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GENERALIZED UNCERTAINTY PRINCIPLE
IN QUANTUM COSMOLOGY FOR THE MAXIMALLY
SYMMETRIC SPACE

The new uncertainty relation is derived in the context of the canonical quantum theory with
gravity in the case of the maximally symmetric space. This relation establishes a connection
between fluctuations of the quantities, which determine the intrinsic and extrinsic curvatures
of the spacelike hypersurface in spacetime and introduces the uncertainty principle for quan-
tum gravitational systems. The generalized time-energy uncertainty relation taking gravity into
account gravity is proposed. It is shown that known Unruh’s uncertainty relation follows, as
a particular case, from the new uncertainty relation. As an example, the sizes of fluctua-
tions of the scale factor and its conjugate momentum are calculated within an exactly solvable
model. All known modifications of the uncertainty principle deduced previously from different
approaches in the theory of gravity and the string theory are obtained as particular cases of
the proposed general expression.
K e yw o r d s: quantumgravity, quantum geometrodynamics, cosmology, uncertainty principle.

1. Introduction

The Heisenberg uncertainty principle plays a funda-
mental role in quantum mechanics. It states that two
observables that do not commute cannot be measured
simultaneously with arbitrary accuracy [1, 2]. A long
time ago, it was recognized that the inclusion of the
gravitational interaction into the fabric of quantum
theory should lead to the modification of the Heisen-
berg uncertainty relation [3–6]. It is expected that, on
scales less than Planck’s scale, the classical concepts
of space and time lose their meanings, and the rad-
ical revision of our notions of them is required. The
minimum length of the order of Planck’s length ap-
pears as a new ingredient of the theory with gravity
and determines a natural restriction on measurable
distances.

Possible modifications of the Heisenberg uncer-
tainty relations, which consider the effects of gravity,
have been debated since the middle of the 1980s. The
modification of the position-momentum uncertainty
relation for a test particle moving in a gravitational
field was formulated, and the existence of a Planck-
scale minimal observable length was shown in string
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theory [7–9]. The same result was obtained, by us-
ing general model-independent properties of a quan-
tum theory of gravitation [10, 11] with regard for the
constraint on an upper limit of the acceleration of
massive particles [12]. The consequences of the exis-
tence of a minimal length, the quantum-mechanical
structure, which underlies it [13] and its effect on the
physical properties of various objects (the hydrogen
atom spectrum [14], the Lamb shift, Landau levels,
and others [15]) were investigated (an extensive bibli-
ography can be found, e.g. in Refs. [16–19]). The ex-
istence of a minimum observable momentum can lead
to a more general understanding of the influence of
gravity on the dynamics of the system [20].

It seems indubitable that, for the clarification of the
influence of spacetime curvature effects on the magni-
tude of dispersions of two observables corresponding
to canonically conjugate variables (such as position
and momentum, time and energy), one should have a
quantum theory at its disposal, which treats gravity
on the same grounds as quantized matter fields. A
consistent quantum theory of gravity, in principle,
can be constructed on the basis of the Arnowitt–
Deser–Misner (ADM) Hamiltonian formalism [21] of
general relativity with the application of the canon-
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ical quantization method. The canonical approach
(which is successful in constructing the nonrelativis-
tic quantum mechanics and quantum field theories
in the flat spacetime) to the quantization encounters
well-known difficulties, when applied to gravity, such
as the understanding of the time evolution, the di-
vergence of the norm of the state vectors, the mea-
surement problem, and others. The structure of con-
straints in general relativity is such that the variables
corresponding to the true dynamical degrees of free-
dom cannot be singled out. This is stipulated by the
absence of a predetermined way to identify spacetime
events in generally covariant theory [22]. The quan-
tum theory of gravity based on the Wheeler–DeWitt
equation makes no reference to a time parameter
[23, 24]. Attempts to identify one of the matter field
variables of the equations of quantum geometrody-
namics with time were not successful. However, time
can be introduced in the theory in a special man-
ner by bringing in an additional matter source (simi-
lar to DeWitt’s relativistic elastic media with clocks)
in the form of a perfect (reference) fluid, which de-
fines a dynamical reference system (material reference
frame) [25, 26].

A model with a finite number of degrees of freedom
may provide a reasonable framework for addressing
the problems of quantum gravity. The homogeneous
minisuperspace models have been proven to be suc-
cessful – consistent with observations and having pre-
dictive power – in classical cosmology. This appears
explicable, in view of the fact that the Universe can,
to first approximation, be considered as being homo-
geneous, and gives rise to the hope for that homoge-
neous models could be useful in quantum cosmology
as well. For such models, the quantum theory of grav-
ity with a well-defined time variable was proposed and
studied in Refs. [27–31].

