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CONTACT INTERACTIONS
IN ONE-DIMENSIONAL QUANTUM MECHANICS:
A FAMILY OF GENERALIZED 𝛿′-POTENTIALS 1

A “one-point” approximation is proposed to investigate the transmission of electrons through
the extra thin heterostructures composed of two parallel plane layers. The typical example is the
bilayer for which the squeezed potential profile is the derivative of Dirac’s delta function. The
Schrödinger equation with this singular one-dimensional profile produces a family of contact
(point) interactions each of which (called a “distributional” 𝛿′-potential) depends on the way of
regularization. The discrepancies widely discussed so far in the literature regarding the family
of delta derivative potentials are eliminated using a two-scale power-connecting parametrization
of the bilayer potential that enables one to extend the family of distributional 𝛿′-potentials to
a whole class of “generalized” 𝛿′-potentials. In a squeezed limit of the bilayer structure to zero
thickness, the resonant tunneling through this structure is shown to occur in the form of sharp
peaks located on the sets of Lebesgue’s measure zero (called resonance sets). A four-dimensional
parameter space is introduced for the representation of these sets. The transmission on the
complement sets in the parameter space is shown to be completely opaque.
K e yw o r d s: point interactions, transmission, resonant tunneling, heterostructures.

1. Introduction

Starting with the pioneering work by Berezin and
Faddeev [1], various exactly solvable models described
by the Schrödinger operators with singular zero-
range potentials have been studied within the the-
ory of self-adjoint extensions of symmetric opera-
tors. These models are specified by the potentials de-
fined on the sets consisting of isolated points. The-
refore in the literature, they are usually referred
to as “contact” or “point” interactions (see books
[2–4] for details and references). A whole body of
works (see, e.g., [5–11], a few to mention), includ-
ing the very recent studies [12–19] with references
therein, has been published. There, the one-dimen-
sional Schrödinger operators were defined via distri-
butions and corresponding two-sided boundary con-
ditions (BCs) at the points of singularity. Alterna-
tively, besides this “point” approach, one can real-
ize various families of point interactions (PIs) from
the Schrödinger equation with regular finite-range
potentials in a squeezed limit [20–35]. We refer
the “squeezing” approach as a “point” approxima-
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tion of realistic finite-range systems (e.g., ultrathin
layered sheets). The advantage of both the distribu-
tional and squeezing approaches is the possibility to
get the resolvents of these operators in an explicit
form, to find their spectra, and to compute scatter-
ing coefficients.

In the present paper, we are dealing with the sta-
tionary Schrödinger equation in one dimension

−𝜓′′(𝑥) + 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥), (1)

where 𝑉 (𝑥) is a real-valued function defined on the
line −∞ < 𝑥 < ∞, being either a regular func-
tion or a distribution. There exists a one-to-one cor-
respondence between the full set of self-adjoint ex-
tensions of the one-dimensional kinetic energy op-
erator and the two families of BCs: non-separated
and separated. The non-separated extensions describe
non-trivial four-parameter PIs subject to the BCs at
𝑥 = ± 0 on the wave function 𝜓(𝑥) and its derivative

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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𝜓′(𝑥) given by the connection matrix Λ of the form [7](︂
𝜓(+0)
𝜓′(+0)

)︂
= Λ

(︂
𝜓(−0)
𝜓′(−0)

)︂
, Λ = ei𝜒

(︂
𝜆11 𝜆12
𝜆21 𝜆22

)︂
. (2)

Here, 𝜒 ∈ [0, 𝜋) and the 𝜆-elements are finite real
parameters fulfilling the condition 𝜆11𝜆22 − 𝜆12𝜆21 =
= 1. In the case where some of the 𝜆-elements are in-
finite, the corresponding PI is separated, being com-
pletely opaque for an incident particle. For instance,
if the diagonal elements 𝜆11 and 𝜆22 are finite, but
one of the off-diagonal elements is infinite, we have
either the Dirichlet BCs 𝜓(± 0) = 0 (if 𝜆21 is infinite
and 𝜆12 = 0) or the Neumann BCs 𝜓′(± 0) = 0 (if
𝜆12 is infinite and 𝜆21 = 0).

