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QUANTUM CORRECTIONS
TO THE DYNAMICS OF A GRAVITATIONAL SYSTEM1

A short introduction into the theory of quantum gravitational systems with a finite number of
degrees of freedom is given. The theory is based on the method of quantization of constrained
systems. The state vector of the system satisfies a set of wave equations which describes the
time evolution of the system in the space of quantum fields. The state vector in such an ap-
proach can be normalized to unity. The theory permits a generalization to negative values of
the scale factor and, being applied to cosmology, leads to the new understanding of the evolu-
tion of the universe. It gives an insight into the reasons why the regime of the expansion may
change from acceleration to deceleration or vice versa, revealing a new type of quantum forces
acting like dark matter and dark energy in the universe.
K e yw o r d s: quantum gravity, quantum geometrodynamics, cosmology.

1. Introduction

The method of quantization of constrained systems
can be taken as a basis of the quantum theory of grav-
ity suitable for the investigation of cosmological and
other quantum gravitational systems. The canonical
approach to the quantization successful in construct-
ing the nonrelativistic quantum mechanics and quan-
tum field theories in the flat spacetime encounters
the well-known difficulties, when applied to gravity,
such as the understanding of the time evolution, di-
vergence of the norm of state vectors, measurement
problem, and others.

The apparent manifestation of the problem of time
is the absence of an explicit time parameter in the
Wheeler–DeWitt equation considered as the main dy-
namical equation of the theory. It was realized that
one way to solve this problem could be rewriting the
classical constraint equations to obtain a Schrödinger-
type equation, as a preliminary stage to the quantiza-
tion. It was proved that general relativity could not
be viewed as a parametrized field theory [1]. The con-
cepts of “matter clocks and reference fluids” [2, 3] go
back to DeWitt [4], who studied the coupling of clocks
to an elastic media. It can be shown that the perfect
fluids are a special case of DeWitt’s relativistic elastic
media [5]. The notion of reference fluid allows one to
define the reference frame as a dynamical system. The

c○ V.V. KUZMICHEV, V.E. KUZMICHEV, 2019

spacetime geometry is affected by the reference fluid
which is considered as a true material system coupled
to gravity. As a result, the constraints and Hamilton
equations take a new form.

A model with a finite number of degrees of freedom
may provide a reasonable framework for addressing
the problems of quantum gravity. The homogeneous
minisuperspace models have been proven to be suc-
cessful – consistent with observations and having pre-
dictive power – in classical cosmology. This appears
explicable, in view of the fact that the Universe can,
to first approximation, be considered as being homo-
geneous, and gives rise to the hope for that homoge-
neous models could be useful in quantum cosmology
as well.

In the simplest case of the maximally symmetric
geometry with the Robertson–Walker metric, the ge-
ometric properties of the system are determined by a
single variable, namely the cosmic scale factor 𝑎. The
matter sector of the homogeneous isotropic gravita-
tional system will be taken in the form of a uniform
scalar field 𝜑. This field can be interpreted as a sur-
rogate of all possible real physical fields of matter av-
eraged with respect to the spin, space, and other de-
grees of freedom. In addition, it will be accepted that
the system contains a reference fluid in the form of a

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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relativistic matter (further referred as radiation). Fol-
lowing Dirac’s approach to quantum gravity, we do
not solve constraints prior to quantization, but con-
vert the second-class constraints into the first-class
ones which become constraints on the state vector
(wave function) in quantum theory. In this theory, the
state vector satisfies the set of wave equations which
describes the time evolution of a quantum system in
a generalized space of quantum fields.

2. Basic Equations and Quantization

The Hamiltonian for the gravitational system is given
by (in Planck units)

𝐻 =
𝑁

2

{︀
−𝜋2

𝑎 − 𝜅𝑎2 + 𝑎4[𝜌𝜑 + 𝜌𝛾 ]
}︀
+

+𝜆1

{︂
𝜋Θ − 1

2
𝑎3𝜌0𝑠

}︂
+ 𝜆2

{︂
𝜋�̃� +

1

2
𝑎3𝜌0

}︂
, (1)

where 𝜋𝑎, 𝜋Θ, 𝜋�̃� are the momenta canonically con-
jugate with the variables 𝑎, Θ, �̃�; 𝜌𝜑 is the energy
density of matter (the field 𝜑), 𝜌𝛾(𝜌0, 𝑠) is the energy
density of a perfect fluid, which defines a material ref-
erence frame, and it is a function of the density of the
rest mass 𝜌0 and the specific entropy 𝑠; the Θ is the
thermasy which defines the temperature, 𝒯 = Θ,𝜈𝑈