In the present paper, we study the fluctuations of
the observables that characterize the quantum gravi-
tational system as such, like the intrinsic and extrinsic
curvatures of a spacelike hypersurface in spacetime,
and the influence of gravity on quantum fluctuations
of the position and the momentum of motion of a
test particle in coordinate space. In order to formu-
late the uncertainty relation, we require well-defined
state vectors, which will allow us to calculate the
expectation values of observables and their statisti-
cal fluctuations. In Sect. 2, the version of quantum
theory of a gravitational system in the maximally

symmetric space is given. The distinguished feature
of this theory is that one quantizes the observable
represented by some Hermitian operator, which plays
the role of an effective Hamiltonian and is measured
in units of the conversion constant (~𝑐). Therefore,
no difficulties with the definition of energy in general
relativity and in corresponding quantum field theory
constructed on its basis arise in this approach. Sect. 3
is devoted to the derivation of the uncertainty princi-
ple for quantum systems with the gravitational inter-
action. It is shown that the Heisenberg uncertainty
relations can be reformulated in terms of geomet-
rical values such as intrinsic and extrinsic curva-
tures. In Sect. 4, the new generalized uncertainty re-
lation of energy and time is formulated, and its con-
nection with the geometrical variables of the theory is
shown. The goal of Sect. 5 is to reduce the obtained
uncertainty relation for quantum gravitational sys-
tems to Unruh’s relation between the metric and the
curvature. In Sect. 6, the fluctuations of cosmologi-
cal parameters are calculated within an exactly solv-
able model. In Sect. 7, the uncertainty relation, which
takes the gravitational interaction into account, for
fluctuations of the position and momentum of a test
particle is obtained. This relation yields the general-
ized uncertainty principle proposed previously by a
number of authors, by using different quantum the-
ories with gravity. The consequences of the existence
of the minimum measurable length and momentum
of a test particle are also discussed here. Finally, con-
clusions are drawn in Sect. 8.

2. Quantization Scheme

Consider the homogeneous isotropic quantum gravi-
tational system (QGS). In the case of maximally sym-
metric geometry with the Robertson–Walker metric,
the geometrical properties of the system are deter-
mined by a single variable, namely the cosmic scale
factor 𝑎. The matter sector of the QGS is taken in the
form of a uniform scalar field 𝜑 with a self-adjoint
Hamiltonian 𝐻𝜑. This Hamiltonian is defined in a
curved spacetime and depends on the scale factor 𝑎
as a parameter, 𝐻𝜑 = 𝐻𝜑(𝑎). The scalar field can be
interpreted as a surrogate of all possible real physi-
cal fields of matter averaged with respect to the spin,
space, and other degrees of freedom. In addition, it
is accepted that the QGS is filled with a perfect fluid
in the form of a relativistic matter with the energy
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density 𝜌𝛾 = 𝐸/𝑎4, where 𝐸 is constant. A perfect
fluid coupled to a fleet of clocks can be employed as
a material reference frame enabling one to recognize
the instants of time. Following Dirac’s approach to
quantum gravity [32], we do not solve constraints
prior to the quantization, but convert the second-
class constraints into the first-class ones, which be-
come constraints on the state vector (wave function)
⟨𝑎, 𝜑|Ψ(𝑇 )⟩ in the representation of the gravitational
and matter fields, 𝑎 and 𝜑, the parameter 𝑇 is a con-
formal time. The basic equations of such a QGS ap-
pear as the set of two partial differential equations
[27–31] 1,(︂
−𝑖𝜕𝑇 − 1

2
𝐸

)︂
|Ψ(𝑇 )⟩ = 0,(︂

−𝜕2
𝑎 + 𝜅𝑎2 − 2𝑎𝐻𝜑 − 𝑎4

Λ

3
− 𝐸

)︂
|Ψ(𝑇 )⟩ = 0,

(1)

where the curvature constant 𝜅 = +1, 0,−1 for spa-
tially closed, flat, and open QGSs, respectively, and Λ
is the cosmological constant. The conformal time 𝑇 is
expressed in radians, the cosmic scale factor 𝑎 is mea-
sured in units of Planck’s length 𝑙P =

√︀
2𝐺~/(3𝜋𝑐3),

𝐺 is Newton’s gravitational constant, the Hamilto-
nian 𝐻𝜑 is taken in the units of Planck’s energy
𝑚P𝑐

2 = ~𝑐/𝑙P, the energy density 𝜌𝛾 is in the units
of Planck’s density 𝜌P = 3𝑐4/(8𝜋𝐺𝑙2P), so that 𝐸,
which has the dimension of [Energy × Length] = [~𝑐]
in ordinary physical units, becomes dimensionless. In
such units, the commutation relation between 𝑎 and
its conjugate momentum 𝜋 = −𝑖~ 𝜕𝑎 takes the form

[𝑎,−𝑖𝜕𝑎] = 𝑖. (2)

Equations (1) can be combined into a single Schrö-
dinger-type time equation

−𝑖𝜕𝑇 |Ψ(𝑇 )⟩ = H|Ψ(𝑇 )⟩, (3)

where the operator

H =
1

2

(︂
−𝜕2

𝑎 + 𝜅𝑎2 − 2𝑎𝐻𝜑 − 𝑎4
Λ

3

)︂
(4)

can be considered as the effective Hamiltonian of the
QGS, which does not depend on the time 𝑇 explicitly,

1 Here, for simplicity, the rescaling of the variable 𝑇 is done,
and the corresponding coefficient is included into the defini-
tion of proper time.

and the minus sign is a consequence of the gravita-
tional field equations in general relativity. The con-
dition of self-adjointness of 𝐻𝜑 and the reality of 𝑎
yield the self-adjointness of H.

