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PARAMETERS OF CHARGE CARRIER TRAPS IN ZnSe

Taking zinc selenide (ZnSe) crystals as an example, a procedure of determination of the main
parameters of traps is proposed. At first, the conductivity type (electron or hole one) in a crystal
of phosphor at its excitation is determined with the help of photoelectric studies or studies of the
thermionic emission or thermal or photo-thermal emf. Then the energy of the thermal electron
delocalization is determined, e.g., by using the method of thermally stimulated luminescence
with sequential fractional heating. As a result, the frequency factors of corresponding traps
are found as well. Knowing the effective electron mass, it is easy to calculate the effective
density of electron states in the conduction band. Finally, the cross sections of the free-electron
localization and their temperature dependences can be determined for all traps from a simple
equation.
K e yw o r d s: charge carrier traps, recombination centers, localization centers, delocalization
centers, zinc selenide.

1. Introduction
Defects of a crystal structure that are responsible for
the appearance of local levels in the forbidden gap
of semiconductors and insulators govern the kinet-
ics of luminescence and conductivity in those materi-
als. The corresponding kinetic researches, which were
carried out during 70 years, made it possible to reveal
all physical processes that take place in the materials
at their excitation and develop the kinetic theories of
luminescence [1, 2] and conductivity [3, 4].

Point defects are classified into recombination cen-
ters (radiative and non-radiative) and traps for free
charge carriers. Such a classification is rather rela-
tive, because the luminescence centers also play the
role of traps for the first free charge carrier and cre-
ate recharged recombination centers at the initial
stage. Only afterward, the localization of a charge
carrier with the opposite sign at this center leads
to the recombination of charges and the emission of
light quanta. The recombination can also take place
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at recharged traps. But, in many cases, it is the
non-radiative recombination even at low tempera-
tures. It should be noted that both traps and lumi-
nescence centers are recombination centers for free
excitons. The radiative recombination centers (lumi-
nescence centers) determine, first of all, luminescence
spectra; whereas the traps determine the light sum
accumulated at the excitation, as well as the kinetics
of luminescence and conductivity. Therefore, one of
the main tasks is to find the parameters of traps in
the materials.

The first methods for determining the kinetic pa-
rameters of local centers appeared together with
the kinetic methods of experimental studies. They
are mainly used to find the parameters of the re-
combination centers in wide-band-gap semiconduc-
tors [2–8]. Recently, the measurements of the Schot-
tky barrier capacitance were used to determine the
trap parameters in narrow-band-gap semiconductors
[9]. Thus, there are experimental methods for deter-
mining the parameters of luminescence centers, but
there are no reliable and unambiguous methods for
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determining the parameters of traps (except for their
depth). For instance, traps with energies of 0.56 and
0.44 eV are observed in GaAs. The difference between
the indicated values amounts to 27%. At the same
time, the corresponding localization cross-sections
differ from each other by an order of magnitude, with
the value for the shallower trap being smaller.

The well-known ZnSe crystals are a good model
material for relevant studies. They demonstrate the
intense luminescence and conductivity, when being
excited with X-ray and UV quanta, which allows the
complex kinetic researches and the determination of
trap parameters to be performed simultaneously. In
the general case, the traps for free charge carriers in
crystalline phosphors are characterized by the follow-
ing parameter:

1. the trap depth 𝐸𝑖, which describes the depth of
a local level in the forbidden gap;

2. the frequency factor 𝜔0𝑖; together with the tem-
perature 𝑇 , this parameter determines the probability
of the thermal delocalization of a charge carrier from
this trap, 𝜔𝑖 = 𝜔0𝑖 exp(−𝐸𝑖/𝑘𝑇 );

3. the localization cross-section 𝜎±
𝑖 ; the subscript

indicates the type of a localization center, and the
superscript gives the sign of the free charge carrier.

In this work, the attempt was made to relate the
main parameters of traps in specially undoped ZnSe
crystals with one another and to determine their tem-
perature dependences.

2. Trap Depth 𝐸𝑖

The presence of traps in a material can be detected
from the curves of thermally stimulated luminescence
(TSL) and conductivity (TSC), which are registered,
when the specimen is heated after its excitation. Al-
most all crystalline phosphors demonstrate dozens of
TSL peaks, which testifies to a wide spectrum of
traps in every specimen. As a rule, different speci-
mens of the same material reveal different ratios be-
tween the peak intensities, both in the TSL and TSC
curves. This fact means that minor deviations in the
crystal growing technology may bring to significant
changes in the concentrations of various traps.