Some particular examples of Eq. (1) and the cor-
responding Λ-matrix (2) are important in applica-
tions. One of the representations of this matrix to be
considered in the present paper is

Λ =

(︂
𝜃 0
𝛼 𝜃−1

)︂
, 𝜃, 𝛼 ∈ R. (3)

The particular case 𝜃 = 1 corresponds to the sim-
plest and most widespread PI called a 𝛿-potential. In
this case, the potential in Eq. (1) is defined by Dirac’s
delta function 𝛿(𝑥), i.e., 𝑉 (𝑥) = 𝛼𝛿(𝑥), where 𝛼 is
a strength constant (or intensity). The wave func-
tion 𝜓(𝑥) for this interaction is continuous at the
origin 𝑥 = 0, whereas its derivative undergoes a
jump 𝛼. As derived in [23–31], if the potential part
in Eq. (1) is the derivative of the delta function i.e.,
𝑉 (𝑥) = 𝛾𝛿′(𝑥), 𝛿′(𝑥) := 𝑑𝛿(𝑥)/𝑑𝑥, with 𝛾 ∈ R being
a strength constant, we have 𝜃 ̸= 1. Extending a bit
the classification suggested by Brasche and Nizhnik
[15], we call any PI described by the Λ-matrix of the
form (3) with 𝜃 ̸= 1 (even if 𝛼 ̸= 0) a “generalized”
𝛿′-potential. Concerning the particular case of a delta
derivative potential 𝛾𝛿′(𝑥) in Eq. (1), we refer the re-
sulting PI as a “distributional” 𝛿′-potential (also even
if 𝛼 ̸= 0).

On the other hand, as historically adopted in the
literature (see, e.g., [3]), the PI, for which the deriva-
tive 𝜓′(𝑥) is continuous at the origin, but 𝜓(𝑥) dis-
continuous, is called a 𝛿′-interaction. Its more gen-
eralized (two-parameter) version [36] is described by
the connection matrix of the form

Λ =

(︂
𝜃 𝛽
0 𝜃−1

)︂
, 𝜃, 𝛽 ∈ R. (4)

Different aspects of the 𝛿′-interaction with 𝜃 = 1 in
(4) have been investigated in a series of publications
(see, e.g., [9–11, 20–22, 37–39]). Note that the term
“𝛿′-interaction” is somewhat misleading, because the
form of Λ-matrix (4) differs from representation (3)
that really corresponds to a delta derivative poten-
tial in Eq. (1). Therefore, the terms “𝛿′-potential” and
“𝛿′-interaction” describe the two completely different
situations (for details, see [15]).

2. Resonant Tunneling
Through a Distributional 𝛿′-Potential

Consider Eq. (1) with the delta derivative potential
𝑉 (𝑥) = 𝛾𝛿′(𝑥) treated through the regularization
Δ′

𝜀(𝑥) → 𝛿′(𝑥) in the sense of distributions. Accor-
ding to Seba’s theorem [20], for any regular function
𝒱(𝜉) such that

Δ′
𝜀(𝑥) = 𝜀−2𝒱(𝑥/𝜀) → 𝛿′(𝑥) as 𝜀→ 0, (5)

the corresponding PI is separated, and the BCs
𝜓(±0) = 0 hold true. This result means that the
zero transmission occurs for all 𝛾 ∈ R, asserting that
the delta derivative potential acts as a fully reflecting
wall.

Later on, Patil [40] computed the scattering coeffi-
cients for Eq. (1), using the limits

𝛿(𝑥+ 𝜀)− 𝛿(𝑥− 𝜀)

2𝜀
→ 𝛿′(𝑥) (6)

for the potential 𝑉 (𝑥) = 𝛾𝛿′(𝑥), 𝛾 ∈ R, and

𝛿(𝑥+ 𝜀)− 2𝛿(𝑥) + 𝛿(𝑥− 𝜀)

𝜀2
→ 𝛿′′(𝑥) (7)

for the potential 𝑉 (𝑥) = 𝑔𝛿′′(𝑥), 𝑔 ∈ R. As a result,
he found that both these potentials are fully reflect-
ing, in fact supporting Seba’s theorem in the case of
the delta derivative potential.

However, using another approximation to the dis-
tribution 𝛿′(𝑥), namely, the piecewise constant func-
tion

Δ′
𝜀(𝑥) =

⎧⎨⎩𝜀−2 for − 𝜀 < 𝑥 < 0,
− 𝜀−2 for 0 < 𝑥 < 𝜀,
0 for 𝜀 < |𝑥| <∞,

(8)

as the simplest regularization being a particular ex-
ample of (5), Christiansen et al. [23] observed that
the distributional 𝛿′-potential is not a fully reflected
interaction. It has been found a countable set of val-
ues 𝛾 ∈ R, where the transmission is non-zero. The
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connection matrix in this case is of the form (3) with
the element 𝜃 being finite, while the element 𝛼 di-
verges in general except for the discrete values of 𝛾,
where 𝛼 = 0. These values form one of the resonance
sets Γ0 for the family of distributional 𝛿′-potentials:

Γ0 = {𝛾 | tan√𝛾 = tanh
√
𝛾}. (9)