Let us define the unitary evolution operator

𝑈(𝑇, 𝑇0) = 𝑒𝑖H(𝑇−𝑇0), (5)

where 𝑇0 is an arbitrary constant taken as a time
reference point. Then the solution of Eq. (3) can be
written as follows:

|Ψ(𝑇 )⟩ = 𝑈(𝑇, 𝑇0)|ΨH(𝑇0)⟩, (6)

where |ΨH(𝑇0)⟩ is a state vector in the Heisenberg
representation.

The second equation from set (1), which defines a
change of the state vector |Ψ(𝑇 )⟩ as a function of 𝑎
and 𝜑, can be integrated with respect to 𝜑. With this
purpose, we introduce the complete set of orthonor-
malized functions ⟨𝜒|𝑢𝑘⟩ in a representation of the
rescaled variable 𝜒 = 𝜒(𝑎, 𝜑), in which the Hamilto-
nian 𝐻𝜑 is diagonalized,

⟨𝑢𝑘|𝐻𝜑|𝑢𝑘′⟩ = 𝑀𝑘(𝑎) 𝛿𝑘𝑘′ , (7)

where 𝑀𝑘(𝑎) is the proper mass-energy of the new ef-
fective matter in the discrete and/or continuous 𝑘th
state obtained after the averaging of 𝐻𝜑 with respect
to the field 𝜒 in a comoving volume 1

2𝑎
3. For exam-

ple, in the case where 𝐻𝜑 describes the homogeneous
scalar field, the new effective matter is a barotropic
fluid with the energy density 𝜌𝑚 = 2𝑀𝑘(𝑎)/𝑎

3 and
the pressure 𝑝𝑚 = − 1

3 (𝑑 ln𝑀𝑘(𝑎)/𝑑 ln 𝑎)𝜌𝑚 [30].
Further, we bring in another complete set of or-

thonormalized functions ⟨𝑎|𝑓𝑛𝑘⟩, which satisfies the
equation(︂
−𝜕2

𝑎 + 𝜅𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝑎4
Λ

3

)︂
|𝑓𝑛𝑘⟩ = 𝐸𝑛|𝑓𝑛𝑘⟩, (8)

where 𝑛 enumerates discrete and/or continuous states
of the QGS with matter in the fixed 𝑘th state. Then
the vector |ΨH(𝑇0)⟩ can be written as the super-
position

|ΨH(𝑇0)⟩ =
∑︁
𝑛,𝑘

𝐶𝑛𝑘(𝑇0)|𝑢𝑘⟩|𝑓𝑛𝑘⟩, (9)

where the coefficient 𝐶𝑛𝑘(𝑇0) gives the probability
|𝐶𝑛𝑘(𝑇0)|2 to find the QGS in the 𝑛th state of rela-
tivistic matter and the 𝑘th state of averaged effective
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matter at the instant of time 𝑇0. Since, by definition,
the vectors |𝑢𝑘⟩ and |𝑓𝑛𝑘⟩ exhaust all the possible
states of the matter components of the QGS, the nor-
malization condition for |Ψ(𝑇 )⟩ takes the form

⟨Ψ(𝑇 )|Ψ(𝑇 )⟩ = ⟨ΨH(𝑇0)|ΨH(𝑇0)⟩ =
=

∑︁
𝑛,𝑘

|𝐶𝑛𝑘(𝑇0)|2 = 1. (10)

The transition amplitude 𝑇0 → 𝑇 determines the
mean value of the evolution operator with respect to
state (9),

⟨Ψ(𝑇0)|Ψ(𝑇 )⟩ = ⟨ΨH(𝑇0)|𝑈(𝑇, 𝑇0)|ΨH(𝑇0)⟩ =
=

∑︁
𝑛,𝑘

𝑒
𝑖
2𝐸𝑛(𝑇−𝑇0)|𝐶𝑛𝑘(𝑇0)|2. (11)

It demonstrates that the evolution of the system in
time 𝑇 has a periodic character in each 𝑛th state. In
view of the self-adjointness of the effective Hamilto-
nian (4), Eq. (3) and its complex conjugate yield the
equation

𝑑⟨A⟩
𝑑𝑇

=
1

𝑖
⟨[H,A]⟩+

⟨
𝜕A

𝜕𝑇

⟩
, (12)

which gives the time-dependence of the mean value
of an observable A,

⟨A⟩ ≡ ⟨Ψ(𝑇 )|A|Ψ(𝑇 )⟩ =
= ⟨ΨH(𝑇0)|AH|ΨH(𝑇0)⟩ ≡ ⟨AH⟩H, (13)

where AH = 𝑈†A𝑈 is the observable of the Heisen-
berg representation. From the unitary property of the
operator 𝑈 (5), we have

⟨[H,A]⟩ = ⟨[HH,AH]⟩H, (14)

where HH = 𝑈†H𝑈 is the Hamiltonian of the Heisen-
berg representation.

