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SOLUTIONS OF THE MODEL OF LIQUID
AND GAS FILTRATION IN THE ELASTIC
MODE WITH DYNAMIC FILTRATION LAW

A filtration model with the generalized Darcy’s law making allowance for nonlocal and non-
linear effects has been developed. The expression for the law was derived within the relaxation
formalizm of nonequilibrium thermodynamics. The developed model is applied to analyze the
influence of relaxation effects on the phase velocity of small wave-like perturbations. The char-
acter of nonlinear traveling waves is determined. The properties of polynomial and self-similar
solutions are analyzed.
K e yw o r d s: porous medium, generalized Darcy’s law, invariant solutions, relaxation.

1. Introduction
A detailed microscopic description of the processes
of liquid or gas filtration through porous materials is
problematic today, even if we take the capabilities of
modern computer facilities into account. Therefore,
those processes are usually described in the frame-
work of a continuum approach, by modeling such sys-
tems as continuous media characterized by averaged
parameters [1–5].

Within the framework of continuum mechanics, the
motion of a weakly compressible liquid or gas in
an elastically deformable porous medium (the elas-
tic filtration mode) is described by the mass con-
servation law, equation of state for the moving sub-
stance, and filtration law. The latter expresses a re-
lation between the filtration velocity and the pres-
sure gradient. It is often considered in the linear ap-
proximation known as Darcy’s law. However, today,
there exist a significant number of experimental evi-
dence for deviations from Darcy’s law [5–9]. This es-
pecially concerns nonequilibrium high-intensity pro-
cesses, when the amplification of nonlocal effects take
place [10, 11].

In this work, we propose a generalization of lin-
ear Darcy’s law by considering the nonlinear and
nonequilibrium character of filtration processes. Note
that the nonequilibrium behavior is associated with
the fact that the time for a local thermodynamic
equilibrium to be established in an infinitely small
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volume of a porous medium is comparable with
the characteristic time parameters of the whole sys-
tem. An additional factor is the presence of field
(velocity, stress) nonuniformities, which are char-
acterized by corresponding gradients [12]. In our
model, such relaxation processes are taken into
account in the dynamic Darcy’s equation, whose
form is substantiated within the relaxation formal-
ism of nonequilibrium thermodynamics. We also an-
alyze some solutions obtained for the model of elastic
filtration mode with regard for the dynamic filter-
ing law.

2. Mathematical Model
of Elastic Filtration Mode

Let us briefly recall the basic points of the elas-
tic filtration mode model [2–5]. In its framework, a
porous medium is described, by using such an aver-
age geometric characteristic as the average porosity
𝑚 = 𝑉𝑛/𝑉 , where 𝑉𝑛 is the volume of pores in an el-
ement of the porous medium, and 𝑉 the total volume
of this element.

As a rule, the total and active porosities are dis-
tinguished. The active porosity notion is applicable
only to pores that comprise a common network of
connected pores and can be filled with a fluid from
outside. This is the interpretation of a porosity that is
used in the theory of filtration. Then the mass conser-
vation law for a fluid with density 𝜌𝑟, which is filtered
through a porous element, is expressed by the integral
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relation

𝜕

𝜕𝑡

∫︁
𝑉

𝑚𝜌𝑟𝑑𝑉 = −
∫︁
𝑆

𝜌𝑟un𝑑𝑆,

where 𝑆 and 𝑉 are the surface and volume, respec-
tively, of the porous element; n is the external nor-
mal to the element surface, and u the filtration veloc-
ity. Using the Ostrogradskii–Gauss theorem, we can
change to the differential form of the law by assuming
that the elementary volume can be arbitrarily small,
and the fields are continuous:

𝜕 (𝑚𝜌)

𝜕𝑡
+ div𝜌u = 0. (1)

The filtration velocity u is the main characteristic
of the filtration motion. The velocity projection onto
the normal n to the surface element is determined as
follows [5]:

un = lim
Δ𝑆→0

Δ𝑄

𝜌𝑟Δ𝑆
,

where Δ𝑆 is the surface element area, and Δ𝑄 the
fluid or gas discharge. The dependence between the
filtration velocity vector and the pressure field com-
prises the essence of the filtration law, which was ex-
perimentally established in 1856 by A. Darcy. It looks
like

u = −𝑘
𝜇
∇𝑝, (2)

where 𝑘 is the medium permeability, which does not
depend on the fluid properties, but only on the geo-
metric characteristics of the porous medium, and is
measured in Darcy units (1 D = 10−12 m2); and 𝜇 is
the dynamic viscosity of a fluid.