On this set, the connection matrix (3) takes the dis-
crete values with the elements

𝛼 = 0 and 𝜃 = cosh
√
𝛾/ cos

√
𝛾, 𝛾 ∈ Γ0. (10)

Beyond the set Γ0 (𝛾 /∈ Γ0), the transmission is
zero, and the BCs are of the Dirichlet type: 𝜓(± 0) =
= 0. Since potential (8) is a piecewise constant func-
tion, the transmission amplitude 𝒯𝜀 can be computed
explicitly as a function of 𝛾. In the limit as 𝜀→ 0, its
form consists of the countable set of sharp peaks that
converge pointwise to a discrete (resonance) set on
the 𝛾-line (see Fig. 1 computed numerically in [32]).

The existence of a resonance set has rigorously been
proven by Golovaty and Man’ko [26] for the whole
class of regularizing functions Δ′

𝜀(𝑥) defined by regu-
larization (5). Moreover, the boundary-value problem
for finding this set and the algorithm for computing
the element 𝜃 have been formulated. The gap in the
proof of Seba’s theorem has been found by Golovaty
and Hryniv [27]. It has been shown that the resonance
set Γ0 depends on the regularizing sequence Δ′

𝜀(𝑥). A
similar dependence has been established in the case
of the potential 𝑉 (𝑥) = 𝑔𝛿′′(𝑥) [41]. Therefore, the
family of regularizing sequences serves as a hidden pa-
rameter in Eq. (1) with the derivatives of 𝛿(𝑥). Thus,
contrary to the case with the potential 𝑉 (𝑥) = 𝛼𝛿(𝑥),
the differential equations with coefficients in the form
of the derivatives of 𝛿(𝑥) do not make a physical sense,
if they are used without any additional information.

The existence of the non-empty resonance sets on
which the transmission is non-zero contradicts Patil’s
result [40] appeared to be correct. Using approx-
imation (6), he obtained zero transmission for all
𝛾 ∈ R. This mismatch can be explained, if, for
the regularization of 𝛿′(𝑥), we use the same bar-
rier as well as defined by Eqs. (8), but separated
by a distance 𝑟. One can calculate then the trans-
mission 𝒯𝜀(𝑟) as a function of 𝜀 and 𝑟 and com-
pare both the repeated limits which appear to be
not the same. Indeed, lim𝜀→0 lim𝑟→0 𝒯𝜀(𝑟) → 0 al-
most everywhere, while lim𝑟→0 lim𝜀→0 𝒯𝜀(𝑟) → 0 ev-

Fig. 1. Transmission amplitude 𝒯𝜀 as a function of the
strength constant 𝛾 calculated at two values: 𝜀 = 0.01 (1),
𝜀 = 0.001 (2). The calculation has been done at 𝐸 = 0.01 eV
and 𝑚* = 0.1𝑚𝑒 (𝑚𝑒, the electron mass) in the system, where
~2/2𝑚* = 1

erywhere. This means that the relative rate of squeez-
ing the barrier-well thickness 𝜀 and the distance 𝑟
plays the crucial role in realizing PIs.

Thus, starting from the same regular potential
𝑉 (𝑥) = 𝛾Δ′

𝜀(𝑥), two families: (i) the non-resonant
PIs with Γ0 = ∅ and (ii) the resonant-tunneling PIs
with non-empty sets Γ0 = {𝛾𝑛}𝑛∈Z on which the limit
transmission 𝒯 is non-zero can be realized [31]. This
is an important result saying that different regular-
izations of the 𝛿′-distribution produce different solu-
tions of Eq. (1) with the potentials 𝑉 (𝑥) = 𝛾𝛿′(𝑥)
or 𝑉 (𝑥) = 𝑔𝛿′′(𝑥), contrary to the delta potential
𝑉 (𝑥) = 𝛼𝛿(𝑥).

3. Resonant Tunneling vs Kurasov’s Theory

Another mismatch appears, if we note that the wave
function 𝜓(𝑥) in Eq. (1) with the potential 𝑉 (𝑥) =
𝛾𝛿′(𝑥) must be discontinuous at the origin 𝑥 = 0. In
this case, the product 𝛿′(𝑥)𝜓(𝑥) is ambiguous and
should be defined properly. To this end, Griffiths [5]
and Kurasov [6] suggested to generalize the product
𝛿′(𝑥)𝜓(𝑥) = 𝜓(0)𝛿′(𝑥)− 𝜓′(0)𝛿(𝑥), valid for any con-
tinuous function 𝜓(𝑥) and its continuous derivative,
using the following “symmetrically averaged” repre-
sentation:

𝛿′(𝑥)𝜓(𝑥) =
𝜓(−0) + 𝜓(+0)