For the reliable determination of the whole trap
spectrum, several excitation temperatures have to be
used, especially in the case of wide-band-gap mate-
rials. The most convenient way is to use the liquid
helium temperature (4.2 K), liquid nitrogen temper-

ature (77 K), and room temperature (295 K). For
the determination of the thermal depth of a trap,
the most reliable method is TSL with the fractional
heating [10], because it is based on the fundamental
relationship: the initial intensity of a TSL peak is
proportional to the probability of the charge carrier
delocalization from a trap.

The detailed researches of the trap energy spectrum
showed that, in various crystals – e.g., Ba2NaNb5O15

[11], CdWO4 [12], ZnWO4 [13], Al2O3 [14], CsCdCl3
[15], Y3Al5O12 [16], NaCl [17], LiF [18], KCl and NaI
[19], ZnS:Cu [20], AlN:O [21], PbSO4 [22], CaS [23]
and ZnSe [24] – the energy positions of local trap
levels are equidistant and can be described by the
harmonic oscillator formula

𝐸𝑖 = ~𝜔
(︂
𝑖+

1

2

)︂
, (1)

where: 𝑖 = 0, 1, 2, 3, ... is the ordinal number of the
trap type, and the equidistance constant ~𝜔 is identi-
cal to the energy of a totally symmetric vibration of
the crystalline lattice. For ZnSe crystals, the param-
eter ~𝜔 = 0.02567 eV (206 cm−1) was obtained. Such
a behavior of the trap energy spectrum can be ex-
plained in the framework of the polaron trap model
[10]. Accordingly, we obtain that the parameter 𝑖 de-
termines the number of vibrational levels in the trap.

On the other hand, it has long been known that if
the heating rate 𝛽 is constant, a linear relation takes
place between the trap depth and the corresponding
temperature position 𝑇𝑖 of the TSL peak [25–27],

𝐸𝑖 = 𝐴× 𝑘𝑇𝑖. (2)

The dimensionless constant 𝐴 lies within an inter-
val from 20 to 25 for all known crystalline phos-
phors. Thus, the method of fractional luminescence
[10] can be used to experimentally determine the trap
depths for the most intense TSL peaks and verify
the validity of relations (1) and (2). As a result, we
can determine 𝐸𝑖- and 𝑇𝑖-values for all traps in the
given crystalline phosphor. The values of trap depths
for ZnSe crystals are quoted in Table. The fourth
column of the table contains the experimentally ob-
tained depth values for the traps corresponding to the
most intense TSL peaks. The symbol “+” marks traps
that are observed in the TSL curves, so that their 𝑇𝑖

can be evaluated, but their intensity is too low for the
value of the parameter 𝐸𝑖 to be determined.
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3. Frequency Factor of the Trap 𝜔0𝑖

Knowing the thermal depth of the trap, 𝐸𝑖, and
the temperature position of its TSL peak, 𝑇𝑖, we
can determine the corresponding frequency factor 𝜔0𝑖

[2, 10, 25, 28] (this procedure can be done for every

Main parameters
of electron traps in ZnSe crystals

i 𝑇𝑚,
K

𝐸𝑖(theor),
eV

𝐸𝑖(exp),
eV

𝜔0𝑖,
s−1

𝜎𝑖(8 K),
cm−2

1 20.4 0.0385 1.0E+09 2.50E–16
2 34.0 0.0642 6.3E+08 1.50E–16
3 47.6 0.0898 0.09 4.5E+08 1.10E–16
4 61.2 0.1155 + 3.5E+08 8.40E–17
5 74.8 0.1412 2.8E+08 6.90E–17
6 88.4 0.1669 2.4E+08 5.80E–17
7 102.0 0.1925 2.1E+08 5.00E–17
8 115.6 0.2182 1.8E+08 4.50E–17
9 129.2 0.2439 0.24 1.6E+08 4.00E–17

