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FINITE-TEMPERATURE BOSE–EINSTEIN
CONDENSATION IN INTERACTING BOSON SYSTEM1

Thermodynamical properties of an interacting boson system at finite temperatures and zero
chemical potential are studied within the framework of the Skyrme-like mean-field toy model. It
is assumed that the mean field contains both attractive and repulsive terms. Self-consistency
relations between the mean field and thermodynamic functions are derived. It is shown that, for
sufficiently strong attractive interactions, this system develops a first-order phase transition
via the formation of a Bose condensate. An interesting prediction of the model is that the
condensed phase is characterized by a constant total density of particles. It is shown that the
energy density exhibits a jump at the critical temperature.
K e yw o r d s: pion gas, phase transition, condensate.

1. Introduction
In recent years, the properties of a hot and dense
hadronic matter have attracted considerable inter-
est. Such matter can be produced in relativistic nuc-
leus-nucleus collisions which are under investigations
in many laboratories. QCD-motivated effective mod-
els and lattice simulations indicate that the chiral
symmetry restoration and the deconfinement phase
transition should take place at high temperatures and
particle densities. In this paper, we study specifically
the properties of interacting boson systems in the
framework of a toy model using a thermodynami-
cally consistent mean-field approach. The model aims
to estimate the scale and relation of attractive and
repulsive contributions to the potential in order to
investigate a possibility of the Bose–Einstein conden-
sation of interacting bosonic particles. This problem
has been studied previously, starting from the pioneer
works of A.B. Migdal and coworkers [1–4] and later
by many authors using different models and meth-
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ods. A possible formation of classical pion fields in
relativistic nucleus-nucleus collisions was discussed in
Refs. [5–8]. In more recent studies [9–13], pionic sys-
tems with a finite isospin chemical potential at low
temperatures have been considered. Interesting new
results concerning dense pionic systems have been ob-
tained recently using lattice methods [14, 15].

In the present paper, we consider interacting bo-
son systems at zero chemical potential, but high tem-
peratures, where thermally produced particles have
rather high densities. Simple calculations for nonin-
teracting hadron resonance gas show that the particle
density may reach values (0.1–0.2) fm−3 at temper-
atures 100–150 MeV, which are below the deconfine-
ment phase transition, see, e.g., Refs. [16, 17]. Un-
der such conditions, the interaction effects should be-
come important. To account for the interaction be-
tween the bosons, we introduce a phenomenological
Skyrme-like mean field 𝑈(𝑛), which depends on the

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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particle density 𝑛 only. Then the thermodynamical
consistency relations are used to calculate the parti-
cle density, energy density, and pressure as functions
of the temperature. An important distinctive feature
of the considered system is that, in contrast to, for
example, the bosonic matter, the number of bosons is
not conserved, but is determined by the minimization
of a thermodynamic potential.

2. Interacting Boson Systems
with Zero Chemical Potential

2.1. Pressure, energy density,
and particle-number density in the gas phase

Let us consider firstly the interacting bosonic system
without condensate. We call this state a liquid-gas
phase in order to distinguish it from a weakly inter-
acting pion gas. As an instrument for our investiga-
tion, we use the “Thermodynamic mean-field model”,
see Ref. [18] (for early works, see [19, 20]). In this ap-
proach, the influence of the medium on a particle is
realized as the mean-field 𝑈(𝑛), which shifts the free
dispersion relation so that the single-particle energy
reads

𝐸(𝑘, 𝑛) =
√︀

𝑚2 + 𝑘2 + 𝑈(𝑛), (1)

where 𝑛 is the particle-number density, and 𝑇 is the
temperature. The presence of the fields in the sys-
tem, which are responsible for interactions between
particles, results not just in a distortion of the free
single-particle dispersion relation like in (1), but also
gives its own contribution to the energy density and
produces an excess pressure 𝑃ex(𝑛). Then the pres-
sure of the homogeneous system of interacting bosons
with 𝜇 = 0 in the grand canonical ensemble looks like

𝑝(𝑇 ) =
𝑔

3

∫︁
𝑑3𝑘

(2𝜋)3
𝑘2

√
𝑚2 + 𝑘2

𝑓(𝑘;𝑇 ) + 𝑃ex(𝑛), (2)

where the distribution function reads

𝑓(𝑘;𝑇 ) =

{︂
exp

[︂
𝐸(𝑘, 𝑛)