Darcy’s law is obeyed under the following condi-
tions [4, 13]: (i) the fluid moves slowly, so that the
inertia effects can be neglected; (ii) there is the mass
exchange between the phases, but not the momentum
exchange; (iii) the momentum exchange in separate
phases associated with the viscous shear is neglected;
(iv) the gravitational force is considered to be an ex-
ternal factor and is applied vertically; (v) the viscous
displacement obeys Newton’s law; (vi) the conditions
at the interfaces between the liquid and solid phases
correspond to the sticking; (vii) the solid phase is a
perfectly rigid body. Note that Darcy’s law is written
for the excessive pressure.

In order to obtain a closed system of equations for
the description of the filtration in a porous medium,
Eqs. (1) and (2) should be appended by the equation
of state for the fluid or gas, e.g., in the form 𝜌 =
= 𝜌 (𝑝, 𝑇 =const).

One of the simplest models for nonstationary gas
filtration (the model of elastic filtration mode) [5] can
be obtained, by assuming that the compressibility of
a moving substance very much exceeds the compress-
ibility of the porous medium. Then the change of the
medium porosity in time can be neglected, which al-
lows Eq. (1) to be substituted by the equation

𝑚
𝜕𝜌

𝜕𝑡
+ div𝜌u = 0. (3)

As a result, in the one-dimensional case in view of the
linear equation of state 𝜌 = 𝑝𝜌0/𝑝0 and Darcy’s law
(2), we obtain the following equation for the pressure:

𝜕𝑝

𝜕𝑡
=

𝑘

2𝑚𝜇

𝜕2
(︀
𝑝2
)︀

𝜕𝑥2
.

Even in this simple case, the resulting equation is non-
linear. Of course, the assumptions made above about
the fluid or gas flow are satisfied rather well in many
cases, so that Darcy’s law taken in form (2) is enough
for a correct description of flow parameters.

3. Generalization of Darcy’s Filtration Law

However, experimental data testify that if the filtra-
tion velocity is high [2, 8, 14] or, quite the contrary,
rather slow, so that anomalous rheological properties
of fluids can manifest themselves, there are devia-
tions from relation (2). Let us consider the most well-
known generalizations of Darcy’s law. First of all, this
is the two-component law [14]

∇𝑝 = −𝜇
𝑘
u− 𝛽

𝜌𝑢√
𝑘
u ≡ 𝑓(𝑢)u, (4)

which was proposed by Forchheimer. Deviations from
the linear Darcy’s law are observed at Reynolds
numbers of an order of 0.1–1.0, whereas the two-
component law agrees well with experimental data
at Reynolds numbers of an order of 10–100. Another
generalization of Eq. (2) was proposed by Brinkman
[7, 15]. It looks like

∇𝑝 = −𝜇
𝑘
u+ 𝜇′Δu,
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where 𝜇′ is the effective viscosity, which can be
equal to or even less than the actual fluid viscosity
𝜇. The following nonlinear filtration law also became
widespread [5, 14]:

u = −𝑓 (|∇𝑝|)∇𝑝, (5)

where 𝑓(𝑥) is a definite smooth function. For two-
phase flows, the nonequilibrium Buckley–Leverett
model and the Barenblatt model [5] are applied.

The study of the filtration of viscoelastic polymer
mixtures, petroleum, and other non-Newtonian flu-
ids showed [14] that relaxation effects can substan-
tially affect the parameters of the nonstationary fil-
tration through a porous medium [9]. To examine the
influence of delay effects, we propose to modify the
classical Darcy’s law within the relaxation formalism
of nonequilibrium thermodynamics [10, 11, 16]. Using
the operator representation for the permeability, the
dynamic Darcy’s law can be written in the form