10 142.8 0.2695 0.27 1.5E+08 3.60E–17
11 156.4 0.2952 1.4E+08 3.30E–17
12 170.0 0.3209 0.32 1.3E+08 3.00E–17
13 183.6 0.3465 0.35 1.2E+08 2.80E–17
14 197.2 0.3722 + 1.1E+08 2.60E–17
15 210.8 0.3979 1.0E+08 2.40E–17
16 224.4 0.4236 + 9.5E+07 2.30E–17
17 238.0 0.4492 9.0E+07 2.20E–17
18 251.6 0.4749 0.47 8.5E+07 2.00E–17
19 265.2 0.5006 + 8.0E+07 1.90E–17
20 278.8 0.5262 7.6E+07 1.80E–17
21 292.4 0.5519 + 7.3E+07 1.80E–17
22 306.0 0.5776 7.0E+07 1.70E–17
23 319.6 0.6032 0.60 6.7E+07 1.60E–17
24 333.2 0.6289 6.4E+07 1.50E–17
25 346.8 0.6546 + 6.1E+07 1.50E–17
26 360.4 0.6803 5.9E+07 1.40E–17
27 374.0 0.7059 5.7E+07 1.40E–17
28 387.6 0.7316 5.5E+07 1.30E–17
29 401.2 0.7573 5.3E+07 1.30E–17
30 414.8 0.7829 5.1E+07 1.20E–17
31 428.4 0.8086 5.0E+07 1.20E–17
32 442.0 0.8343 4.8E+07 1.20E–17
33 455.6 0.8599 4.7E+07 1.10E–17
34 469.2 0.8856 4.5E+07 1.10E–17
35 482.8 0.9113 4.4E+07 1.10E–17
36 496.4 0.9370 4.3E+07 1.00E–17
37 510.0 0.9626 4.2E+07 1.00E–17
38 523.6 0.9883 4.1E+07 9.80E–18
39 537.2 1.0140 4.0E+07 9.60E–18
40 550.8 1.0396 3.9E+07 9.30E–18

trap):

𝑤0𝑖 =
𝐸𝑖

𝑘𝑇𝑖
=

𝐴𝛽

𝑇𝑖
exp(𝐴) =

𝐴2𝑘𝛽

𝐸𝑖
exp(𝐴). (3)

This relation shows that the frequency factor is in-
versely proportional to the trap depth. As a result,
we can calculate the frequency factors for all possi-
ble traps in the given crystalline phosphor. In such a
way, we can obtain parameters of the traps that are
observed in TSL, even without knowing the origin of
the traps themselves and which free charge carriers
are localized at them.

For example, let us assume that the traps that
are observed in the TSL and TSC curves are elec-
tron ones, because this is true for many other wide-
band-gap semiconductors [4, 5]. Since the energy of
the traps is described by the harmonic oscillator for-
mula (1), the localization and delocalization processes
can be considered in the framework of the polaron
model [10]. For an ensemble of identical filled traps,
the statistical distribution over vibrational levels have
to be described by the Boltzmann formula

𝑁𝑚

𝑁𝑘
=

𝑔𝑚
𝑔𝑘

exp

(︂
𝐸𝑘 − 𝐸𝑚

𝑘𝑇

)︂
= exp

(︂
𝐸𝑚 − 𝐸𝑘

𝑘𝑇

)︂
=

= exp

(︂
~𝜔𝑐(𝑘 −𝑚)

𝑘𝑇

)︂
, (4)

where 0 6 (𝑚, 𝑘) 6 𝑖 − 1 are the numbers of vi-
brational levels of the filled trap. For a harmonic os-
cillator, the statistical weights 𝑔𝑚 and 𝑔𝑘 of vibra-
tional levels are identical. At 𝑇 ̸= 0, all vibrational
levels, including those above 𝐸𝑖, must be occupied
with probabilities different from zero.

Let us determine the fraction of transitions with the
trap ionization (the electron delocalization into the
conduction band) owing to the population of vibra-
tional levels with energies larger than 𝐸𝑖. From the
normalization condition for the Boltzmann distribu-
tion, we obtain the quasiequilibrium concentration of
filled traps, 𝑛𝑖, and, accordingly, the distribution of
concentrations over the vibrational levels in the form

𝑁𝑚 = 𝑛

[︂
1− exp

(︂
− ~𝜔𝑐

𝑘𝑇

)︂]︂
exp

(︂
− 𝑚~𝜔𝑐

𝑘𝑇

)︂
, (5)

where 𝑛 =
∑︀

𝑚 𝑁𝑚. Then the total concentration of
filled traps with energies 𝐸 > 𝐸𝑖 is∑︁
𝑚>𝑖

𝑁𝑚 = 𝑛 exp

(︂
− 𝐸𝑇

𝑘𝑇

)︂
. (6)
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During the time of the thermodynamic equilib-
rium establishment between a trap and the crystal
lattice, 𝜏𝑖𝑇 , the occupation of high vibrational lev-
els (𝑚 > 𝑖) takes place in filled traps that lost an
electron, i.e. the electron transits into the conduction
band. Thus, within this time interval, the thermal de-
localization of the following part of filled traps takes
place:∑︀