𝑇

]︂
− 1

}︂−1

. (3)

The energy density in the liquid-gas phase is obtained
from the Euler relation 𝜀+𝑝 = 𝑇𝑠+𝜇𝑛, where the en-
tropy density is the derivative 𝑠 = 𝜕𝑝(𝑇 )/𝜕𝑇 . Hence,
the energy density reads

𝜀(𝑇 ) = 𝑔

∫︁
𝑑3𝑘

(2𝜋)3

√︀
𝑚2 + 𝑘2 𝑓(𝑘;𝑇 ) + 𝜀ex(𝑛),

with

𝜀ex(𝑛) ≡ 𝑛𝑈(𝑛)− 𝑃ex(𝑛). (4)

In fact, the quantities 𝑈(𝑛, 𝑇 ) and 𝑃ex(𝑛, 𝑇 ) are
due to some interaction between particles in the
many-particle system, i.e., because the source of these
two quantities is the same, they are related to one an-
other as (see [18])

𝑛
𝜕𝑈(𝑛, 𝑇 )

𝜕𝑛
=

𝜕𝑃ex(𝑛, 𝑇 )

𝜕𝑛
. (5)

To resolve the model, it is necessary, first, to solve
the self-consistent equation for the particle density 𝑛
for every given temperature 𝑇

𝑛 =
𝑔

2𝜋2

∞∫︁
0

𝑑𝑘 𝑘2
{︂
exp

[︂
𝐸(𝑘, 𝑛)

𝑇

]︂
− 1

}︂−1

. (6)

In this paper, we consider pion systems with 𝜇 = 0.
Then a nonzero pion density is only possible at 𝑇 > 0.

3. Onset of the Bose Condensation

The Bose–Einstein distribution function (3) implies
that, at the momentum 𝑘 = 0, the single-particle en-
ergy should satisfy the condition 𝐸(0, 𝑛) ≥ 0. Other-
wise, the distribution function (3) takes negative val-
ues. Exactly this condition determines the interval of
temperatures, where the Bose condensation occurs.

The limiting density of thermal Bose particles,
𝑛lim(𝑇 ), just before the formation of a Bose conden-
sate, i.e. at 𝑈(𝑛) = −𝑚, is the same as in the ideal
gas at 𝜇 = 𝑚:

𝑛lim(𝑇 ) =
𝑔

2𝜋2

∞∫︁
0

𝑑𝑘 𝑘2

[︃
exp

(︃√
𝑚2 + 𝑘2 −𝑚

𝑇

)︃
− 1

]︃−1

.

(7)

In Fig. 1 (lower panel), this dependence is depicted as
a red-dashed line, which separates the normal phase
(which contains thermal particles) from the phase
with a Bose condensate. Further, we come to the gen-
eral conclusion: for mean-field potentials deeper than
−𝑚, the equilibrated bosonic system will develop a
Bose condensate.

3.1. Skyrme-like parametrization
of the mean field

The formalism described in the previous section has
been applied to several physically interesting systems
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Fig. 1. Top panel: Mean field 𝑈(𝑛) versus the particle density
for different values of the parameter 𝜅 = 𝐴/𝐴c. The densities
𝑛1, 𝑛2 and 𝑛0 are the crossing points with the line 𝑈 = −𝑚𝜋 .
Lower panel: particle density versus the temperature for the
interacting pion system with 𝜇 = 0. The temperatures 𝑇1, 𝑇2,

and 𝑇0 indicate the points, where the densities 𝑛1, 𝑛2, and 𝑛0

cross the limiting density line 𝑛lim(𝑇 ) (red dashed curve)

including the hadron-resonance gas [18] and the pi-
onic gas [21]. In the present study, we extend this
approach to the case of a bosonic system which po-
tentially can undergo the Bose condensation. To il-
lustrate this possibility, we formulate the Skyrme-like
toy model [22], where we assume that the interaction
between particles is described by the mean field

𝑈(𝑛) = −𝐴𝑛+𝐵𝑛2, (8)

where 𝑛 is the particle density, 𝐴 > 0 and 𝐵 > 0
are the positive model parameters, which should be
specified for each particle species. Hence, in our calcu-
lations, we consider a general case to study a bosonic

system with both attractive and repulsive contribu-
tions to the mean field (8). Some additional contribu-
tion to the attractive mean field at high energies or
high temperatures, (𝑇 ∝ 150 MeV), may be provided
by other hadrons present in the system.

