝑖𝒥 (𝑘) (19)

with 𝒦𝜇(𝑘) ≡ 𝒫𝜇(𝑘, 0) and 𝒥 (𝑘) ≡ 𝒬(𝑘, 0). The gen-
eralized addition of momenta is then given by

𝑘𝜇 ⊕ 𝑞𝜇 = 𝒟𝜇(𝑘, 𝑞), (20)

with 𝒟𝜇(𝑘, 𝑞) = 𝒫𝜇(𝒦−1(𝑘), 𝑞), and the coproduct is
simply

Δ𝑝𝜇 = 𝒟𝜇(𝑝⊗ 1, 1⊗ 𝑝). (21)

Note that 𝒟𝜇 is independent of 𝜒. Moreover, the
antipode 𝑆(𝑝𝜇) is −𝑝𝜇 for all (generalized) Snyder
models.

A fundamental property of the Snyder addition law
is that it is nonassociative. Hence, the algebra is non-
coassociative, so it is strictly not a Hopf algebra.

For the calculations, it is also useful to define a star
product, that gives a representation of the product
of functions of the noncommutative coordinates 𝑥 in
terms of a deformation of the product of functions of
the commuting coordinates 𝜉. In particular, from the
previous results, one can calculate the star product
of two plane waves:

𝑒𝑖𝑘 𝜉 ⋆ 𝑒𝑖𝑞 𝜉 = 𝑒𝑖𝒟(𝑘,𝑞) 𝜉+𝑖𝒢(𝑘,𝑞), (22)

where

𝒢(𝑘, 𝑞) = 𝒬(𝒦−1(𝑘), 𝑞)−𝒬(𝒦−1(𝑘), 0). (23)

We consider now a Hermitian realization of the
Snyder commutation relations

𝑥𝜇 = 𝜉𝜇 +
𝛽

2
(𝜉 · 𝑝 𝑝𝜇 + 𝑝𝜇𝑝 · 𝜉) =

= 𝜉𝜇 + 𝛽 𝜉 · 𝑝 𝑝𝜇 − 5𝑖

2
𝛽 𝑝𝜇. (24)

The request of the Hermiticity will be important for
the field theory. We get

𝒟𝜇(𝑘, 𝑞) =
1

1− 𝛽𝑘 · 𝑞

[︃(︃
1 +

𝛽 𝑘 · 𝑞
1 +

√︀
1 + 𝛽𝑝2

)︃
𝑘𝜇+

+
√︀
1 + 𝛽𝑝2 𝑞𝜇

]︃
,

𝒢(𝑘, 𝑞) = 5𝑖

2
ln[1− 𝛽 𝑘 · 𝑞].

(25)

Hence,

𝑒𝑖𝑘·𝜉 ⋆ 𝑒𝑖𝑞·𝜉 =
𝑒𝑖𝒟(𝑘,𝑞)·𝜉

(1− 𝛽 𝑘 · 𝑞)5/2
. (26)

6. QFT in the Snyder Space

Let us consider a QFT for a scalar field 𝜑 on the
Snyder space. Usually, the field theories in noncom-
mutative spaces are constructed by continuing to the
Euclidean signature and writing the action in terms
of the star product [7, 8].

In fact, the action functional for a free massive real
scalar field 𝜑(𝑥) can be defined through the star prod-
uct as [28]

𝑆free[𝜑] =
1

2

∫︁
𝑑4𝜉 (𝜕𝜇𝜑 ⋆ 𝜕

𝜇𝜑+𝑚2𝜑 ⋆ 𝜑). (27)

The star product of two real scalar fields 𝜑(𝜉) and
𝜓(𝜉) can be computed by expanding them in Fourier
series,

𝜑(𝜉) =

∫︁
𝑑4𝑘 𝜑(𝑘)𝑒𝑖𝑘·𝜉. (28)

Then, using (26),∫︁
𝑑4𝜉 𝜓(𝜉) ⋆ 𝜑(𝜉) =

∫︁
𝑑4𝜉

∫︁
𝑑4𝑘 𝑑4𝑞 𝜓(𝑘)𝜑(𝑞)×

× 𝑒𝑖𝑘 𝜉 ⋆ 𝑒𝑖𝑞 𝜉 =

∫︁
𝑑4𝑘 𝑑4𝑞 𝜓(𝑘)𝜑(𝑞)

𝛿(4)
(︀
𝒟(𝑘, 𝑞)

)︀
(1− 𝛽 𝑘 · 𝑞)5/2

.

(29)
But,

𝛿(4)
(︀
𝒟(𝑘, 𝑞)

)︀
=

𝛿(4)(𝑞 + 𝑘)⃒⃒⃒
det
(︁
𝜕𝒟𝜇(𝑘,𝑞)

𝜕𝑞𝜈

)︁⃒⃒⃒
𝑞=−𝑘

=

= (1 + 𝛽𝑘2)5/2𝛿(4)(𝑞 + 𝑘). (30)

The two (1 + 𝛽 𝑘2)5/2 factors cancel, and then [28]∫︁
𝑑4𝜉 𝜓(𝜉) ⋆ 𝜑(𝜉) =

∫︁
𝑑4𝜉 𝜓(𝜉)𝜑(𝜉). (31)
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This is called the cyclicity property and occurs also
in other noncommutative models; it follows that the
free theory is identical to the commutative one,

𝑆free[𝜑] =
1

2

∫︁
𝑑4𝜉

(︀
𝜕𝜇𝜑𝜕𝜇𝜑+𝑚2𝜑2

)︀
. (32)

The propagator is, therefore, the standard one

𝐺(𝑘) =
1

𝑘2 +𝑚2
. (33)

Note that the cyclicity property is a consequence of
our choice of a Hermitian representation for the op-
erator 𝑥 and can be related to the choice of a correct
measure in the curved momentum space.