𝑚>𝑖 𝑁𝑚∑︀
𝑚

𝑁𝑚
= exp

(︂
− 𝐸𝑇

𝑘𝑇

)︂
. (7)

So, we obtain the integral probability of the electron
delocalization from traps due to the population of
vibrational states located above the conduction band
bottom:

𝜔𝑇 =
1

𝜏𝑇
exp

(︂
− 𝐸𝑇

𝑘𝑇

)︂
. (8)

This formula is identical to the probability of the ther-
mal delocalization of electrons from traps, if the fre-
quency factor is equal to the reciprocal time of the
thermodynamic equilibrium establishment between
the traps of this type and the crystal lattice.

Thus, the consideration of the vibrational level
population in an ensemble of identical filled traps
allows the physical origin of the parameter, which
is conventionally called the frequency factor, to be
determined. Indeed, when considering any thermally
activated processes (delocalization of charge carri-
ers from traps, internal and external luminescence
fadings, hopping conductivity, diffusion, adsorption,
etc.), a large number of centers are always dealt
with. The probability of the thermal activation pro-
cess is an averaged parameter for a statistical en-
semble of identical centers, which are in thermo-
dynamic equilibrium with the environment. The re-
ciprocal value of the frequency factor is the relax-
ation time of centers into the equilibrium state with
their environment. Formula (3) obtained for the fre-
quency factor explains its dependence on the trap
depth in crystalline phosphor. Really, in deeper traps,
an electron, since the moment of its localization,
needs more time to transit over vibrational levels onto
the lower vibrational levels in the process of ther-
malization, because those transitions take place se-
quentially through every next vibrational level. The-
refore, the time required for establishing a thermody-
namic equilibrium is longer for deep traps. As a re-
sult, the frequency factor decreases, as the trap depth

Fig. 1. Schematic diagram of electron transitions into traps

increases. This consideration can be generalized onto
all thermal activation processes, since they are based
on the same mechanism: transitions over the vibra-
tional states of a large ensemble of identical centers
(or molecules) in the course of thermodynamic equi-
librium establishment.

4. Occupation Degrees
of Traps Located at Various Depths

Experimental studies of TSL testify that every crys-
tal contains a significant number of traps. Therefore,
it is reasonable to classify the traps of all types into
shallow, phosphorescent, and deep ones for every ex-
citation temperature 𝑇0. For this purpose, three cri-
teria can be used: (i) the average lifetime of a charge
carrier in the trap, 𝜏𝑖; (ii) the maximum occupation
degree of the trap at its long excitation, i.e. when
the quasiequilibrium state is attained, 𝑛𝑖/𝑣𝑖; and
(iii) the trap energy location with respect to the elec-
tron Fermi level in the forbidden gap. However, those
criteria provide the same result. At the temperature
𝑇0, traps for which 𝜏𝑖−1 ≪ 1 s, 𝑛(𝑖−1)/𝑣(𝑖−1) ≪ 1,
and which are located above the Fermi level (at least
by a few 𝑘𝑇 ) are classified as shallow ones. For phos-
phorescent traps (there is only one phosphorescent
type), 𝜏𝑖−1 ≈ (1÷10) s, 𝑛𝑖/𝑣𝑖 ≈ 1/2, and they
are located near the Fermi level. Traps belonging to
this type give the main contribution to the phos-
phorescence intensity. Finally, the traps located be-
low the Fermi level in the forbidden gap and such
that 𝜏𝑖+1 ≫ 10 s, 1/2 < 𝑛(𝑖−1)/𝑣(𝑖−1) < 1 are con-
sidered as deep ones. Figure 1 illustrates the energy
positions of trap levels in the forbidden gap and the
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Fig. 2. Occupation degrees of traps in ZnSe at 𝑇0 = 85 K.
The parameter values are 𝐺 = 1017 cm−3s−1, 𝜈𝑖 = 1017 cm−3,
and 𝜈𝑝 = 1018 cm−3

corresponding electron transitions at the localization
and delocalization.