𝜈 ;
the 𝑈𝜈 is the four-velocity; the �̃� is the potential for
the specific Gibbs free energy ℱ taken with the in-
verse sign, ℱ = −�̃�,𝜈𝑈𝜈 . The 𝜅 = +1, 0,−1 is the
curvature constant. The 𝑁 , 𝜆1, and 𝜆2 are the La-
grange multipliers [6, 7].

The Hamiltonian is a linear combination of con-
straints and thus weakly vanishes, 𝐻 ≈ 0. The varia-
tions of the Hamiltonian with respect to 𝑁 , 𝜆1, and
𝜆2 give three constraint equations.

In quantum theory, the first-class constraint equa-
tions become constraints on the state vector Ψ and
define the space of physical states. Passing from
classical variables to corresponding operators, us-
ing the conservation laws, and introducing the non-
coordinate co-frame ℎ𝑑𝜏 = 𝑠𝑑Θ−𝑑�̃�, ℎ𝑑𝑦 = 𝑠𝑑Θ+𝑑�̃�,
where ℎ is the specific enthalpy, 𝜏 is the proper time,
and 𝑦 is a supplementary variable, we obtain [6, 7](︂
−𝑖𝜕𝑇 − 1

2
𝐸

)︂
Ψ = 0, 𝜕𝑦Ψ = 0,(︁

−𝜕2𝑎 + 𝜅𝑎2 − 2𝑎�̂�𝜑 − 𝐸
)︁
Ψ = 0,

(2)

where �̂�𝜑 is the Hamiltonian operator of the matter
field, 𝑑𝜏 = 𝑎𝑑𝑇 , and 𝐸 = 𝜌𝛾𝑎

4 = const.

3. General Solution

The Hamiltonian of matter �̂�𝜑 can be diagonalized
by means of some state vectors ⟨𝜒|𝑢𝑘⟩ in the repre-
sentation of the generalized field variable 𝜒 = 𝜒(𝑎, 𝜑),

⟨𝑢𝑘|�̂�𝜑|𝑢𝑘′⟩ =𝑀𝑘(𝑎) 𝛿𝑘𝑘′ , (3)

which determines the proper energy 𝑀𝑘(𝑎) =
1
2𝑎

3𝜌𝑚
of a barotropic fluid in the discrete and/or continuous
𝑘th state in the comoving volume 1

2𝑎
3 with energy

density 𝜌𝑚.
The simple model of matter in the form of a scalar

field with the potential 𝑉 (𝜑) = 𝜆𝛼𝜑
𝛼, where 𝜆𝛼 is the

coupling constant, and 𝛼 takes arbitrary non-negative
values, 𝛼 ≥ 0, allows one to describe different epochs
in the evolution of the universe taken as the quan-
tum system. In the case of the model 𝜑0, the field
𝜑 averaged over its quantum states reproduces vac-
uum (dark energy) in the 𝑘th state (accelerating ex-
pansion epoch). The model 𝜑1 describes the strings
in the 𝑘th state (formation of a cosmological cellular
structure). In the model 𝜑2, the scalar field, after av-
eraging over quantum states, turns into dust with the
total mass 𝑀𝑘 =

√
2𝜆2(𝑘+

1
2 ), where 𝑘 is the number

of dust particles (non-relativistic matter epoch). The
model 𝜑4 leads to the relativistic matter (epoch be-
fore the recombination). In the case 𝛼 = ∞, the field
𝜑 averaged over the states |𝑢𝑘⟩ reduces to the stiff
Zel’dovich matter (vanishing coupling constant).

The state vector Ψ in the (𝑎, 𝜒)-representation can
be represented in the form of a superposition of
all possible 𝑘th states of the barotropic fluid Ψ =
=

∑︀
𝑘 |𝑢𝑘⟩⟨𝑢𝑘|Ψ⟩, where ⟨𝑢𝑘|Ψ⟩ ≡ 𝜓𝑘(𝑎, 𝑇 ) satisfies

the differential equations(︂
−𝑖𝜕𝑇 − 1

2
𝐸

)︂
𝜓𝑘(𝑎, 𝑇 ) = 0,(︀

−𝜕2𝑎 + 𝜅𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝐸
)︀
𝜓𝑘(𝑎, 𝑇 ) = 0.