The excess pressure is obtained using the condition
of thermodynamic consistency (5) with 𝑈(𝑛) from
Eq. (8),

𝑃ex(𝑛) =

𝑛∫︁
0

𝑑𝑛′ 𝑛′ 𝜕𝑈(𝑛′)

𝜕𝑛′ = −1

2
𝐴𝑛2 +

2

3
𝐵 𝑛3, (9)

where lim𝑛→0 𝑈(𝑛) = 0 has been used.
To be specific in numerical calculations, we take

bosons with the mass 𝑚𝜋 = 139 MeV and the de-
generacy factor 𝑔 = 3, which we call “pions”. For the
repulsive coefficient 𝐵 > 0, we use a fixed value ob-
tained from an estimate based on the virial expan-
sion [23], 𝐵 = 10𝑚𝜋𝑏

2 with 𝑏 equal to four times
the proper volume of a particle, i.e. 𝑏 = 16𝜋𝑟30/3. Be-
low, we take 𝑏 = 0.45 fm3 that corresponds to a pion
radius 𝑟0 ≈ 0.3 fm. The “repulsive” coefficient 𝐵 is
fixed along the whole investigation in the present pa-
per. The “attractive” coefficient 𝐴 is considered as a
model parameter which will be varied in proper limits.

The potential 𝑈(𝑛) is shown in Fig. 1 (top panel)
for several values of the parameter 𝜅 = 𝐴/𝐴c,
characterizing the strength of the attractive interac-
tion. Here, 𝐴c = 2

√
𝑚𝐵 is the critical value of 𝐴 at

which the minimum of the potential reaches the en-
ergy level −𝑚. Below, we choose 𝜅 as a variational
parameter, i.e., we parametrize variations of the “at-
tractive” coefficient 𝐴 by the dimensionless parameter
𝜅. The values of 𝜅 ≥ 𝜅c = 1 lead to the crossing of
the −𝑚 level and to the appearance of the density
interval, where the function 𝐸(0, 𝑛) is negative. The
end points of this interval are determined from the
equation

𝑈(𝑛) + 𝑚 = 0. (10)

With 𝑈(𝑛) from (8), the solutions of this equation are

𝑛1 =

√︂
𝑚

𝐵

(︁
𝜅−

√︀
𝜅2 − 1

)︁
,

𝑛2 =

√︂
𝑚

𝐵

(︁
𝜅+

√︀
𝜅2 − 1

)︁
.

(11)

In the interval 𝑛1 < 𝑛 < 𝑛2, the integral in Eq. (6) is
not positive definite. Therefore, such densities cannot
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be realized in an equilibrium system. At 𝜅 > 𝜅c = 1,
the change of the pion density from 𝑛 = 𝑛1 to 𝑛 = 𝑛2

is only possible via the condensation of pions in the
zero-momentum mode, |𝑘| = 0, so that their total
density jumps from 𝑛 = 𝑛1 to 𝑛 = 𝑛2. As is seen
from Eq. (11), the critical value of the parameter
𝐴 is obtained, when both roots coincide, i.e., when
𝜅 = 1 or 𝐴 = 𝐴c = 2

√
𝑚𝐵. For the parameter 𝐵

specified above, 𝐴c = 2
√
10𝑚𝜋𝑏 ≈ 396 MeV · fm3.

The corresponding critical pion density, when the
minimum of the potential reaches the level −𝑚𝜋, is
𝑛0 = 𝐴𝑐/2𝐵 = 1√

10𝑏
≈ 0.7 fm−3.

3.2. Energy density
and pressure in the gas-liquid phase

The liquid-gas phase is distinguished by the values of
the parameter 𝜅 as 𝜅 ≤ 1. Hence, it is assumed that
𝑈(𝑛) ≥ −𝑚 for all 𝑛. To obtain the particle den-
sity 𝑛(𝑇 ), one has to solve the self-consistent equa-
tion (6) for the fixed value 𝜅 ≤ 1 and for the given
temperatures from some interval. On the lower panel
in Fig. 1, we depicted the results of calculations of
the pion density for several values of the parameter
𝜅 = 0, 0.55, 0.82, 1 as black solid lines. The dashed
black curve represents the ideal pion gas with 𝜇 = 0.