Let us note that, according to Eq. (9), Eqs. (7) and
(8) determine the stationary quantum states of the
QGS at some fixed instant of time 𝑇0, the choice of
which is arbitrary, ⟨𝜒|𝑢𝑘⟩ ≡ 𝑢𝑘(𝜒, 𝑇0), and ⟨𝑎|𝑓𝑛𝑘⟩ ≡
≡ 𝑓𝑛𝑘(𝑎, 𝑇0).

3. Uncertainty Principle

The uncertainty relation for two observables in a
Hilbert space, A and B, which do not depend on the
time 𝑇 , can be explicitly written as (cf. Ref. [2])

ΔAΔB ≥ 1

2
|⟨[A,B]⟩|, (15)

where ΔA =
√︀

⟨A2⟩ − ⟨A⟩2, ΔB =
√︀
⟨B2⟩ − ⟨B⟩2

are the root-mean-square deviations of A and B, res-
pectively.

Let A = 𝑎 and B = 𝜋 = −𝑖𝜕𝑎. Then, taking Eq. (2)
into account, we find the uncertainty relation between
the scale factor and its conjugate momentum:

Δ𝑎Δ𝜋 ≥ ~
2

(16)

(in ordinary physical units). This relation coincides in
form with the uncertainty relation between the posi-
tion and the momentum in ordinary quantum me-
chanics, but it has a different physical meaning. It is
expressed in geometrical quantities and thus describes
the effects of spacetime curvature.

Inequality (16) reduces to an equality, if Δ𝑎 = 𝑙P
and Δ𝜋 = 1

2𝑚P𝑐. It can be considered as an indi-
cation of the existence of a minimum length equal
to Planck’s length. Really, we have Δ𝑎 → 0, so that
quantum fluctuations Δ𝜋 → ∞ near the cosmologi-
cal singularity 𝑎 = 0. This means that, at distances
shorter than Planck’s length, there should exist a
limitation on the measurement of spacetime quanti-
ties. The existence of a minimal measurable length
of the order of Planck’s length (quantitative limit to
spacetime resolution) was predicted in the 1960s [33]
(for details, see Refs. [11, 34]). Below, in Sects. 6 and
7, we give a calculation of the minimum length and
minimum momentum on specific examples.

The uncertainty relation (16) establishes, in fact,
a connection between fluctuations of the quantities,
which determine the intrinsic and extrinsic curva-
tures of a spacelike hypersurface in spacetime. By
associating quantum operators to the scalar curva-
ture (3)𝑅 and the extrinsic curvature tensor 𝐾𝑖𝑗 =
= − 1

2𝜕
(3)𝑔𝑖𝑗/𝜕𝜏 , where (3)𝑔𝑖𝑗 is the 3-metric and 𝜏 is

the proper time, Eq. (16) can be written explicitly in
terms of curvature fluctuations,

Δ(3)𝑅 Δ𝐾 & 4𝜋~
|(3)𝑅|
(3)𝑉

, (17)

where 𝐾 = 𝐾𝑖
𝑖 , and (3)𝑉 ∼ 4

3𝜋𝑎
3 is the 3-volume of

the measurement (observed part of the QGS).

4. Generalized Time-Energy
Uncertainty Relation

Let us find the generalized time-energy uncertainty
relation, which takes gravity into account. In the
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quantum gravitational system, let A be an observable,
which does not depend on time explicitly and does not
commute with the effective Hamiltonian (4). Setting
B = H in Eq. (15), bearing in mind Eq. (12) and that
the proper time 𝜏 is connected with the conformal
time 𝑇 by the differential equation 𝑐𝑑𝜏 = 𝑎 𝑑𝑇 , we
obtain the uncertainty relation in ordinary physical
units:

𝜏A
ΔE

|𝑎|
≥ ~

2
, (18)

where ΔE is the root-mean-square deviation of H,
and

𝜏A =

⃒⃒⃒⃒
⃒ΔA

(︂
𝑑⟨A⟩
𝑑𝜏

)︂−1
⃒⃒⃒⃒
⃒ (19)

is a time characteristic of the evolution of the sta-
tistical distribution of A (i.e. the time necessary for
this statistical distribution to be considerably modi-
fied). The quantity ΔE/|𝑎| is the statistical fluctua-
tion of the result of the energy measurement, where
the denominator involves the redshift correction due
to the expansion of the QGS. In the limit |𝑎| → 0,
this fluctuation becomes infinitely large, while a time
characteristic 𝜏A can acquire any value in accordance
with the uncertainty relation (18). Thus, near the ini-
tial cosmological singularity, the notions of time and
energy lose their meaning (they cannot be measured).