(4)

The general solution of set (4) has the form

𝜓𝑘(𝑎, 𝑇 ) =
∑︁
𝑛

𝑐𝑛𝑘(𝑇 )𝑓𝑛𝑘(𝑎) (5)

with
𝑐𝑛𝑘(𝑇 ) = 𝑐𝑛𝑘(𝑇0) exp

{︂
𝑖
1

2
𝐸𝑛(𝑇 − 𝑇0)

}︂
, (6)

where the summation with respect to discrete values
of 𝑛 and the integration with respect to continuous
ones are assumed.
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The wave functions 𝑓(𝑎) ≡ 𝑓(𝑎, 𝑇0) satisfy the
equation(︀
−𝜕2𝑎 + 𝜅𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝐸

)︀
𝑓(𝑎) = 0, (7)

where 𝑓(𝑎) = 𝑓𝑛𝑘(𝑎) and 𝐸 = 𝐸𝑛 for a discrete 𝑛th
state of radiation and 𝑓(𝑎) = 𝑓𝐸𝑘(𝑎) for a continu-
ous 𝐸th state of radiation, 𝑇0 is an arbitrary con-
stant taken as a time reference point. The coefficient
𝑐𝑛𝑘(𝑇0) gives the probability |𝑐𝑛𝑘(𝑇0)|2 to find the
system in the 𝑛th and 𝑘th states at the instant 𝑇0.

The state vector Ψ appears be normalized, ⟨Ψ|Ψ⟩ =
= 1, under the condition that the probability summed
over all possible quantum states of radiation and the
barotropic fluid equals unity.

Equations (2) in the case of matter in the form of
a scalar field with �̂�𝜑(−𝑎) = −�̂�𝜑(𝑎) are invariant
under the inversion 𝑎 → −𝑎. The physical meaning
of the solutions of Eq. (7) in the domain 𝑎 < 0 is
clarified from the expression

𝑇 (𝜏) = 𝑇0 +

𝜏∫︁
0

𝑑𝜏 ′

𝑎(𝜏 ′)
, at 𝑇 (0) = 𝑇0. (8)

It gives 𝑇 (𝜏) = 𝑇 (−𝜏) at 𝑎(−𝜏) = −𝑎(𝜏).
The scale factor 𝑎 ∈ (−∞, 0] corresponds to the

values 𝜏 ∈ (−∞, 0], and the scale factor 𝑎 ∈ [0,+∞)
corresponds to the values 𝜏 ∈ [0,+∞). As a result for
the arrow of time from 𝜏 = −∞ to 𝜏 = +∞, the state
vector Ψ describes the quantum gravitational system
contracting on the semiaxis 𝑎 < 0, since |𝑎| decreases,
and expanding on the semiaxis 𝑎 > 0, because |𝑎|
increases.

The instant of time 𝜏 = 0 can be interpreted as
the instant of the nucleation of the quantum system
expanding in time from the point 𝑎 = 0, although
any nucleation “from nothing” does not occur phys-
ically. What happens at the instant 𝜏 = 0 is that
the regime of the preceding contraction of the sys-
tem changes into the subsequent expansion. The state
vector contains all information about the system as
a whole: the cross-section |𝑎| = const determines the
quantum state of the system at the time instant 𝜏 ,
when such a value of the scale factor holds.

If one applies the above-described scenario to our
universe at the Planck epoch, interpreting the passage
through the point 𝑎 = 0 at 𝜏 = 0 as the nucleation of
the expanding universe with 𝑎 > 0 at 𝜏 > 0, then the
answer to the question “What was with the quantum

system before the instant of the nucleation of a uni-
verse of our (expanding) type?” can be given: another
universe with the same mass-energy 𝑀𝑘(𝑎) and the
wave function 𝑓(𝑎) characterized by the same quan-
tum numbers for matter and radiation as in the nucle-
ated universe has existed. However, that universe has
been contracting up to the state with 𝑎 = 0, which
will not necessarily be singular.