Now, with the dependence 𝑛(𝑇 ) in hands, we can
calculate the pressure and energy density in the gas-
liquid phase using Eqs. (2) and (4) with account for
𝑃ex(𝑛) from Eq. (9).

3.3. Self-consistent solution
for the mixed phase

Let us return to Eq. (6), which determines the par-
ticle density as a function of the temperature. The
solutions 𝑛(𝑇 ) have been found iteratively for sev-
eral values of 𝜅, as shown in Fig. 1. The limiting den-
sity 𝑛lim(𝑇 ), Eq. (7), is also shown in this figure. In
a standard treatment of the Bose–Einstein conden-
sation (see, e.g., [24]), the particle density above 𝑇c

consists of two contributions: “thermal” particles and
“condensate” particles. Hence, in the mixed phase,
the self-consistent equation (6) is generalized to (see
[22, 24])

𝑛 = 𝑛cond +
𝑔

2𝜋2

∫︁
𝑘 ̸=0

𝑑𝑘 𝑘2
{︂
exp

[︂
𝐸(𝑘, 𝑛)

𝑇

]︂
− 1

}︂−1

,

(12)
where 𝑛 is the total particle-number density which
consists from the density of thermal particles 𝑛th

and the density of condensed particles 𝑛cond, which
have zero momentum. Note that, in our treatment,
𝑇c is the temperature of the onset of the condensa-
tion, whereas this notation in textbooks is usually
attributed to the end of the condensed phase.

One can see that the critical value 𝜅c = 1.0 sepa-
rates two qualitatively different regimes. At 𝜅 < 𝜅c,
the curves 𝑛(𝑇 ) are continuous. While, at 𝜅 > 𝜅c,
they break down in two segments with a gap in be-
tween. This gap appears exactly between the densi-
ties 𝑛1 and 𝑛2, where 𝑈(𝑛) +𝑚𝜋 < 0, see Fig. 1. For
the parameter 𝜅 = 1.1, the resulting solution for the
particle density is depicted in Fig. 1 as a solid blue
curve which consists of several segments. The lower
branch at the critical temperature 𝑇 = 𝑇c is expe-
riencing a jump from the value 𝑛c = 0.06 fm−3 to
the value 𝑛2 = 1.09 fm−3. It is a consequence of the
phase transition leading to the formation of the Bose
condensate at this point. Because of the jump, this
is certainly a first-order phase transition. It is rather
obvious that, with a further increase of the tempera-
ture, the pion system will evolve along the horizontal
line 𝑛 = 𝑛2 from 𝑇c = 115 MeV up to 𝑇2 = 219 MeV,
as shown in Fig. 1 (for 𝜅 = 1.1). The critical temper-
ature 𝑇c is determined as a crossing point of the pres-
sure curves for the liquid-gas and mixed phases. This
is graphically shown in Fig. 2, which will be dis-
cussed in the next subsection. At 𝑇 > 𝑇c, the branch
of a self-consistent solution for the liquid-gas phase
(blue dashed segment in Fig. 1) becomes metastable
and exhibits a kind of the backhanding to the left,
while approaching the limiting density 𝑛lim(𝑇 ) from
below. Note that the upper segment (after the point
marked as a “cross”) is unstable.

If we reach the temperature 𝑇c and continue to
pump the energy into the multipion system, it will
experience a phase transition leading to the forma-
tion of the Bose condensate, even in the system with
𝜇 = 0. As a consequence, the pion density will jump
along the line 𝑇 = 𝑇c.

Equation (12) is valid in our specific case where
the evolution of the system goes along the constant
density line 𝑛 = 𝑛2. Indeed, for every temperature
𝑇 from the interval 𝑇c < 𝑇 ≤ 𝑇2 (see Fig. 1), the
density of particles is 𝑛 = 𝑛2, and, thus, the value of
the mean field is 𝑈(𝑛2) = −𝑚. Due to this fact, we
can rewrite Eq. (12) as

𝑛2 = 𝑛cond(𝑇 ) + 𝑛lim(𝑇 ), (13)
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Fig. 2. Top panel: Pressure normalized to 𝑇 4 versus the
temperature for an interacting pion system with 𝜇 = 0 and the
attraction parameter 𝜅 = 1.1. Solid blue lines labeled as 𝑝lg

and 𝑝
(2)
mix correspond to the pressure in the liquid-gas and mixed

phases (along 𝑛 = 𝑛2), respectively, and represent the resulting
equation of state. Lower panel: The energy density normalized
to 𝑇 4 versus the temperature under the same conditions as in
the left panel. The blue solid curve, which consists of several
segments labeled as 𝜀lg and 𝜀