Because of the presence of the multiplier 1/|𝑎|, the
uncertainty relation (18) does not reduce to the time-
energy uncertainty relation of ordinary quantum me-
chanics. In our approach, the effective Hamiltonian
has the dimension of the constant 𝐸, which is quan-
tized according to Eq. (8), the latter determines the
quantum state of relativistic matter.

For A = 𝑎, relation (18) reduces to the uncertainty

relation (16), where Δ𝜋 = ΔE
𝑐

(︁
𝑑⟨𝑎⟩
𝑑𝑇

)︁−1

is the statis-
tical fluctuation of the momentum.

5. Unruh’s Uncertainty Relation

The uncertainty relation (16) can be reduced to Un-
ruh’s uncertainty relation between the metric and the
curvature. One may assume formally that the Ein-
stein’s equations are valid in the quantum regime as
well [35]. Indeed, as is shown in Ref. [29], Eq. (12)
for A = 𝑎 and A = 𝜋 = −𝑖𝜕𝑎 can be reduced to
the Einstein–Friedmann equations, which contain the

quantum correction terms to the total energy density
and pressure. Then the rate of change of the momen-
tum in time is given by the equation �̇� = − 1

2𝑎
2𝑇𝛼

𝛼 +𝜅,
where 𝑇𝛼

𝛼 is the trace of the stress tensor. We shall
restrict ourselves to the study of the fluctuations of
the quantities in spatial directions. In a comoving ref-
erence frame, one can express the 𝑇 𝑥

𝑥 component of
the stress tensor as 𝑇 𝑥

𝑥 = −p, where p is the pres-
sure defined as the force acting on the surface ele-
ment having an area of 𝐴 in the direction of 𝑥. In
that case, the fluctuation of the momentum can be
estimated as Δ𝜋 ∼ Δ𝑇 𝑥

𝑥𝐴𝛿𝜏 , where 𝛿𝜏 is a time in-
terval, 𝐴 ∼ 𝑎2 and Δ𝑇 𝑥

𝑥 ∼ 𝑇 𝑥
𝑥 . The metric compo-

nent 𝑔𝑥𝑥 can be represented in the form 𝑔𝑥𝑥 = 𝑎2𝛾𝑥𝑥,
where 𝛾𝑥𝑥 is the comoving spatial metric component,
whose fluctuation can be neglected, Δ𝛾𝑥𝑥 = 0. Then
the fluctuations Δ𝑔𝑥𝑥 and Δ𝑎 are connected between
themselves: Δ𝑔𝑥𝑥/𝑔𝑥𝑥 = 2Δ𝑎/𝑎. As a result, in the
rest frame, relation (16) takes the form

Δ𝑔𝑥𝑥Δ𝑇 𝑥
𝑥 & ~

𝑔𝑥𝑥
𝛿𝜏 (3)𝑉

, (20)

where (3)𝑉 ∼ 𝑎3 is the 3-volume. Introducing the
Einstein tensor, 𝐺𝑥

𝑥 = 8𝜋𝑇 𝑥
𝑥 (in units 𝐺 = 𝑐 = 1) and

defining the 4-volume (4)𝑉 ∼ 𝛿𝜏 (3)𝑉 , we rewrite the
preceding relation in Unruh’s form

Δ𝑔𝑥𝑥Δ𝐺𝑥𝑥 & ~
8𝜋

(4)𝑉
. (21)

From Eq. (21), the Heisenberg position-momentum
uncertainty relation, which considers the effects of
gravity on quantum fields, can be restored (cf.
Ref. [35]).

Equation (20) can be represented also as

𝛿𝜀 𝛿𝜏 & ~, (22)

which connects a deviation of the energy 𝛿𝜀 = Δ𝑔𝑥𝑥×
×Δ𝑇 𝑥𝑥 (3)𝑉 with the time interval 𝛿𝜏 (cf. with
Eq. (18)).

6. Exactly Solvable Model

The uncertainty relation (16) and its consequences
(17)–(22) determine restrictions on the simultaneous
measurement of the corresponding cosmological pa-
rameters of the QGS described by the state vector
|Ψ(𝑇 )⟩. According to Eqs. (6) and (9), such a QGS is
a superposition of subsystems (or universes in a mul-
tiverse model) characterized by the quantum num-
bers 𝑘 and 𝑛, i.e., they are filled with the effective
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matter in the 𝑘th state with definite mass-energy
𝑀𝑘(𝑎) and relativistic matter in the 𝑛th state with
the energy 𝐸𝑛/(2𝑎). Each subsystem is described by
its wave function ⟨𝑎|𝑓𝑛𝑘⟩, which satisfies the station-
ary equation (8). The time equation for |𝑓𝑛𝑘(𝑇 )⟩ =

= 𝑒
𝑖
2𝐸𝑛(𝑇−𝑇0)|𝑓𝑛𝑘⟩ follows from Eqs. (3), (6), and (9):

−𝑖𝜕𝑇 |𝑓𝑛𝑘(𝑇 )⟩ = H𝑘|𝑓𝑛𝑘(𝑇 )⟩, (23)

with the “Hamiltonian”

H𝑘 =
1

2

(︂
−𝜕2

𝑎 + 𝜅𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝑎4
Λ

3

)︂
, (24)

which is operator (4) averaged over the states |𝑢𝑘⟩,
H𝑘 = ⟨𝑢𝑘|H|𝑢𝑘⟩.