2
𝛿′(𝑥)−

− 𝜓′(−0) + 𝜓′(+0)

2
𝛿(𝑥). (11)

This representation can be generalized to an “asym-
metric” one-parameter form as suggested in [28].
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Differentiating twice the wave function written
in the form 𝜓(𝑥) = 𝜓(−0) exp(−i𝑘𝑥)Θ(−𝑥) +
𝜓(+0) exp(i𝑘𝑥)Θ(𝑥), 𝑘 =

√
𝐸 , where Θ(𝑥) is the step

function, and taking the relation exp(±i𝑘𝑥)𝛿′(𝑥) =
= 𝛿′(𝑥)∓ i𝑘𝛿(𝑥) into account, one finds [12, 28]

𝜓′′(𝑥) = − 𝑘2𝜓(𝑥) + [𝜓′(+0)− 𝜓′(−0)] 𝛿(𝑥)+

+ [𝜓(+0)− 𝜓(−0)] 𝛿′(𝑥). (12)

Using next both relations (11) and (12) in Eq. (1), we
find that the connection matrix for this equation with
the potential 𝑉 (𝑥) = 𝛾𝛿′(𝑥) takes the form (3) with

𝛼 = 0 and 𝜃 =
2 + 𝛾

2− 𝛾
, 𝛾 ̸= ± 2. (13)

This is a particular result of the general theory of dis-
tributions developed by Kurasov [6] on test functions
discontinuous at 𝑥 = 0.

Thus, the Λ-matrix derived within the approach
based on representation (11) continuosly depends on
the strength constant 𝛾 as shown in (13), while
the “resonant-tunneling” Λ-matrix with elements (10)
takes discrete values in the 𝛾-space. Both these rep-
resentations will be treated below within a unique
scheme using a two-scale squeezing procedure for a
two-layer structure.

4. Squeezed Limit of a Bilayer Structure

It is fascinating that both the controversial represen-
tations (10) and (13) can be obtained within a unique
procedure exploiting the very simple physical exam-
ple of a planar heterostructure consisting of two layers
separated by a distance, where the thicknesses of the
layers and the distance between them squeeze simul-
taneously to zero. The electron motion in the systems
of this type is usually confined in the longitudinal di-
rection (say, along the 𝑥-axis); the latter is perpendic-
ular to the transverse planes, where the electron mo-
tion is free. The three-dimensional Schrödinger equa-
tion of such a structure can be separated into longitu-
dinal and transverse parts and finally reduced to the
one-dimensional form (1).

4.1. Bilayer potential and its two-scale
power-connecting parametrization

Let us consider the potential in Eq. (1) in the form

𝑉 (𝑥) =

⎧⎨⎩𝑉1 for 0 < 𝑥 < 𝑙1,
0 for 𝑙1 < 𝑥 < 𝑙1 + 𝑟,
𝑉2 for 𝑙1 + 𝑟 < 𝑥 < 𝑙1 + 𝑟 + 𝑙2,

(14)

where 𝑉𝑗 ∈ R, 𝑗 = 1, 2, and 𝑟 > 0. This potential is
a piecewise constant function. Therefore, Eq. (1) ad-
mits an explicit solution which can be represented via
the transfer matrix Λ̄ as follows:(︂
𝜓(𝑥2)
𝜓′(𝑥2)

)︂
= Λ̄

(︂
𝜓(𝑥1)
𝜓′(𝑥1)

)︂
, Λ̄ =

(︂
�̄�11 �̄�12
�̄�21 �̄�22

)︂
, (15)

where 𝑥1 = 0 and 𝑥2 = 𝑙1 + 𝑟 + 𝑙2. Its elements are

�̄�11 =
[︀
cos(𝑘1𝑙1) cos(𝑘2𝑙2)−

− (𝑘1/𝑘2) sin(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
cos(𝑘𝑟)−

−
(︀
𝑘1/𝑘) sin(𝑘1𝑙1) cos(𝑘2𝑙2)+

+ (𝑘/𝑘2) cos(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
sin(𝑘𝑟), (16)

�̄�12 =
[︀
(1/𝑘1) sin(𝑘1𝑙1) cos(𝑘2𝑙2)+

+ (1/𝑘2) cos(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
cos(𝑘𝑟)+

+
[︀
(1/𝑘) cos(𝑘1𝑙1) cos(𝑘2𝑙2)−

− (𝑘/𝑘1𝑘2) sin(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
sin(𝑘𝑟), (17)