𝑢 = −𝑘∇𝑝, (6)

where

𝑘 = 𝑘∞ +
𝑘0 − 𝑘∞

1 + 𝜏𝐷𝑡

is the dynamic permeability coefficient; 𝑘0 and 𝑘∞

are the equilibrium and frozen permeability coeffi-
cients, respectively; 𝐷𝑡 the time-differentiation op-
erator, and 𝜃 the relaxation time. For the latter, the
estimate 𝜏 ∼ 𝑘/(𝑚𝜈), where 𝜈 is the kinematic vis-
cosity of a fluid, is known [17]. Formally transform-
ing relation (6), we obtain the following generalized
Darcy’s equation:

𝜏 (𝑢𝑡 + 𝑘∞ (∇𝑝)𝑡) = −𝑢− 𝑘0∇𝑝, (7)

which can be found, e.g., in works [1, 9, 16].
A similar result can be obtained differently. In par-

ticular, let us write Darcy’s law in the nonlocal form,

𝑢 = −𝑘∞∇𝑝+ 𝜎

𝑡∫︁
𝑡0

exp

[︂
− 𝑡− 𝑠

𝜏

]︂
∇𝑝 (𝑥, 𝑠) 𝑑𝑠, (8)

where 𝜎 is a certain parameter. By differentiating this
expression and excluding the integral term from the
result [also with the help of Eq. (8)], we obtain

𝜏 (𝑢𝑡 + 𝑘∞ (∇𝑝)𝑡) = −𝑢− (𝑘∞ − 𝜎𝜏)∇𝑝.

Making the substitution 𝑘∞ − 𝜎𝜏 = 𝑘0, we arrive
at Eq. (7). The indicated transformations make it

possible to determine the parameter 𝜎 in Eq. (8)
in terms of the quantities 𝑘∞, 𝑘0, and 𝜏 , namely,
𝜎 = (𝑘∞ − 𝑘0)/𝜏 . The specific feature of the ob-
tained dynamic Darcy’s equation is that the model
is reduced to the equation like 𝑢 = −𝑘0∇𝑝 at slow
filtration processes and to 𝑢 = −𝑘∞∇𝑝 at fast pro-
cesses. In other words, the medium has different per-
meabilities depending on the characteristic process
frequency.

Note that, in this way, a new class of dynamic
Darcy’s equations can be obtained by extending law
(7) onto a nonlinear case. From the analysis of fil-
tration laws (4) and (5), it follows that they can
be expressed as the nonlinear relation 𝜓(𝑢) =
= −𝑘∞𝑓(∇𝑝), where 𝜓 and 𝑓 are nonlinear functions
of their arguments. Relaxation corrections to this law
are chosen in the integral form, as was done in expres-
sion (8):

𝜏−1

𝑡∫︁
𝑡0

exp

{︂
− 𝑡− 𝑠

𝜏

}︂
(𝜙− 𝜓) 𝑑𝑠+ 𝜓 =

= −𝑘∞𝑓 + 𝜏−1

𝑡∫︁
𝑡0

exp

{︂
− 𝑡− 𝑠

𝜏

}︂
(𝑘∞𝑓 − 𝑘0𝑔) 𝑑𝑠,

where 𝜙 is a function depending of the filtration ve-
locity, and 𝑔 a function depending on the pressure
gradient. By differentiating this equality with respect
to the time variable 𝑡, we obtain a dynamic nonlinear
Darcy’s equation

𝜏 (𝜓𝑡 + 𝑘∞𝑓𝑡) = −𝜙− 𝑘0𝑔.

For instance, if 𝜙, 𝜓, 𝑓 , and 𝑔 are power-law func-
tions, the following filtration law is obtained:

𝜏 [𝑢𝑛 + 𝑘∞∇𝑝2]𝑡 = −𝑢ℓ − 𝑘0∇𝑝1. (9)

where 𝑝1 = 𝑐21𝜌
𝑠 is the equation of state for a fluid

or gas at the equilibrium filtration, and 𝑝2 = 𝑐22𝜌 is
its counterpart in the case of frozen relaxation pro-
cess. Being compared with expression (7), the frozen
and equilibrium filtration laws can differ not only by
the permeability coefficients, but also by the degree
of nonlinearity.