In work [10], in the framework of the described
model of crystalline phosphor, the following equation
was obtained for the occupation degree of the 𝑖-th
traps:
𝑛𝑖∞

𝜈𝑖
=

1

2

√︃(︂
𝐺

𝜔𝑖𝜈𝑖

𝜈𝑖 + 𝜈𝑝
𝜈𝑝

)︂2
+

4𝐺

𝜔𝑖𝜈𝑖
− 𝐺

𝜔𝑖𝜈𝑖

(︂
𝜈𝑖 + 𝜈𝑝

𝜈𝑝

)︂
,

where 𝐺 is the intensity of the electron-hole pair gen-
eration per unit volume per unit time, and 𝜈𝑝 is the
concentration of recombination centers, at which free
holes are localized. Figure 2 demonstrates the occu-
pation degrees of traps in ZnSe at 𝑇0 = 85 K calcu-
lated by this formula. The corresponding 𝜔𝑖0-values
were taken from Table.

For the indicated relations between the trap and
recombination center concentrations, we obtain that
the recharge degree of deep traps can reach 91% at
their long excitation, if there is no optical delocal-
ization of electrons from deep traps during the exci-
tation. The corresponding value for the fluorescence
centers equals 9%. Thus, the concentration ratio be-
tween the shallow and deep traps changes with the
excitation temperature 𝑇0, which significantly affects
the luminescence and conductivity kinetics.

5. Cross-Sections 𝜎𝑖

of Electron Localization at Traps

Let us assume that all traps can exchange electrons
with the conduction band only, although sometimes –

for example, in alkaline halide crystals [18, 19]) – the
tunnel transitions from a trap into the recombination
centers were observed. All localization and delocal-
ization events are independent of one another, which
allows the occupation degree of every trap and its
parameters to be determined by considering only one
kinetic equation from the general system of kinetic
equations.

5.1. Cross-section of the free-electron
localization at shallow traps

In order to determine the cross-sections of the free-
electron localization at shallow traps, let us consider
the kinetic equation for one shallow trap. In the sta-
tionary state, the Fermi level lies below the local
level of a shallow trap (Fig. 1). For the concentra-
tion 𝑛(𝑖−1) of localized electrons at the traps of the
(𝑖 − 1)-th type with the concentration 𝑣(𝑖−1) at the
temperature 𝑇0, we have the kinetic equation

𝑑𝑛(𝑖−1)

𝑑𝑡
= 𝑁−𝑢−𝜎−

(𝑖−1)(𝜈(𝑖−1) − 𝑛(𝑖−1))−

−𝜔(𝑖−1)𝑛(𝑖−1) = 0, (9)

where 𝑁 is the concentration of free electrons in the
conduction band, 𝑢− =

√︁
2𝑘𝑇
3𝑚*

𝑒
is their thermal veloc-

ity, 𝜎−
(𝑖−1) the localization cross-section, and 𝜔(𝑖−1)

the probability of the thermal delocalization. The oc-
cupation degree of all shallow traps is very low, and
the inequality 𝑛(𝑖−1) ≪ 𝜈(𝑖−1) is valid. This circum-
stance allows Eq. (9) to be simplified:

𝑁−

𝑛(𝑖−1)
=

𝜔0(𝑖−1) exp
(︀
− 𝐸(𝑖−1)/𝑘𝑇

)︀
𝑢−𝜎−

(𝑖−1)

so that we obtain a direct proportionality between
the concentrations of free electrons and electrons lo-
calized at shallow traps. But, in the stationary state
case, this concentration ratio should also satisfy the
Boltzmann distribution, because the Fermi level is
located below the local trap level, and 𝐸𝑖−1 is the
distance between the conduction band and the trap
level,

𝑁−

𝑛(𝑖−1)
=

𝑁C

𝜈(𝑖−1)
exp

(︂
− 𝐸(𝑖−1)/𝑘𝑇

)︂
, (10)

where

𝑁C = 2
(2𝜋𝑚*

𝑒𝑘𝑇 )
3/2

ℎ3
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is the effective density of electron states in the con-
duction band, 𝑚*

𝑒 is the effective electron mass, and
ℎ is Planck’s constant. By comparing Eqs. (9) and
(10), we obtain the following formula for the localiza-
tion cross-section:

𝜎−
(𝑖−1) =

𝜔0(𝑖−1)

𝑢−𝑁C
. (11)

This expression for the cross-section of free-electron
localization at shallow traps was obtained in work [3],
but from a different reasoning.