�̄�21 = −
[︀
𝑘1 sin(𝑘1𝑙1) cos(𝑘2𝑙2)+

+ 𝑘2 cos(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
cos(𝑘𝑟)−

−
[︀
𝑘 cos(𝑘1𝑙1) cos(𝑘2𝑙2)−

− (𝑘1𝑘2/𝑘) sin(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
sin(𝑘𝑟), (18)

�̄�22 =
[︀
cos(𝑘1𝑙1) cos(𝑘2𝑙2)−

− (𝑘2/𝑘1) sin(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
cos(𝑘𝑟)−

−
[︀
(𝑘/𝑘1) sin(𝑘1𝑙1) cos(𝑘2𝑙2)+

+ (𝑘2/𝑘) cos(𝑘1𝑙1) sin(𝑘2𝑙2)
]︀
sin(𝑘𝑟), (19)

where 𝑘 =
√
𝐸 and 𝑘𝑗 =

√︀
𝐸 − 𝑉𝑗 , 𝑗 = 1, 2. Here,

det Λ̄ = 1 and 𝑘𝑗 ’s may be either real or imagi-
nary. The notations with the overhead bars have been
introduced for the finite-range quantities.

In order to accomplish explicitly the zero-thickness
limit of the bilayer structure specified by elements
(16)–(19), we introduce a squeezing parameter 𝜀→ 0
and the power parametrization connected with this
parameter as follows:

𝑉𝑗 = 𝑎𝑗𝜀
−𝜈 , 𝑙1 = 𝑙2 = 𝑙 = 𝜀, 𝑟 = 𝑐 𝜀𝜏, (20)

where 𝑎𝑗 ∈ R, 𝑐, 𝜈, 𝜏 > 0 (𝑗 = 1, 2). Then the lay-
ers are described by the parameters from the four-
dimensional space ℳ := {𝜈, 𝜏} × {𝑎1, 𝑎2}. In the fol-
lowing instead of the bars, we provide the quantities
by the subscript 𝜀, replacing 𝑉 (𝑥) → 𝑉𝜀(𝑥), Λ̄ → Λ𝜀

and �̄�𝑖𝑗 → 𝜆𝑖𝑗,𝜀, 𝑖, 𝑗 = 1, 2.
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4.2. Existence sets for point interactions

It follows from the explicit form of the matrix ele-
ments (16)–(19), in which the parameters are defined
by Eqs. (20), that, in the limit as 𝜀 → 0, we have
𝜆12,𝜀 → 0, while the other elements may be finite
or even divergent. Note that the connecting-power
parametrization (20) differs from that used in many
publications (see, e.g., [9–11, 21, 22, 36–39]), where
the limit of 𝜆12,𝜀 is finite and non-zero realizing the 𝛿′-
interaction. Our following purpose is to find those sets
on the quadrant 𝑄++ := {0 < 𝜈 < ∞, 0 < 𝜏 < ∞},
where the diagonal elements 𝜆11,𝜀 and 𝜆22,𝜀 are fi-
nite and non-zero as 𝜀→ 0. We denote their limiting
values by 𝜃 and 𝜃−1, respectively. The existence of
finite 𝜃 and 𝜃−1 is a necessary condition for realiz-
ing PIs, even if the element 𝜆21,𝜀 diverges. If this
off-diagonal element is finite or zero (being 𝜃 and 𝜃−1

finite), the limiting PIs are non-separated with the Λ-
matrix (3). Otherwise, in the case of the divergence,
the PIs are separated, obeying the BCs 𝜓(± 0) = 0
and acting as fully reflecting walls.

Both the limiting matrix elements 𝜃 and 𝛼 found
from the analysis of the 𝜀 → 0 limit of the matrix
elements (16) and (18) parametrized by Eqs. (20) ap-
pear to be set functions in the ℳ-space. Performing
first the limiting procedure at each {𝜈, 𝜏}-point, we
encounter with the following characteristic sets on the
𝑄++-quadrant:

𝑄𝐼 := {𝑎1, 𝑎2 | 0 < 𝜈 < 1, 0 < 𝜏 <∞},
𝐿𝛿 := {𝑎1, 𝑎2 | 𝜈 = 1, 0 < 𝜏 <∞},
𝐿𝐾 := {𝑎1, 𝑎2 | 1 < 𝜈 < 2, 𝜏 = 𝜈 − 1},
𝑃1 := {𝑎1, 𝑎2 | 𝜈 = 2, 𝜏 = 1},
𝐿1 := {𝑎1, 𝑎2 | 𝜈 = 2, 1 < 𝜏 <∞},
𝐿2 := {𝑎1, 𝑎2 | 𝜈 = 2, 2 < 𝜏 <∞},
𝐿𝑆 := {𝑎1, 𝑎2 | 1 < 𝜈 < 2, 𝜏 = 2(𝜈 − 1)},
𝑃2 := {𝑎1, 𝑎2 | 𝜈 = 𝜏 = 2},
𝑄𝑆 := {𝑎1, 𝑎2 | 1 < 𝜈 < 2, 𝜈 − 1 < 𝜏 <∞},
𝑄1 := {𝑎1, 𝑎2 | 1 < 𝜈 < 2, 𝜈 − 1 < 𝜏 < 2(𝜈 − 1)},
𝑄2 := {𝑎1, 𝑎2 | 1 < 𝜈 < 2, 2(𝜈 − 1) < 𝜏 <∞},