The introduction of terms with time derivatives
into Darcy’s equation can be considered as making
allowance for the time nonlocality in the relations
between the generalized forces (the pressure gradi-
ent) and the flows (the filtration velocity). In the case
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where the field of generalized forces rapidly varies
in space, spatially nonlocal models are used for the
continuum approach to be applicable [10,12,18]. The
application of nonlocal theory also seems promising
in the case where it is not possible to distinguish a
sufficiently homogeneous elementary volume in the
medium, whose dimensions would justify the appli-
cability of a local Darcy’s law, e.g., in the case of
fractal porous materials [19]. Hence, let the nonlocal
generalization of the filtration law read

𝑢(𝑥, 𝑡) = −𝑘
∫︁
𝑅(𝑥− 𝑧)∇𝑝(𝑧)𝑑𝑧,

where 𝑅(·) is a certain relaxation kernel with corre-
sponding properties. Such immanently nonlocal mod-
els can be reduced to differential equations, by ex-
panding the pressure gradient in a Taylor series in a
vicinity of the point 𝑥 and by performing the integra-
tion. As a result, we obtain

𝑢(𝑥, 𝑡) = −𝑘
(︀
𝐼 + 𝜎2∇2

)︀
∇𝑝

or(︀
𝐼 + 𝜎2∇2

)︀−1
𝑢(𝑥, 𝑡) = −𝑘∇𝑝.

The weakly nonlocal case is reduced to the spatially
nonlocal Darcy’s equation

𝑢− 𝜎2∇2𝑢 = −𝑘∇𝑝,

where 𝜎 is the parameter of spatial nonlocality. It is
coupled with the correlation radius or with the size
of a structural element in the medium.

4. Partial Solutions of the Filtration
Model with Dynamic Darcy’s Equation

First of all, let us consider the propagation of small
perturbations accompanying the filtration of a fluid or
gas in the elastic mode. The consideration is carried
out in the framework of the model with the dynamic
Darcy’s equation:

𝑚
𝜕𝜌

𝜕𝑡
+ div𝜌u = 0,

𝜏

(︂
𝑑u

𝑑𝑡
+ 𝑘∞

𝑑∇𝑝
𝑑𝑡

)︂
= −𝑢− 𝑘0∇𝑝, 𝑝 = 𝑐2𝜌,

where 𝑑/𝑑𝑡 = 𝜕/𝜕𝑡 + (u∇) is the substantial deriva-
tive operator, and 𝑐 the sound velocity in the moving

substance. In the one-dimensional case, this system
of equations is reduced to the following one:

𝑚𝜌𝑡 + (𝜌𝑢)𝑥 = 0,

𝜏
(︀
𝑢𝑡 + 𝑢𝑢𝑥 + 𝑘∞𝑐2 (𝜌𝑥𝑡 + 𝑢𝜌𝑥𝑥)

)︀
= −𝑢− 𝑘0𝑐2𝜌𝑥.

(10)

Let us use this model to consider the propagation
of small perturbations like

𝜌 = 𝜌0 + 𝜀𝜌1, 𝑢 = 𝜀𝑢1, 𝜀≪ 1.

Then, in view of the smallness of perturbations, the
system of equations in the first approximation reads

𝑚
𝜕𝜌1
𝜕𝑡

+ 𝜌0
𝜕𝑢1
𝜕𝑥

= 0,

𝜏

(︂
𝜕𝑢1
𝜕𝑡

+ 𝑘∞𝑐2
𝜕2𝜌1
𝜕𝑥𝜕𝑡

)︂
= −𝑢1 − 𝑘0𝑐2

𝜕𝜌1
𝜕𝑥

.

A solution of this system is sought in the form

𝜌1 = 𝑟 exp (𝑖 (𝑘𝑥− 𝜔𝑡)), 𝑢1 = 𝑞 exp (𝑖 (𝑘𝑥− 𝜔𝑡)),

where 𝑘 is the wave number, and 𝜔 the circular wave
frequency. From the consistency condition for the sys-
tem of equations, a relation between 𝑘 and 𝜔 can be
determined in the form⃒⃒⃒⃒

𝑚𝜔 −𝜌0𝑘
𝑘∞𝑐2𝜔𝑘𝜏 + 𝑘0𝑐2𝑖𝑘 1− 𝑖𝜔𝜏

⃒⃒⃒⃒
= 0,

which is called the dispersion relation. By calculating
the determinant, we obtain