The uncertainty relation for the observables 𝑎 and
𝜋 = −𝑖𝜕𝑎 in such a subsystem takes the form

𝛿𝑎 𝛿𝜋 ≥ 1

2
(25)

(in dimensionless units), where 𝛿𝑎 =
√︀
⟨𝑎2⟩𝑛𝑘 − ⟨𝑎⟩2𝑛𝑘

and 𝛿𝜋 =
√︀

⟨𝜋2⟩𝑛𝑘 − ⟨𝜋⟩2𝑛𝑘 are the root-mean-square
deviations, and the averaging is performed over the
𝑓𝑛𝑘-states, e.g. ⟨𝑎2⟩𝑛𝑘 ≡ ⟨𝑓𝑛𝑘|𝑎2|𝑓𝑛𝑘⟩ and so on.

Let us calculate the fluctuations 𝛿𝑎 and 𝛿𝜋 in an
explicit form for a specific spatially closed subsys-
tem with zero cosmological constant (Λ = 0) filled
with separate (non-interacting) macroscopic bodies
(dust) and radiation. The mass of the dust is 𝑀𝑘(𝑎) =
= 𝜇

(︀
𝑘 + 1

2

)︀
= const, where 𝜇 is the mass of a single

macroscopic body, and 𝑘 is the number of such bod-
ies. In this case, the solution of Eq. (8) is

|𝑓𝑛𝑘⟩ ≡ 𝑓𝑛(𝜉𝑘) = 𝑁𝑛𝑘 𝑒
− 1

2 𝜉
2
𝑘 𝐻𝑛(𝜉𝑘),

𝐸𝑛 = 2𝑛+ 1−𝑀2
𝑘 ,

(26)

where 𝜉𝑘 = 𝑎 − 𝑀𝑘, 𝐻𝑛 is the Hermite polynomial,
𝑁𝑛𝑘 is the normalizing constant, and the wave func-
tion is normalized on the interval [−𝑀𝑘,∞).

Then, with an accuracy of order 𝑒−𝑀2
𝑘 [27], we have

⟨𝑎2⟩𝑛𝑘 = 𝑛+
1

2
+𝑀2

𝑘 , ⟨𝑎⟩𝑛𝑘 = 𝑀𝑘, (27)

so that (in ordinary physical units)

𝛿𝑎 = 𝑙P

√︂
𝑛+

1

2
. (28)

For the momentum, we obtain

⟨𝜋2⟩𝑛𝑘 = 𝑛+
1

2
, ⟨𝜋⟩𝑛𝑘 = 0 (29)

and

𝛿𝜋 = 𝑚P 𝑐

√︂
𝑛+

1

2
. (30)

As a consequence, we get the uncertainty product of
the same form as for a harmonic oscillator,

𝛿𝑎 𝛿𝜋 =

(︂
𝑛+

1

2

)︂
~. (31)

From Eqs. (28) and (30), one can see that the fluctu-
ations 𝛿𝑎 and 𝛿𝜋 take minimum values in the ground
(vacuum) state with 𝑛 = 0,

𝛿𝑎min =
𝑙P√
2
, 𝛿𝜋min =

𝑚P 𝑐√
2
. (32)

The size of fluctuations increases as the square root√
𝑛. It is interesting to estimate the size of fluctua-

tions in the subsystem having the mass-energy of the
observable part of our universe 𝑙 ∼ 1028 cm. The cos-
mological parameters 𝐸𝑛 ∼ 10118 ≪ 𝑀2

𝑘 ∼ 10122 (i.e.
𝜌𝛾 ∼ 10−10 GeVcm−3 and 𝜌𝑚 ∼ 10−5 GeVcm−3)
correspond to 𝑛 ∼ 10122 and fluctuations 𝛿𝑎 ∼ 𝑙 ∼
∼ 1028 cm. In such a description, the observable part
of the universe appears as a gigantic fluctuation.

7. Test Particle in Gravitational Field

In the preceding sections, we have analyzed the prop-
erties of a quantum gravitational system in connec-
tion with uncertainty relations. Here, we will consider
an influence of gravity on quantum fluctuations of the
position and momentum of a test particle. By intro-
ducing the root-mean-square deviations of the posi-
tion Δ𝑥 and momentum Δ𝑝 of motion of a test par-
ticle in the coordinate space, one can rewrite the un-
certainty relation (16) in the form, which takes the
effects of gravity on motion into account:

Δ𝑥
Δ𝑝

~
≥ 1

2

Δ𝑥

Δ𝑎

Δ𝑝

Δ𝜋
. (33)

We suppose that the deviations Δ𝑎 and Δ𝜋 can be
represented as follows:

Δ𝑎 = ⟨𝜌(𝑄)⟩Δ𝑥, Δ𝜋 = ⟨𝜁(𝑃 )⟩Δ𝑝, (34)
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where 𝜌(𝑄) and 𝜁(𝑃 ) are some functions of deviations
of the position 𝑄 = 𝑥− ⟨𝑥⟩ and the momentum 𝑃 =
= 𝑝−⟨𝑝⟩, and the averaging ensures the independence
of Δ𝑎 and Δ𝜋 from direction in the coordinate space.