5.2. Cross-section of free-electron
localization at phosphorescent traps

The phosphorescent trap provides the major part of
the phosphorescence and the conduction current re-
laxation at the excitation temperature 𝑇0 (the trap
of the 𝑖-th type). This means that the Fermi level is
located near the level of this trap in the stationary
state. To simplify calculations, we assume that the
Fermi level exactly coincides with the trap level. Then
the kinetic equation for localized electrons reads

𝑑𝑛(𝑖)

𝑑𝑡
= 𝑁−𝑢−𝜎−

(𝑖)(𝜈(𝑖) − 𝑛(𝑖))− 𝜔(𝑖)𝑛(𝑖) = 0. (12)

In the stationary state, this trap is half-occupied, and
the condition 𝐸𝑖 ≫ 𝑘𝑇 is satisfied, i.e.,

𝑛𝑖 =
1

2
𝜈𝑖,

𝑁− = 𝑁C
1

exp (𝐸𝑖/𝑘𝑇 ) + 1
= 𝑁C exp

(︂
−𝐸𝑖

𝑘𝑇

)︂
.

(13)

As a result, we obtain

𝑁C exp

(︂
−𝐸𝑖

𝑘𝑇

)︂
𝑢−𝜎−

(𝑖)

𝜈(𝑖)

2
= 𝑤0𝑖 exp

(︂
−𝐸𝑖

𝑘𝑇

)︂
.

From whence, we have

𝜎−
(𝑖) =

𝑤0𝑖

𝑢−𝑁C
. (14)

This is the equation for the cross-section of the free-
electron localization at a phosphorescent trap. It is
identical to Eq. (11).

5.3. Cross-section of free-electron
localization at deep traps

In order to determine the cross-section of the free-
electron localization at a deep trap, let us consider

a model of crystalline phosphor with one deep donor
level (Fig. 1). From the physical viewpoint, this donor
does not differ from a deep trap in the excited crys-
talline phosphor in the stationary state. This trap will
be denoted by the subscript (𝑖+1). In the model con-
cerned, the Fermi level for electrons is located be-
tween the local level of the trap and the conduction
band bottom. The corresponding kinetic equation for
the stationary state at the temperature 𝑇0 looks like

𝑑𝑛(𝑖+1)

𝑑𝑡
= 𝑁−𝑢−𝜎−

(𝑖+1)(𝜈(𝑖+1) − 𝑛(𝑖+1))−

−𝜔(𝑖+1)𝑛(𝑖+1) = 0. (15)

Taking into account that 𝑣(𝑖+1) − 𝑛(𝑖+1) = 𝑁− ≪
≪ 𝑣(𝑖+1), this equation can be somewhat simplified,

(𝑁−)2𝑢−𝜎−
(𝑖+1) = 𝑤0(𝑖+1)𝜈(𝑖+1) exp

(︂
−

𝐸(𝑖+1)

𝑘𝑇

)︂
.

The concentration of free electrons obeys the Fermi
statistics, and this parameter can be written in the
form

𝑁− =
√︁
𝑁C𝜈(𝑖+1) exp

(︂
−

𝐸(𝑖+1)

𝑘𝑇

)︂
,

i.e. as the intrinsic conductivity of a semiconductor
[29], in which the deep level plays the role of a va-
lence band, because the thermal ionization of local
levels determines the free-electron concentration. As
a result, we obtain

𝑁C𝜈(𝑖+1) exp

(︂
−

2𝐸(𝑖+1)

𝑘𝑇

)︂
𝑢−𝜎−

(𝑖+1) =

= 𝜔0(𝑖+1)𝜈(𝑖+1) exp

(︂
−

𝐸(𝑖+1)

𝑘𝑇

)︂
.