𝑘 = 𝑘′ + 𝑖𝑘′′ =
√
𝑎+ 𝑖𝑏,

where

𝑎 =
𝑚𝜔2𝜏

(︀
𝑘0 − 𝑘∞

)︀
𝜌0𝑐2

(︁
[𝑘0]

2
+ [𝑘∞𝜔𝜏 ]

2
)︁ ,

𝑏 =
𝑚𝜔

(︁
𝑘0 + 𝑘∞ [𝜔𝜏 ]

2
)︁

𝜌0𝑐2
(︁
[𝑘0]

2
+ [𝑘∞𝜔𝜏 ]

2
)︁ ,

and the damping coefficient 𝑘′′ is positive (𝑘′′ >
0). Then

𝑘′ =

√︃√
𝑎2 + 𝑏2 + 𝑎

2
,

and the phase velocity of the perturbation propaga-
tion equals

𝜐ph =
𝜔

𝑘′
.
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Let us evaluate how the relaxation processes affect
the phase velocity. For this purpose, let us compare
𝜐ph

⃒⃒
𝜏 ̸=0

and 𝜐ph
⃒⃒
𝜏=0

. For definiteness, let us assume
that 𝑘0 < 𝑘∞, i.e. the porous medium is more per-
meable for high-frequency perturbations than for low-
frequency ones. Hence, we need to compare the quan-
tities 𝑘′

⃒⃒
𝜏 ̸=0

and 𝑘′
⃒⃒
𝜏=0

=
√︀
𝑚𝜔/2𝜌0𝑐2. The inequal-

ity between them is the same as between
√
𝑎2 + 𝑏2+𝑎

and 𝑚𝜔/𝜌0𝑐
2. Since 𝑎 < 0, the inequality sign is de-

termined by the sign of the expression

𝑏2 −
(︂
𝑚𝜔

𝜌0𝑐2

)︂2
+

2𝑎𝑚𝜔

𝜌0𝑐2
=
𝑚2𝜔2𝑞(𝑘0 − 𝑘∞)(𝑘0)−2

𝑐4𝜌20([𝑘
0]

2
+ [𝑘∞𝑞]

2
)2

×

× (𝑘∞ 2(𝑘0 + 𝑘∞)𝑞3 + 2𝑘0𝑘∞ 2𝑞2 + 2𝑘0𝑘∞𝑞 + 2𝑘0 3),

where 𝑞 = 𝜔𝜏 > 0. This expression is evidently neg-
ative if 𝑘0 < 𝑘∞, so that 𝑘′

⃒⃒
𝜏 ̸=0

< 𝑘′
⃒⃒
𝜏=0

. Using a
similar consideration, we can show that, in the case
𝑘0 > 𝑘∞, we obtain 𝑘′

⃒⃒
𝜏 ̸=0

> 𝑘′
⃒⃒
𝜏=0

.
Hence, the following statement is valid:
If the permeability of a porous medium is higher for

high-frequency perturbations than for low-frequency
ones, i.e. 𝑘0 < 𝑘∞, then the phase velocity of the
filtration with relaxation is higher than the phase ve-
locity without relaxation, 𝜐ph

⃒⃒
𝜏 ̸=0

> 𝜐ph
⃒⃒
𝜏=0

. Vice
versa, provided that 𝑘0 > 𝑘∞, the phase velocities
in the nonequilibrium process exceed their counter-
parts in the equilibrium case, 𝜐ph

⃒⃒
𝜏 ̸=0

< 𝜐ph
⃒⃒
𝜏=0

.

4.1. Wave-like solutions
of the nonequilibrium filtration model

The wave propagation in porous media in the case
of nonlinear filtration law (5) was considered in work
[5], where the behavior of the pressure and the fil-
tration velocity at the front of a stationary wave was
determined. Let us analyze those modes in the case
of dynamic Darcy’s equation.