(2)
mix with a vertical segment along

𝑇 = 𝑇c represents the resulting equation of state. The energy
density in the mixed phase 𝜀

(1)
mix calculated for the constant

density 𝑛 = 𝑛1 is depicted as a dotted black line

where we use definition (7) of 𝑛lim. From Eq. (13), we
see that the total particle density 𝑛 = 𝑛2 in the mixed
phase consists, indeed, of the condensate contribu-
tion 𝑛cond and thermal particles 𝑛th which achieve
the maximal particle density 𝑛lim(𝑇 ) at a given 𝑇 . So,
one should consider Eq. (12) as the self-consistent de-
scription of a pion condensate in the framework of the
mean-field approach.

3.4. Pressure and energy
density in the mixed phase

As we saw in the previous paragraph, the total par-
ticle density 𝑛 in the mixed phase with a Bose con-
densate is fixed at 𝑛 = 𝑛2. Thus, the pressure can be
expressed as

𝑝mix(𝑇 ) =
𝑔

3

∫︁
𝑑3𝑘

(2𝜋)3
𝑘2

√
𝑚2 + 𝑘2

×

×

{︃
exp

[︃√
𝑚2 + 𝑘2 + 𝑈(𝑛2)

𝑇

]︃
− 1

}︃−1

+𝑃ex

(︀
𝑛2

)︀
, (14)

where 𝑈(𝑛2) = −𝑚, and 𝑃ex(𝑛) is given by
Eq. (9). One should bear in mind that the condensate
particles with 𝑘 = 0 give no contribution to the ki-
netic part of the pressure (first term), but contribute
to the interaction pressure via 𝑃ex (second term). Fi-
gure 2 shows several branches of the pressure which
represent different phases, and the resulting equa-
tion of state is depicted as a solid blue curve. The
critical temperature, 𝑇c = 115 MeV, is obtained as
the crossing point of two branches, representing the
liquid-gas pressure for 𝜅 = 1.1 and the pressure of
the mixed phase at 𝑛 = 𝑛2. This explains why the
Bose condensate appears only above 𝑇c, when the ad-
ditional thermal pressure compensates the negative
contribution of 𝑃ex. At 𝑇 > 𝑇c, the liquid-gas branch
𝑝
(ms)
lg is metastable (dashed black curve in Fig. 2),

the “cross” marks the turning-point. The dotted and
dashed black lines labeled as 𝑝

(1)
mix and 𝑝

(2)
mix in Fig. 2

correspond to metastable states in the mixed phase
for the pion densities 𝑛 = 𝑛1 and 𝑛 = 𝑛2, respectively.

In the mixed phase, the energy density consists
of the kinetic part, 𝜀kin(𝑇 ), which is produced by
thermal particles in the liquid-gas phase with den-
sity 𝑛lg(𝑇 ), and the condensate particles with density
𝑛cond(𝑇 ), which have zero momentum. In accordance
with the self-consistent solution of Eq. (12), the sum
of these densities in the mixed phase remains con-
stant, 𝑛lg(𝑇 ) + 𝑛cond(𝑇 ) = 𝑛2. This constant density
𝑛2 determines the excess energy density 𝜀ex(𝑛2) in
the mixed phase. The specificity of the mixed phase
is also in the fact that the mass of condensed particles
produces another contribution to the energy density,
𝑚𝑛cond(𝑇 ). Using Eq. (4) with 𝑈(𝑛2) = −𝑚 to ob-
tain 𝜀ex(𝑛2) = −𝑚𝑛 − 𝑃ex(𝑛2) and Eq. (13) to de-
termine 𝑛cond(𝑇 ), we can write the energy density in
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the mixed phase as

𝜀
(2)
mix = 𝑔

∫︁
|𝑘|≠0

𝑑3𝑘

(2𝜋)3

(︁√︀
𝑚2 + 𝑘2 −𝑚

)︁
×

×

[︃
exp

(︃√
𝑚2 + 𝑘2 −𝑚

𝑇

)︃
− 1

]︃−1

− 𝑃ex(𝑛2). (15)