In view of the random character of the fluctuations
of the result of measurement of the position and mo-
mentum of a test particle around their average values,
let us define the functions 𝜌(𝑄) and 𝜁(𝑃 ) in the form
of the normal frequency functions

𝜌(𝑄) = 𝑒
− 𝑄2

2𝐿2
𝑥 , 𝜁(𝑃 ) = 𝑒−

𝐿2
𝑝
2 (𝑃~)

2

(35)

normalized to satisfy 𝜌(0) = 1, 𝜁(0) = 1. Here, 𝐿2
𝑥 is

the dispersion in the coordinate space, and
(︁

~
𝐿𝑝

)︁2
is

the dispersion in the momentum space.
The normal distributions (35) correspond to the

wave packet representing a test particle localized in
the coordinate space about 𝑄 = 0 and localized in
the momentum space about 𝑃 = 0. The quantities
𝐿𝑥 and 𝐿𝑝 have the dimensions of length. They are
independent free parameters, since the normal fre-
quency function 𝜁(𝑃 ) is not a Fourier transform of
𝜌(𝑄). The physical contents of the parameters 𝐿𝑥 and
𝐿𝑝 are different. As is obvious already from Eqs. (33)–
(35), if the fluctuations Δ𝑥 and Δ𝑝 are non-zero, the
Heisenberg uncertainty relation can be restored only
in the formal limits 𝐿𝑥 → ∞ and 𝐿𝑝 → 0 reached
simultaneously. If 𝐿𝑥 = ∞, but 𝐿𝑝 ̸= 0, then grav-
ity contributes to fluctuations of the momentum. In
the other case, if 𝐿𝑥 < ∞, but 𝐿𝑝 = 0, then gravity
affects fluctuations of the position.

The reason why the parameters 𝐿𝑥 and 𝐿𝑝 have dif-
ferent physical contents is that the position 𝑥 and mo-
mentum 𝑝 fluctuate independently under the action
of gravity. The spacetime and momentum space are
both dynamical and fluctuating, and the momentum
space is independent of the spacetime and it cannot
be just a Fourier transform of the coordinate space
(cf. Refs. [36, 37]).

The uncertainty relation (33) with deviations Δ𝑎
and Δ𝜋 (34) and the normal frequency functions (35)
transforms into the generalized Heisenberg-type un-
certainty relation with corrections to gravity, in the
case(︂
𝑄

𝐿𝑥

)︂2
< 1 and

(︂
𝐿𝑝𝑃

~

)︂2
< 1. (36)

Substituting Eq. (34) and Eq. (35) into Eq. (33), ex-
panding the exponentials in Eq. (35) in power series,

and truncating after the first corrections to unity, we
obtain the approximate inequality

Δ𝑥 ≥ 1

2

[︂(︂
1 +

Λ

6
(Δ𝑥)2

)︂
~
Δ𝑝

+

+
𝐺

2𝑐3

(︂
1 +

Λ

6
(Δ𝑥)2

)︂
Δ𝑝

]︂
, (37)

where it is taken that 𝐿𝑝 =
√︁

𝐺~
𝑐3 is Planck’s length

and 𝐿𝑥 =
√︁

3
Λ is the de Sitter horizon [20], and

Λ is a cosmological constant. The right-hand side of
inequality (37) contains only the fundamental con-
stants. From this inequality, under the assumption
Λ = 0, we get the result obtained in Refs. [10, 12]:

Δ𝑥 ≥ ~
2Δ𝑝

+
𝐺

2𝑐3
Δ𝑝. (38)

This relation can be written in the form arising from
string theory [8, 9] as

Δ𝑥 ≥ ~
2Δ𝑝

+
𝛼′

2

Δ𝑝

~
, (39)

where 𝛼′ = 𝐿2
𝑝 is a fundamental constant controlling

the tension of a string. The minimum length in such
a theory is equal to (Δ𝑥)min =

√
𝛼′ and coincides

with Planck’s length ∼ 10−33 cm. From Eq. (37), it
follows that there should exist not only the minimum
length (Δ𝑥)min = 𝐿𝑝, but also the minimum momen-
tum (Δ𝑝/~)min = 1/𝐿𝑥. If 𝐿𝑥 is the de Sitter horizon,
then (Δ𝑝/~)min ∼

√
Λ . 10−28 cm−1 for the present-

day values of the cosmological parameters.
By taking the minimum length together with the

minimum momentum, one can write the following re-
lation: (Δ𝑥)min(Δ𝑝/~)min = 𝐿𝑝/𝐿𝑥 . 10−61. Using
this relation, it is possible to restore the physical
parameters 𝐴today of the observed part of our
Universe from the Planck values 𝐴Planck, 𝐴today =
= 𝐴Planck(Δ𝑥)−1

min(Δ𝑝/~)−1
min. Substituting the Planck

length, Planck mass, and Planck time into this ex-
pression, we obtain the estimations for the size of
the observed part of the Universe 𝑅0 & 1028 cm, for
the mass 𝑀0 & 1080 GeV, and for the age of the
Universe 𝑡0 & 1017 s.