The intensity distribution of matter-energy 𝐼(𝑎) =
= 𝑀𝑘(𝑎)|𝑓𝑛𝑘(𝑎)|2 can be calculated for the system,
in which the barotropic fluid and radiation are in
some definite quantum states [8]. The study of the
motion in time of the minimum wave packet for a
spatially closed system demonstrates that matter is
distributed over 𝑎 and 𝜏 in the form of periodic struc-
tures like petals or stretched bubbles and displaced to
their edges. These structures are limited by the value
𝑎 = 2𝑀𝑘 with respect to 𝑎, and their number in-
creases with time.

4. Non-Linear Hamilton–Jacobi Equation

The state vector averaged over the states of matter 𝜑
has the form 𝑓𝑘(𝑎) ∼ exp(𝑖𝑆𝑘(𝑎))/

√︀
𝜕𝑎𝑆𝑘(𝑎), where

the function 𝑆𝑘 satisfies the generalized Hamilton–
Jacobi equation [9]

(𝜕𝑎𝑆𝑘)
2+𝜅𝑎2−2𝑎𝑀𝑘(𝑎)−𝐸 =

3

4

(︂
𝜕2𝑎𝑆𝑘

𝜕𝑎𝑆𝑘

)︂2
− 1

2

𝜕3𝑎𝑆𝑘

𝜕𝑎𝑆𝑘
.

(9)

The right-hand side of Eq. (9) is proportional to ~2 (in
ordinary physical units) and responsible for quantum
corrections to the dynamics of the system.

Using the relation between the classical momentum
𝜋𝑎 = − 𝑑𝑎

𝑑𝑇 and the phase 𝑆𝑘(𝑎) [9], Eq. (9) can be
rewritten in the form of the energy conservation law
for a test particle with zero energy moving along a
coordinate line 𝑎

1

2

(︂
𝑑𝑎

𝑑𝑇

)︂2
+ 𝑈(𝑎) = 0 (10)

in the potential well

𝑈(𝑎) =
1

2

[︀
𝜅𝑎2 − 2𝑎𝑀𝑘(𝑎)−𝑄𝑘(𝑎)− 𝐸

]︀
. (11)

The function

𝑄𝑘(𝑎) = −𝜕2𝑎𝑆𝐸 +
1

2

[︃(︂
𝜕2𝑎𝑆𝐸

𝜕𝑎𝑆𝐸

)︂2
− 𝜕3𝑎𝑆𝐸

𝜕𝑎𝑆𝐸

]︃
, (12)
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The real 𝑞𝑅 (boldface curve) and imaginary 𝑞𝐼 (thin curve)
parts of the deceleration parameter (13) versus the deviation
𝑧 = 𝑎−𝑀 for solution (15) with 𝑛 = 10 and 𝑛 = 3

where 𝑆𝐸 = −𝑖𝑆𝑘 is the Euclidean phase, determines
the quantum correction 𝜌𝑄 to the energy density of
matter in the form 𝜌𝑄 = 𝑎−4𝑄𝑘(𝑎).

In the semiclassical limit, 𝜌𝑄 ∼ −𝑎−6, and Eq. (10)
reduces to the equation of the Einstein–Cartan the-
ory of gravity with torsion [9]. In this case, the matter
coupled to gravity can be considered as a perfect fluid
with spin [10]. Such a fluid often called the Weyssen-
hoff fluid [11], is a perfect incompressible fluid every
element of which is interpreted as a particle with spin.

The deceleration parameter 𝑞 in the model under
consideration is reduced to the expression

𝑞 = 1− 𝑎

2𝑈

𝑑𝑈

𝑑𝑎
. (13)

5. Example

In the case of closed system filled with dust and rel-
ativistic matter, Eq. (9) has two solutions [12]

𝜕𝑧𝑆1(𝑧) = 𝑖
𝑒𝑧

2

𝐻−2
𝑛 (𝑧)

2
𝑧∫︀
0

𝑑𝑥 𝑒𝑥2𝐻−2
𝑛 (𝑥)

, (14)

𝜕𝑧𝑆2(𝑖𝑧) = −
𝑒−𝑧2

𝐻−2
−𝑛−1(𝑖𝑧)

2
𝑖𝑧∫︀
0

𝑑𝑥 𝑒𝑥2𝐻−2
−𝑛−1(𝑥)

, (15)

where 𝐻𝜈(𝑦) is the Hermitian polynomial, 𝑧 = 𝑎−𝑀 ,
and 𝐸 +𝑀2 = 2𝑛 + 1. Here, 𝑀 is the total mass of
𝑘 non-interacting identical particles with the masses√
2𝜆2.
Usually, the second solution is discarded as unphys-

ical. However, in quantum cosmology both solutions

should be considered, since, only in such an approach,
one can obtain nontrivial results about topological
properties of the universe as an essentially quantum
system and clarify the nature of dark matter and dark
energy.