In Fig. 2 (lower panel), we present the energy densi-
ties normalized to 𝑇 4 at 𝜅 = 1.1 in different phases:
the resulting equation of state of the interacting pions
in the temperature interval 0 < 𝑇 < 250 MeV (blue
solid curve which includes the jump due to the phase
transition at 𝑇c); in the mixed phase, the energy den-
sity of pions in metastable state 𝜀

(1)
mix calculated for

the constant density 𝑛 = 𝑛1 (black dotted curve); the
energy density of meta-stable states in the liquid-gas
phase 𝜀

(ms)
lg (blue dashed segment); and the energy

density of the ideal pion gas at 𝜇 = 0 (red dashed
curve). One can see that, for 𝜅 = 1.1, the model pre-
dicts the upward jump of the energy density of about
30 MeV/fm3 (latent heat) at the critical temperature
𝑇c = 115 MeV. This is another manifestation of the
first-order phase transition.

4. Concluding Remarks

In this paper, we have presented a thermodynamically
consistent method to describe dense bosonic systems
at high temperatures and the zero chemical poten-
tial. A central step of this approach is to solve the
self-consistent equation (6) for the pion density at
a given temperature in the presence of the mean-
field 𝑈(𝑛) given by Eq. (8). Note that the integral
in Eq. (6) is positive definite, only if the condition
𝑈(𝑛) ≥ −𝑚 is fulfilled. If the attractive mean field is
so strong that this condition is violated, the multibo-
son system develops a Bose condensate. Our analysis
leads to the conclusion that, in the presence of a con-
densate, the allowed states of the system must satisfy
the condition 𝑈(𝑛) + 𝑚 = 0, where 𝑛 is the total
particle density including the condensate. This very
unusual behavior is possible, only if the attractive
interaction between bosons is strong enough. Howe-
ver, the empirical data and theoretical calculations
show that the pion-pion interaction is rather weak
at energies ≤ 100 MeV. Nevertheless, an additional
contribution to the pion mean field can be provided
by the attractive pion-nucleon interaction in cold nu-
clear matter, as demonstrated in Refs. [1–4], or by

𝜌-mesons and baryon-antibaryon pairs at high tem-
peratures, as considered in Refs. [25, 26]. It is obvi-
ous that many other hadronic species will be present
in the hadronic matter at high temperatures. They
may induce additional attractive contributions to the
mean field felt by pions. This will add new terms to
the pion optical potential, which are proportional to
the density of these species, see, e.g., Ref. [25]. These
terms will reduce the pion effective mass and, thus,
the threshold for the appearance of a pion condensate,
as given by Eq. (10). Another interesting possibility
studied in Refs. [8–13] is the Bose condensation in a
pure pionic system with non-zero isospin chemical po-
tential. We are planning to consider such interacting
systems in the future.

Finally, we would like to point out that, at first
glance, it seems that the mesonic degrees of free-
dom may not be appropriate at high particle den-
sities (𝑛 ≈ 1 fm−3) and high temperatures (𝑇 ≥ 150
MeV), as considered in this paper. Meanwhile, the
temperature of condensation, 𝑇c ≈ 115 MeV, lies in a
well-determined hadronic sector. Hence, the melting
of pions into quarks and antiquarks during the heat-
ing of the system can go directly from the dense phase
of condensed pions. Vice versa, during the cooling of
the system, soft pions can form a condensate on the
stage of hadronization.
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БОЗЕ-ЕЙНШТЕЙНIВСЬКА
КОНДЕНСАЦIЯ У СИСТЕМI ВЗАЄМОДIЮЧИХ
БОЗОНIВ ПРИ СКIНЧЕННИХ ТЕМПЕРАТУРАХ

Р е з ю м е

Термодинамiчнi властивостi системи взаємодiючих бозонiв
при скiнченних температурах та нульовому хiмiчному по-
тенцiалi є об’єктом дослiдження в рамках наближення сере-
днього поля, яке моделюється у виглядi потенцiала Скiрма.
Вважається, що середнє поле мiстить як притягуючу ком-
поненту, так i вiдштовхуючу. Отримано самоузгодженi спiв-
вiдношення мiж середнiм полем та термодинамiчними фун-
кцiями. Показано, що коли притягання є досить сильним,
то система має фазовий перехiд першого роду, при якому
виникає бозе-конденсат. Конденсована фаза характеризу-
ється постiйною загальною густиною частинок. Показано,
що при критичнiй температурi густина енергiї має стрибок.
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