Wave-like solutions of model (10) have the form

𝜌 = 𝑅 (𝜉), 𝑢 = 𝑈 (𝜉), 𝜉 = 𝑥− 𝑠𝑡, (11)

where 𝑠 is the constant velocity of the wave
front. Substituting Eq. (11) into Eq. (10), integrating
the resulting relation from the background 𝜉 = ∞
to the current value 𝜉, and taking into account that
𝑈(∞) = 0 and 𝑅(∞) = 𝑅0, we obtain a quadrature

𝑅𝑈 = 𝑚𝑠 (𝑅−𝑅0)

and a system of ordinary differential equations

𝑑𝑅

𝑑𝜉
=𝑊,

𝑑𝑊

𝑑𝜉
=
𝑚𝑠

(︀
1− 𝑅0

𝑅

)︀
+ 𝑘0𝑐2𝑊 − 𝜏𝑠 (𝑠− 𝑈)𝑚𝑊

𝑅2𝑅0

𝜏𝑘∞𝑐2 (𝑠− 𝑈)
.

(12)

This is an autonomous dynamic system, which has
a nontrivial stationary point 𝑄 in the phase plane
(𝑅,𝑊 ) with the coordinates 𝑄 (𝑅0, 0). In a vicinity
of this point, system (12) is described by a linearized
system with the matrix

𝐴 =
(︁
0 1
𝛼 𝛽

)︁
,

where

𝛼 =
𝑚

𝜏𝐺0
> 0, 𝛽 =

𝜃

𝜏𝑠
− 𝑠𝑚

𝐺0
,

𝐺0 = 𝑘∞𝑐2𝑅0, 𝜃 = 𝑘0/𝑘∞.

It is evident that the eigenvalues 𝜆1,2 of this matrix
should be calculated from the condition 𝜆2 − 𝛽𝜆−
−𝛼 = 0. They equal 𝜆1,2 = 𝛽 ±

√
𝐷, where 𝐷 =

= 𝛽2 + 4𝛼 > 0. Therefore, they are real-valued
and have different signs at all parameter values. From
whence, it follows that the stationary point is a sad-
dle one. The only trajectory entering it is a stable
separatrix (see Fig. 1).

Let us analyze the behavior of the separatrix en-
tering the saddle point 𝑄, when the relaxation time
changes. In this connection, note that, owing to a
specific form of the matrix 𝐴, the angular coeffi-
cients of the directions [20], along which the tra-
jectories approach the stationary point 𝑄, are equal
to the eigenvalues 𝜆1,2. Therefore, the direction of

Fig. 1. Phase portrait of the dynamic system (12). Solid
curves 1 demonstrate separatrices of the stationary point 𝑄 at
𝜏1 = 0.01, and dashed curves 2 at 𝜏2 = 0.05
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Fig. 2. Phase portrait of the dynamic system (14) at 𝑚 =

= 0.35, 𝜏 = 0.5, and 𝜃 = 2

entering a separatrix is determined by the quantity
𝜆(𝜏) = 𝛽 −

√
𝐷. The sign of its derivative

𝑑𝜆

𝑑𝜏
= − 𝜃

𝜏2𝑠
√
𝐷

[︂√
𝐷 −

(︂
𝛽 − 2𝑚𝑠

𝐺0𝜃

)︂]︂
depends on the sign of the expression in the brack-
ets. Subjecting this expression to a number of equiv-
alence conversions, we obtain that

sign

(︂
𝑑𝜆

𝑑𝜏

)︂
= sign(1− 𝜃).

Therefore, if 𝜃 < 1, the function 𝜆(𝜏) is increasing,
and we have 0 > 𝜆(𝜏2) > 𝜆(𝜏1) for 𝜏2 > 𝜏1, which cor-
responds to the separatrix rotation counterclockwise
(Fig. 1). If 𝜃 < 1, the function 𝜆(𝜏) is decreasing, and
the separatrix rotates in the opposite direction.

4.2. Polynomial solutions

With the help of the variable separation method, one
can ascertain that system (10) has solutions of the
type
𝜌 = 𝑅 (𝑡)𝑥2, 𝑢 = 𝑈 (𝑡)𝑥. (13)

Substituting them into Eq. (10) and equating the co-
efficients in terms with the same powers of 𝑥, we ob-
tain a nonlinear system of dynamic equations for the
quantities 𝑅 and 𝑈 in the form

𝑚
𝑑𝑅

𝑑𝑡
+ 3𝑅𝑈 = 0,

𝜏

(︂
𝑑𝑈

𝑑𝑡
+ 𝑈2 + 2𝑘∞𝑐2

(︂
𝑑𝑅

𝑑𝑡
+ 𝑈𝑅

)︂)︂
= −𝑈 − 2𝑘0𝑐2𝑅.