The interaction theory is much more difficult to be
investigated. Several problems arise:

∙ The addition law of momenta is noncommutative
and nonassociative; therefore, one must define some
ordering for the lines entering a vertex and then take
an average.

∙ The conservation law of momentum is deformed
at vertices, so the loop effects may lead to the non-
conservation of the momentum in a propagator.

For example, let us consider the simplest case, a 𝜑4
theory [22, 23]

𝑆int = 𝜆

∫︁
𝑑4𝜉 𝜑 ⋆ (𝜑 ⋆ (𝜑 ⋆ 𝜑)). (34)

The parentheses are necessary, because the star prod-
uct is nonassociative. Our definition fixes this ambi-
guity, but other choices are possible.

With this choice, the 4-point vertex function turns
out to be

𝐺(0)(𝑝1, 𝑝2, 𝑝3, 𝑝4) =
∑︁
𝜎∈𝑆4

𝛿
(︁
𝒟4(𝜎(𝑝1, 𝑝2, 𝑝3, 𝑝4))

)︁
×

× 𝑔3(𝜎(𝑝1, 𝑝2, 𝑝3, 𝑝4)),

where

𝒟4(𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝑞1 +𝒟(𝑞2,𝒟(𝑞3, 𝑞4)), (35)
𝑔3(𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝑒𝑖𝒢(𝑞2,𝒟(𝑞3,𝑞4))𝑒𝑖𝒢(𝑞3,𝑞4), (36)

and 𝜎 denotes all possible permutations of the mo-
menta entering the vertex.

With the expressions for the propagator and the
vertex, one can compute Feynman diagrams. For ex-
ample, the one-loop two-point function depicted in
Figure in the position space is given by

𝐺(1)(𝜉1, 𝜉2) =

= −1

2

𝜆

4!

∫︁
𝑑4𝑝1𝑑

4𝑝2𝑑
4ℓ

𝑒𝑖𝑝1𝜉1

𝑝21 +𝑚2

𝑒𝑖𝑝2𝜉2

𝑝22 +𝑚2

1

ℓ2 +𝑚2
×

×
∑︁
𝜎

𝛿
(︁
𝐷4(𝜎(𝑝1, 𝑝2, ℓ,−ℓ))

)︁
𝑔3

(︁
𝜎(𝑝1, 𝑝2, ℓ,−ℓ)

)︁
. (37)

To evaluate the diagram, one must consider 24
permutations of the momenta entering the vertex.
Among these, only 8 conserve the momentum (i.e.
𝑝1 = −𝑝2), while the remaining 16 do not.

At the linear level in 𝛽, the calculation can be done
explicitly, showing stronger divergences than in the
commutative theory [22, 23]. However, the effects of
momentum nonconservation cancel out.

Attempting instead a calculation at all orders in 𝛽,
not all diagrams can be explicitly computed [24]. It
can be shown, however, that the divergences are
suppressed with respect to the noncommutative the-
ory, and there are even indications that the integrals
might be finite, at least for the interaction (34).

If instead, the renormalization is necessary, the
phenomenon of UV/IR mixing could still be present,
as in other noncommutative models [7, 8]. We recall,
however, that a model that avoids this problem in the
Moyal theory was proposed by Grosse and Wulken-
haar [42] (GW model). Its main characteristic is that,
besides the kinetic and interaction terms, its action
also contains a term proportional to 𝜑𝑥2𝜑. A similar
mechanism can be recovered in the Snyder theory by
considering a curved background (SdS model) [43].

In fact, using relation (14) between the SdS and
the Snyder algebra with 𝜆 = 0 and realization (24) of
the Snyder algebra, the action can be reduced, at the
zeroth order in 𝛼, 𝛽, to

𝑆free =

∫︁
𝑑𝜉4𝜑

[︂
𝑝2 +

𝛼

𝛽
𝜉2 +𝑚2 +𝑂(𝛼, 𝛽)

]︂
𝜑, (38)

Action (38) is identical to that of the free GW
model. One may therefore hope for that, also in this
case, the IR divergences are suppressed, and one can
obtain a renormalizable theory.

One-loop two-point function
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7. Conclusions

We have reviewed the present status of researches on
the Snyder model, the earliest example of the non-
commutative geometry, and the only one that pre-
serves the Lorentz invariance. In particular, we con-
centrated on the definition of a quantum field theory
defined in accord with the standard noncommutative
formalism and on the issue of renormalizability. It
turns out that, although an exact calculation has not
been performed in full, there is good evidence of the
renormalizability and the absence of UV/IR mixing,
at least in the SdS model.
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С.Мiньємi

МОДЕЛЬ СНАЙДЕРА ТА КВАНТОВА ТЕОРIЯ ПОЛЯ

Р е з ю м е

Дано огляд основних характерних особливостей реляти-
вiстської моделi Снайдера та її узагальнень. Обговорюється
квантова теорiя поля на цiй основi з використанням стан-
дартного формалiзму некомутативної КТП, а також мо-
жливiсть отримання скiнченної теорiї.
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