8. Conclusion

In this paper, we have studied the Heisenberg un-
certainty principle in the context of the quantum ge-
ometrodynamics in the case of the maximally sym-
metric space. The obtained uncertainty principle in
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the form of Eq. (16) coincides in form with the uncer-
tainty relation between a position and a momentum
in ordinary quantum mechanics, but it is expressed
in geometrical quantities and thus describes the ef-
fects of spacetime curvature. As is shown in Eq. (17),
the uncertainty relation can be reformulated through
the quantities, which determine the intrinsic and ex-
trinsic curvatures of a spacelike hypersurface in the
spacetime. It is found that the product of fluctua-
tions of the intrinsic and extrinsic curvatures must
be greater than or of order the intrinsic curvature
per unit volume of the measurement.

Since the version of quantum theory of the gravita-
tional system discussed in the paper contains a well-
defined time variable, we are able to derive the gen-
eralized time-energy uncertainty relation (18), which
contains the statistical fluctuation of the result of the
measurement of the energy of the relativistic matter
and includes the correction due to the expansion of
the system. The obtained relation confirms a conjec-
ture, which was previously considered in the litera-
ture, that the notions of time and energy lose their
meaning near the initial cosmological singularity.

Under the assumption that the Einstein equations
(with quantum correction terms) are valid in the
quantum regime, we have demonstrated that the fun-
damental relation (16) can be reduced to the uncer-
tainty relation in Unruh’s form (21). Such a connec-
tion between Eqs. (16) and (21) may be interpreted
as clarifying the physical meaning of Eq. (21).

Then we consider an exactly solvable model in the
context of the problem of existence of the minimum
physical length and momentum. Equations (3)–(9)
describe the QGS as a linear superposition of sim-
pler subsystems, each of which is characterized by
matter-energy in specific states with quantum num-
bers 𝑘 and 𝑛. Each separate subsystem is determined
by the wave function ⟨𝑎|𝑓𝑛𝑘⟩ satisfying Eq. (8). If the
subsystem is spatially closed and filled with dust and
relativistic matter, then, in the case of zero cosmolog-
ical constant, Eq. (8) has the analytic solution (26) in
the form of an oscillator shifted in the 𝑎 axis by the
amount of dust mass. The fluctuations of the scale
factor 𝛿𝑎 and its conjugate momentum 𝛿𝜋 are quan-
tized according to Eqs. (28) and (30), while their
product (31) satisfies the uncertainty relation (25),
where the equality is reached only for the vacuum
state of the subsystem. In the vacuum state, the fluc-
tuation 𝛿𝑎 has the minimum value of the order of

Planck’s length 𝑙P, and the fluctuation 𝛿𝜋 acquires
the minimum value of the order of Planck’s momen-
tum 𝑚P 𝑐 (see Eq. (32)).

Finally, we have studied the influence of gravity
on quantum fluctuations of the position and momen-
tum of a test particle. With regard for the random
character of the fluctuations of the result of measure-
ment of the position and momentum of a test parti-
cle around their average values, the uncertainty rela-
tion (33) transforms into the generalized Heisenberg-
type uncertainty relation with corrections to grav-
ity (37). From this inequality, the generalized uncer-
tainty principle proposed previously by a number of
authors can be reproduced.
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УЗАГАЛЬНЕНИЙ ПРИНЦИП
НЕВИЗНАЧЕНОСТI У КВАНТОВIЙ КОСМОЛОГIЇ
ДЛЯ МАКСИМАЛЬНО СИМЕТРИЧНОГО ПРОСТОРУ

Р е з ю м е

У рамках канонiчної квантової теорiї, що бере до уваги
гравiтацiю, для випадку максимально симетричного про-
стору отримано нове спiввiдношення невизначеностi. Це
спiввiдношення встановлює зв’язок мiж флуктуацiями ве-
личин, що визначають внутрiшню та зовнiшню кривизни
просторово-подiбної гiперповерхнi, та запроваджує прин-
цип невизначеностi для квантових гравiтацiйних систем.
Запропоновано узагальнене спiввiдношення невизначеностi
для часу та енергiї, що враховує гравiтацiю. Показано, що
вiдоме спiввiдношення невизначеностi Анру випливає з но-
вого спiввiдношення невизначеностi як окремий випадок.
Як приклад, в рамках моделi, що має точний розв’язок, об-
численi розмiри флуктуацiй масштабного фактора та спря-
женого iмпульсу. Всi вiдомi видозмiни принципу невизна-
ченостi, що ранiше були виведенi в рiзних пiдходах у теорiї
гравiтацiї та теорiї струн, були отриманi як особливi випад-
ки запропонованого загального виразу.
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