In order to reduce the number of parameters, let us
perform the rescaling transformation 𝑅 =𝑊/2𝑐2𝑘∞,
which brings about the system

𝑚
𝑑𝑊

𝑑𝑡
+ 3𝑊𝑈 = 0,

𝜏

(︂
𝑑𝑈

𝑑𝑡
+ 𝑈2 +

𝑑𝑊

𝑑𝑡
+ 𝑈𝑊

)︂
= −𝑈 − 𝜃𝑊,

(14)

where 𝜃 = 𝑘0/𝑘∞. This system has two stationary
points: 𝐴 (−1/𝜏, 0) and 𝑂 (0, 0) (see Fig. 2). At point
𝐴, the eigenvalues of the matrix of a linearized sys-
tem equal 𝜆𝐴 = 3/𝑚𝜏 and 1/𝜏 , which testifies to the
saddle character of this point. At the same time, at
point 𝑂, the eigenvalues are𝜆𝑂 = −1/𝜏 and 0, and
the point is complex.

To analyze the behavior of the system in a vicin-
ity of the coordinate origin, let us construct a system
constraint on the central manifold [21]. For this pur-
pose, let us transform system (14) to the canonical
form with the help of the linear transformation(︁
𝑊
𝑈

)︁
= 𝑇

(︁
𝑥
𝑦

)︁
, 𝑇 =

(︂
1/𝜏 0
−𝜃/𝜏 1

)︂
.

As a result, we obtain

𝑑

𝑑𝑡

(︁
𝑥
𝑦

)︁
=

(︁
0

−𝑦/𝜏
)︁
+ 𝑇−1𝐹

(︁
𝑇
(︁
𝑥
𝑦

)︁)︁
, (15)

where 𝐹 is a column matrix of the right-hand sides of
system (14). According to the properties of a central
manifold, it can have the form ℎ(𝑥) = 𝑑𝑥𝑛+ ... . Sub-
stituting ℎ(𝑥) into the second equation in system (15)
and analyzing the monomials of the highest degree,
we obtain

𝑛 = 2, 𝑑 =
(3−𝑚)(𝜃 − 1)𝜃

2𝑚𝜃
.

The reduction of system (15) on the central manifold
leads to the equation 𝑑𝑥/𝑑𝑡 = 3𝜃

𝑚𝜏 𝑥
2.

Thus, since 0 < 𝑚 < 1, the sign of 𝛼 depends only
on the value of 𝜃 − 1. If 𝜃 > 1, the central mani-
fold is a parabola with upward branches; if 𝜃 < 1,
this is a parabola with branches directed downward
(Fig. 3). The qualitative behavior of trajectories in
a vicinity of point 𝑂 is governed by the solutions of
the reduced equation and characterizes this point as
a stable node in the left semiplane and as a saddle
point in the right one.
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Fig. 3. Central manifold and the structure of the phase plane in a vicinity of point 𝑂 of the dynamic system
((15) at 𝜃 > 1 (left panel) and 𝜃 < 1 (right panel)

4.3. Self-similar solutions
of the filtration model with the nonlinear
dynamic Darcy’s equation

As a rule, the account for relaxation processes makes
the set of exact solutions of the model narrower. Ho-
wever, in our case – the filtration model with the
nonlinear dynamic Darcy’s equation in form (9) – self-
similar solutions can be determined by applying the
methods of symmetry analysis [22], in contrast to the
case of models with Eq. (7). By analyzing rescaling
transformations allowable by the system

𝑚𝜌𝑡 + (𝜌𝑢)𝑥 = 0,

𝜏
(︀
𝑢𝑛 + 𝑘∞𝑐22𝜌𝑥

)︀
𝑡
= −𝑢ℓ − 𝑘0𝑐21(𝜌

𝑠)𝑥,
(16)

one can make sure that the latter is invariant with
respect to the operator

�̂� = 𝛼𝑡
𝜕

𝜕𝑡
+ 𝛽𝑥

𝜕

𝜕𝑥
+ 𝑟𝜌

𝜕

𝜕𝜌
+ 𝑠𝑢

𝜕

𝜕𝑢
,

where 𝛼 = (𝑛− ℓ)𝑠, 𝛽 = (1− ℓ+ 𝑛)𝑠, and 𝑟 = 𝑛+ 1
if, additionally,

𝑛(1− 2𝑠) + 𝑠(ℓ− 1) + 1 = 0.