(21)

which are illustrated by Fig. 2. Thus, “moving” on
the 𝑄++-quadrant from left to right, we examine
that, on the strip 𝑄𝐼 , the PIs are trivial describing
the perfect transmission (the Λ-matrix is the identity
𝐼). Next, on the line 𝐿𝛿, the transmission is partial,
and the point interactions are of the 𝛿-type. The to-
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Fig. 2. Set partition defined by Eqs. (21)

tal strength constant of the resulting 𝛿-potential is
the algebraic sum of the layer strengths. On the set
𝑄𝐼 ∪ 𝐿𝛿, there are no constraints on the strengths
𝑎1 and 𝑎2 (see Table). On the 𝑄++-sets displaced to
the right from the 𝐿𝛿 , the element 𝜆21,𝜀 diverges
in general as 𝜀 → 0. However, on certain subsets
of the {𝑎1, 𝑎2}-plane (of Lebesgue’s measure zero),
the cancellation of divergences may occur, resulting
in the finite limit of 𝜆21,𝜀. The cancellation effect
takes place on the open set 𝑄𝑆 including its boundary
𝐿𝛿′ := 𝐿𝐾 ∪ 𝑃1 ∪ 𝐿1, where the potential 𝑉𝜀(𝑥) con-
verges to 𝛾𝛿′(𝑥) in the sense of distributions under the
condition 𝑎1 + 𝑎2 = 0. Thus, the region of existence
of the distribution 𝛾𝛿′(𝑥) is the set 𝐿𝛿′ × Σ0 ∈ ℳ,
where

Σ0 := {𝑎1, 𝑎2 | 𝑎1 + 𝑎2 = 0}. (22)

Elements of Λ-matrix (3) as functions of ℳ-sets

ℳ-sets 𝜃 𝛼

𝑄0 × {𝑎1, 𝑎2} 1 0
𝐿𝛿 × {𝑎1, 𝑎2} 1 𝑎1 + 𝑎2

𝐿𝐾 × Σ𝑐 −𝑎1/𝑎2 0
𝑃1 × Σ′

𝑐 −
√
−𝑎1 sin

√
−𝑎1√

−𝑎2 sin
√
−𝑎2

0

𝑃2 × Σ′
0 cos

√
−𝑎1/ cos

√
−𝑎2 𝑐

√
−𝑎1 sin

√
−𝑎1×

×
√
−𝑎2 sin

√
−𝑎2

𝐿𝑆 × Σ0 1 −𝑐𝑎21
𝐿2 × Σ′

0 cos
√
−𝑎1/ cos

√
−𝑎2 0

𝑄2 × Σ0 1 0
𝑃1 × Γ𝑐 sinh

√
𝛾/ sin

√
𝛾 0

𝑃2 × Γ0 cosh
√
𝛾/ cos

√
𝛾 −𝑐𝛾 sinh

√
𝛾 sin

√
𝛾

𝐿2 × Γ0 cosh
√
𝛾/ cos

√
𝛾 0
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Here, the strength 𝛾 := 𝑎1 = − 𝑎2 is the set function

𝛾 = 𝑎1

⎧⎪⎨⎪⎩
𝑐 for 𝐿𝐾 ,

1 + 𝑐 for 𝑃1,

1 for 𝐿1.

(23)

Consequently, in the region 𝑄𝑆∪𝐿𝛿′ , the transmission
can be either zero or non-zero depending on some con-
straints imposed on 𝑎1 and 𝑎2. The 𝐿𝛿-line appears
to be a transient set splitting the regions of the “reg-
ular” and “singular” PIs. In its turn, the 𝐿𝛿′ -line is a
transient set separating the regions of the existence
and non-existence of PIs.

5. Λ-Matrix for Non-Separated
Point Interactions

There are two ways of the cancellation of divergences
as 𝜀 → 0 in the singular element 𝜆21,𝜀 given by
Eq. (18) and parametrized by (20). The first way is
to equate the whole expression (18) to zero, resulting
in 𝛼 = 0 in Λ-matrix (3). The second way is realized,
if only the term in front of cos(𝑘𝑟) in (18) equals zero,
retaining the term in front of sin(𝑘𝑟) to be “free”.