In Figure, the real 𝑞𝑅 and imaginary 𝑞𝐼 parts of the
deceleration parameter (13) are shown as functions of
the deviation 𝑧 for the potential well (11) with solu-
tions (15) at 𝑛 = 10 and 𝑛 = 3. In the region |𝑧| ≤𝑀 ,
where |𝑞𝑅| ≫ |𝑞𝐼 | (i.e., |𝑞𝐼/𝑞𝑅|𝑧=0 ≈ 0.02), the con-
tribution from 𝑞𝐼 can be neglected. In this stage, the
universe expands with deceleration, since the anti-
gravitational action of the forces performing the pos-
itive work is not enough to overcome the attraction of
ordinary and dark matters. The value 𝑞𝑅(𝑧 = 0) = 1
reproduces the results of general relativity. At the
point 𝑧 = 0, we have 𝑎 = 𝑀 . In the region 𝑎 ≈ 2𝑀 ,
the redistribution of energy takes place in the uni-
verse, as demonstrated by the peaks on the curves
𝑞𝑅 and 𝑞𝐼 in Figure. The forces of attraction and re-
pulsion compete with each other at 𝑎 < 2𝑀 , where
𝑞𝑅 > 0 and 𝑞𝐼 < 0. At reaching the region 𝑧 > 𝑀 ,
where 𝑎 > 2𝑀 , both parts of the deceleration param-
eter become negative, demonstrating that the expan-
sion of the universe is accelerating. Starting from the
point 𝑧 ≃ 1.5𝑀 (𝑧 = 6 for 𝑛 = 10), the parameter 𝑞𝐼
vanishes and the rate of expansion is described only
by the real part 𝑞𝑅 < 0. In the limit 𝑧 → +∞, the
forces of attraction and repulsion will exactly com-
pensate each other.

6. Concluding Remarks

In this note, we present some results of our studies
of the influence of the quantum nature of gravity on
properties of systems with a finite number of degrees
of freedom. In particular, on the basis of the wave
equations of quantum cosmology for the exactly solv-
able model, one can explain the accelerating expan-
sion in the early universe (the domain of compara-
tively small values of quantum numbers) and a later
transition from the decelerating expansion to the ac-
celerating expansion of the universe (the domain of
the very large values of quantum numbers) from a sin-
gle approach. Another result worth mentioned here is
that Hamilton–Jacobi equations of the theory can be
reduced to the equations of the Einstein–Cartan the-
ory of gravity with torsion. These equations can be
considered as describing the homogeneous, isotropic,
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and spatially closed universe filled with the substance
in the form of a perfect fluid with spin (Weyssenhoff
fluid).
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КВАНТОВI ПОПРАВКИ
ДО ДИНАМIКИ ГРАВIТАЦIЙНОЇ СИСТЕМИ

Р е з ю м е

Дано короткий вступ до теорiї квантових гравiтацiйних си-
стем зi скiнченною кiлькiстю ступенiв вiльностi. Теорiя за-
снована на методi квантування систем iз в’язями. Вектор
стану системи задовольняє набору хвильових рiвнянь, який
описує еволюцiю системи у часi в просторi квантових по-
лiв. У такому пiдходi вектор стану можна нормувати на
одиницю. Теорiя дозволяє зробити узагальнення на область
вiд’ємних значень масштабного фактора i, при застосуваннi
до космологiї, веде до нового розумiння еволюцiї всесвiту.
Теорiя дає розумiння причин, через якi режим розширен-
ня може змiнюватися вiд прискорення до уповiльнення або
навпаки, виявляючи новий тип квантових сил, що дiють у
всесвiтi подiбно до темної матерiї та темної енергiї.

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 12 1147