From whence, we have a formula for the cross-section
of the free-electron localization at deep traps:

𝜎𝑖
(𝑖+1) =

𝜔0(𝑖+1)

𝑢−𝑁C
. (16)

Thus, the formulas obtained for the cross-sections
of the free-electron localization at shallow [Eq. (11)],
phosphorescent [Eq. (14)], and deep [Eq. (16)] traps
look almost identically. Therefore, we may assert that
a universal formula should be valid for traps of all
kinds in semiconductors and insulators. Since 𝑢 and
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Fig. 3. TSL curves for the ZnSe crystal after X-ray excitation
(𝐼𝑋 = 0.63 mW/cm2) for 1 (1 ), 5 (2 ), 10 (3 ), and 25 min (4 )

𝑁C are the crystal lattice parameters, and the fre-
quency factor is determined by Eq. (3), the formula
for the cross-section of the free-electron localization
at a trap of the 𝑗-th type at the temperature 𝑇0 can
be written as follows:

𝜎−
𝑗 =

√︂
3

𝜋

𝜔0𝑗ℎ
3

8𝜋𝑚*
𝑒(𝑘𝑇 )

2
=

√︂
3

𝜋

𝐴𝛽ℎ3 exp(𝐴)

8𝜋𝑚*
𝑒𝑘

2𝑇 2
0 𝑇𝑗

=

=

√︂
3

𝜋

𝐴2𝛽ℎ3 exp(𝐴)

8𝜋𝑚*
𝑒𝑘𝑇

2
0𝐸𝑗

. (17)

A reduction of the localization cross-section for
deep traps was experimentally found in YAG crys-
tals long ago [30]. This behavior is also confirmed
by the TSL curves obtained for ZnSe after various
irradiation doses: less deep traps accumulate light
sums quicker than deeper ones do. The curve shape
of TSL in ZnSe appreciably varies as the dose of X-
ray radiation increases (Fig. 3). This fact confirms
that the localization cross-section for deep traps de-
creases proportionally to the trap depth according to
Eq. (17). The free-electron localization cross-sections
also decrease with the growth of the excitation tem-
perature, 𝜎𝑗 ∼ 𝑇−2

0 . This means that the cross-
sections of the electron localization at traps become
(295/8)2 ≈ 1360 times smaller at room temperature,
if compared with the values given in Table. Further-
more, if we take into account that almost all traps
become shallow at room temperature, the applica-
tion of ZnSe crystals as semiconductor detectors of

ionizing radiation seems to be attractive. The calcu-
lated localization cross-sections for traps in ZnSe are
quoted in Table. For the localization of free holes at
traps, the whole analysis will be the same to within
the substitution of the parameter 𝑁C by 𝑁𝑉 in for-
mulas (11), (14), and (16).

6. Conclusions

If the energy spectrum of traps and the tempera-
tures of the TSL peak maxima are known, the corre-
sponding frequency factors and the localization cross-
sections for free charge carriers at those traps can
be calculated. The consideration of the kinetic equa-
tions for traps with various depths brought us to the
equation describing the cross-sections of the electron
localization at traps in terms of their frequency fac-
tor, heat velocity, and the effective density of electron
states in the conduction band. It is found that the de-
pendence of the localization cross-section on the ex-
citation temperature is proportional to 𝑇−2

0 , which
is confirmed experimentally. It is also found that the
physical sense of the frequency factor consists in that
this quantity is a reciprocal value to the average time
of establishing the thermodynamic equilibrium be-
tween a local center and the crystal lattice. The in-
formation about the main parameters of traps makes
it possible to analyze a lot of experimental kinetic de-
pendences for luminescence and conductivity, such as
the enhancement of luminescence and conductivity,
the dose dependences of phosphorescence and con-
duction current relaxation, the dose dependences of
the TSL peak intensity and the TSC current, etc.
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В.Я.Дегода, М.Алiзадех

ПАРАМЕТРИ ПАСТОК ДЛЯ НОСIЇВ ЗАРЯДУ В ZnSe

Р е з ю м е

На прикладi кристалiв селенiду цинку (ZnSe) запропонова-
на система визначення основних параметрiв пасток. Спо-
чатку за допомогою фотоелектричних дослiджень, або до-
слiджень термоемiсiйного струму, або термо- i фототермо-
ерс, визначають характер провiдностi (електронний чи дiр-
ковий) в кристалофосфорi при збудженнi. Далi визначаю-
ться енергiї термiчної делокалiзацiї електронiв, наприклад,
методом послiдовного фракцiйного нагрiвання термостиму-
льованої люмiнесценцiї. При цьому також визначаються ча-
стотнi фактори для вiдповiдних пасток. Знаючи ефектив-
ну масу електрона легко вираховується ефективна густина
станiв електронiв у зонi провiдностi. I в результатi з просто-
го рiвняння можна визначити перерiзи локалiзацiї вiльних
електронiв на усi пастки та їх температурнi залежностi.
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