5.1. Realizing point interactions as 𝜆21,𝜀 → 0

Imposing the constraint 𝜆21,𝜀 → 0 in Eq. (18), we
find that the non-separated PIs can be realized only
on the line 𝐿𝐾 including its limiting point 𝑃1. This
realization occurs only on some sets in the {𝑎1, 𝑎2}-
space forming a family of curves. Thus, on the 𝐿𝐾-
line, the existence set consists of two curves given by

Σ𝑐 := {𝑎1, 𝑎2 | 𝑎1 + 𝑎2 + 𝑐 𝑎1𝑎2 = 0}. (24)

Using this relation between 𝑎1 and 𝑎2 in Eqs. (16) and
(19) parametrized by (20), we obtain 𝜃 = − 𝑎1/𝑎2.
Equating this value and expression (13), we get the
{𝑎1, 𝑎2}-representation of the strength constant 𝛾 for
Kurasov’s 𝛿′𝐾-potential: 𝛾 = 2(𝑎1 + 𝑎2)/(𝑎1 − 𝑎2).
This representation does not coincide with the first
formula in Eqs. (23) associated with the distribution
𝛾𝛿′(𝑥), except for the trivial case: Σ𝑐∩Σ0 = {0}. The-
refore, no distributional 𝛿′-potentials can exist on the
line 𝐿𝐾 .

However, while approaching the limiting point 𝑃1,
the situation crucially changes because of the appear-
ance of a countable number of curves

Σ′
𝑐 := {𝑎1, 𝑎2 | 𝐴1 +𝐴2 = 𝑐𝐴1𝐴2} (25)

with

𝐴𝑗 :=
√︀

− 𝑎𝑗 tan
√︀
− 𝑎𝑗 , 𝑗 = 1, 2, (26)

on which 𝜆21,𝜀 → 0 as 𝜀 → 0. Similarly to [34], we
refer this “furcation” effect as the splitting of the 𝛿′𝐾-
potential defined on the resonance set 𝐿𝐾 × Σ𝑐 into
the countable family of generalized 𝛿′-potentials de-
fined on the resonance set 𝑃1 ×Σ′

𝑐. Beyond the reso-
nance sets Σ𝑐 and Σ′

𝑐 , the PIs are separated obeying
the BCs 𝜓(± 0) = 0. Using the expressions for these
resonance sets in Eqs. (16) and (19), in the limit as
𝜀→ 0, we get the explicit values for the element 𝜃 in
Λ-matrix (3), which are written out in Table. Particu-
larly, as derived in [28], the intersection Γ𝑐 := Σ′

𝑐∩Σ0

[setting 𝑎1 = − 𝑎2 = 𝛾, 𝜈 = 2 with 𝜏 ∈ (2,∞)] yields
a discrete set

Γ𝑐 = {𝛾 | tan√𝛾 = tanh
√
𝛾/(1 + 𝑐

√
𝛾 tanh

√
𝛾) (27)

in the 𝛾-space. As a result, the elements of Λ-matrix
(3) also take the discrete values:

𝛼 = 0 and 𝜃 = sinh
√
𝛾/ sin

√
𝛾, 𝛾 ∈ Γ𝑐. (28)

Therefore, the four-dimensional ℳ-representation of
resonance sets allows us to “cover” both the “contin-
uous” and “discrete” representations from a unique
point of view.

5.2. Realizing point
interactions as 𝜆21,𝜀 → 𝛼 ∈ R
The second way of the cancellation of divergences oc-
curs on the angular domain 𝐿𝑆 ∪𝑃2 ∪𝐿2 ∪𝑄2 result-
ing in the appearance of the resonance sets, where
the set Σ0 defined by Eq. (22) is a constituent. Thus,
on the line 𝐿𝑆 , the limiting element 𝛼 in general is
non-zero, and 𝜃 = 1, so that the corresponding PI is
of the delta type. The 𝐿𝑆-line is a transient set (with
partial transmission) separating the regions 𝑄1 (full
reflection) and 𝑄2 (perfect transmission). In the one-
dimensional case, the existence of the point 𝜗 = 1/2
that separates the whole axis −∞ < 𝜗 < ∞ into a
non-transparent half-axis and a half-axis of full trans-
parency has been discovered by Seba in [20]. There-
fore, we call this delta PI, realized due to the cancel-
lation of divergences on the resonance set 𝐿𝑆 × Σ0,
the 𝛿𝑆-potential.