The invariants of the operator �̂� determine the form
of self-similar solutions,

𝜌 = 𝑅(𝜔)𝑡𝑟/𝛼, 𝑢 = 𝑈(𝜔)𝑡𝑠/𝛼, 𝜔 = 𝑥𝛼𝑡−𝛽 .

As a result, the system of partial differential equa-
tions (16) is reduced to a system of ordinary differen-

tial equations

𝑚 (−𝛽𝜔𝑅′ +𝑅𝑟𝛼) + 𝛼𝜔1−1/𝛼(𝑈𝑅)′ = 0,

𝜏
(︁
𝛼𝑛𝑈𝑛−1𝑈 ′𝜔1/𝛼 + 𝛼𝑘∞𝑐22[𝛼𝜔𝑅

′′
+ (𝛼− 1)𝑅′]

)︁
×

×𝜔1−2/𝛼 = −𝑈 ℓ − 𝑠𝛼𝑘0𝑐21𝑅
𝑠−1𝑅′𝜔1−1/𝛼,

where the prime denotes the derivative with respect
to 𝜔. Since this system is nonautonomous and nonlin-
ear, its analysis is a complicated and still unresolved
problem. It should also be noted that if 𝑛 = ℓ, then
the parameter 𝛼 = 0, and system (16) has no self-
similar solutions of the indicated type.

5. Conclusions

Our study, which was carried out in the framework of
the relaxation formalism, allowed the filtration laws
to be generalized with regard for nonlinear and spa-
tial-temporal nonlocal effects that occur in nonequi-
librium porous media. As a result, dynamic filtration
laws were derived in the case of equilibrium or frozen
processes, with the classical Darcy’s law or its nonlin-
ear modifications being their asymptotics. Together
with the mass conservation law and the equations of
state for a moving substance, those equations seem
to be promising for the development of the model of
elastic filtration mode applicable at high filtration ve-
locities and a high inhomogeneity of the porous space.

In the linear approximation, Darcy’s relaxation
equations were substantiated in statistical physics
and proved themselves in practice, while describing
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the filtration of non-Newtonian fluids in porous me-
dia, where microscopic processes on a pore scale have
a significant effect. Those relationships were obtained
by linearizing nonlinear Darcy’s equations. They
make it possible to describe the propagation of small
wave-like perturbations and to analyze the influence
of relaxation processes on the phase propagation ve-
locity of waves.

Although the account for the nonlinear nonequi-
librium character of the system made the analyti-
cal consideration of filtration models more compli-
cated, we managed to analyze a number of simple so-
lutions. In particular, the filtration model is demon-
strated to possess solutions in the form of nonlinear
waves that propagate at a constant velocity, as well
as polynomial and self-similar solutions. On the ba-
sis of the methods of qualitative analysis of nonlinear
dynamical systems, the structure of the phase spaces
of reduced systems, their dependence on the relax-
ation time, and the ratio between the equilibrium and
frozen permeability parameters are determined.

The proposed models and their solutions can be
useful, when studying the parameters of fluid flow
fields in rocks, which is important for the development
of hydrocarbon extraction technologies [2, 14].
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РОЗВ’ЯЗКИ МОДЕЛI ПРУЖНОГО
РЕЖИМУ ФIЛЬТРАЦIЇ РIДИН ТА ГАЗIВ
З ДИНАМIЧНИМ ЗАКОНОМ ФIЛЬТРАЦIЇ

Р е з ю м е

У статтi розробляється модель фiльтрацiї з узагальненим
законом Дарсi, який мiстить опис нелокальних та нелiнiй-
них ефектiв. Вигляд такого закону отримано засобами ре-
лаксацiйного формалiзму нерiвноважної термодинамiки. В
рамках побудованої моделi проаналiзовано вплив релакса-
цiйних ефектiв на фазову швидкiсть поширення малих хви-
льових збурень, встановлено характер нелiнiйних бiжучих
хвиль, а також дослiджено властивостi полiномiальних та
автомодельних розв’язкiв.
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