While approaching the limiting set 𝑃2∪𝐿2, the set
Σ0 splits into the countable set

Σ′
0 := {𝑎1, 𝑎2 | 𝐴1 +𝐴2 = 0}, (29)
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where 𝐴1 and 𝐴2 are defined by Eqs. (26). Corres-
pondingly, on the resonance sets 𝑃2×Σ′

0 and 𝐿2×Σ′
0,

the Λ-matrix elements 𝜃 and 𝛼 can be computed ex-
plicitly, and their values are pointed out in Table. Si-
milarly, the resonance set for the distributional 𝛿′-
potential is the intersection Γ0 := Σ′

0 ∩ Σ0. Setting
𝑎1 = −𝑎2 = 𝛾 and 𝜈 = 2 with 𝜏 → ∞, we obtain
expressions (9) and (10).

6. Concluding Remarks

Thus, the whole family of the singular PIs realized
on the set 𝑄𝑆 ∪𝐿𝛿′ can be interpreted as the objects
with resonant tunneling through a single-point poten-
tial. This phenomenon emerges from the cancellation
of divergences in the most singular element 𝜆21,𝜀 as
𝜀 → 0. The two-scale parametrization (20) allows us
to resolve the controversy (existing so far in the liter-
ature) between the discrete [see Eqs. (9), (10), (27),
(28)] and continuous [see Eqs. (13)] presentations of
Λ-matrix (3). It is convenient to present the reso-
nance sets in the four-dimensional space ℳ. They are
written out in the Table together with the elements 𝜃
and 𝛼 of the Λ-matrix as functions of the resonance
sets. The limiting transmission amplitude 𝒯 is given
in terms of these elements according to the following
formula: 4 𝒯 −1 = (𝜃+𝜃−1)2+(𝛼/𝑘)2 (for details, see,
e.g., [31]).

Another key point is the existence of boundary
cluster sets, where two types of splitting the res-
onance sets occur: Σ0 =⇒ Σ′

0 and Σ𝑐 =⇒ Σ′
𝑐 .

On these sets, three types of splitting the PIs
are singled out: 𝛿′𝐾 (𝐿𝐾 × Σ𝑐) =⇒ 𝛿′(𝑃1 × Σ′

𝑐),
𝛿𝑆 (𝐿𝑆 × Σ0) =⇒ 𝛿′(𝑃2 × Σ′

0, ) and 𝐼𝑃 (𝑄2 × Σ0) =⇒
=⇒ 𝛿′(𝐿2 × Σ′

0) , where 𝐼𝑃 denotes the family of PIs
with perfect transmission. On the set [𝑄1∪(𝐿1∖𝐿2)]×
{𝑎1, 𝑎2} and beyond the resonance sets listed in the
Table from the third line to the sixth one, the PIs
are fully non-transparent fulfilling the Dirichlet BCs
𝜓(± 0) = 0.
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КОНТАКТНI ВЗАЄМОДIЇ
В ОДНОВИМIРНIЙ КВАНТОВIЙ МЕХАНIЦI:
СIМ’Я УЗАГАЛЬНЕНИХ 𝛿′-ПОТЕНЦIАЛIВ

Р е з ю м е

Для дослiдження проходження електронiв через надзви-
чайно тонкi гетероструктури, що складаються з двох па-
ралельних плоских шарiв, пропонується використовувати
“одноточкове” наближення. Типовим прикладом такої стру-
ктури є подвiйний шар, що описується потенцiалом, який
у границi стиснення до нульової товщини має вигляд по-
хiдної дельта-функцiї Дiрака. Рiвняння Шредiнґера з цим
синґулярним одновимiрним потенцiальним профiлем поро-
джує сiм’ю контактних (точкових) взаємодiй, кожна з яких
(названа “потенцiалом 𝛿′-розподiлу”) залежить вiд способу
реґуляризацiї. Використовуючи двомасштабну степенево-
пов’язувану параметризацiю потенцiалу, що описує подвiй-
ний шар, усунуто всi розбiжностi, якi досi широко диску-
тувались у лiтературi стосовно взаємодiї iз потенцiалом ви-
гляду похiдної дельта-функцiї Дiрака. При застосовуван-
нi даної параметризацiї, стало можливим розширити сiм’ю
потенцiалiв 𝛿′-розподiлу до цiлого класу “узагальнених” 𝛿′-
потенцiалiв. Показано, що в границi стиснення подвiйного
шару до нульової товщини резонансне тунелювання прояв-
ляється у виглядi гострих пiкiв, якi локалiзуються на мно-
жинах нульової мiри Лебеґа (названi резонансними множи-
нами). Для представлення цих множин введено чотириви-
мiрний простiр параметрiв. Показано, що проходження еле-
ктронiв на комплементарних множинах у цьому просторi є
абсолютно вiдбиваючим.
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