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DAMPING OF MAGNETOELASTIC WAVES

A general method for constructing a model of the dissipative function describing the relaxation
processes induced by the damping of coupled magnetoacoustic waves in magnetically ordered
materials has been developed. The obtained model is based on the symmetry of the magnet
and describes both exchange and relativistic interactions in the crystal. The model accounts
for the contributions of both the magnetic and elastic subsystems to the dissipation, as well as
the relaxation associated with the magnetoelastic interaction. The dispersion law for coupled
magnetoelastic waves is calculated in the case of a uniaxial ferromagnet of the “easy axis”
type. It is shown that the contribution of the magnetoelastic interaction to dissipative processes
can play a significant role in the case of magnetoacoustic resonance.
K e yw o r d s: magnetoelastic interaction, dissipative function, dispersion law, uniaxial ferro-
magnet, relaxation.

1. Introduction

Coupled magnetoelastic oscillations comprise a com-
plicated natural phenomenon, which is a result of
the interaction between the magnetic subsystem of a
crystal and the crystal lattice. Vibrations of this type
have been a subject of extensive researches for many
years [1, 2], and a number of important fundamental
results have been obtained for them [3–5].

The influence of the magnetoelastic interaction on
the spectra of spin and elastic oscillations is rather
small, as a rule. However, this interaction reveals it-
self substantially in the case of magnetoacoustic res-
onance, when the spin-wave frequency approaches
the sound frequency, and the quasispin and qua-
sisound branches in the wave spectrum begin to re-
pulse each other [3, 4]. The results of relevant studies
also demonstrate that the magnetoelastic interaction
increases, if magnetically ordered systems approach
the point of spin-reorientation phase transition [4] or
structural phase transition in the lattice [6, 7].

The study of the phenomena arising owing to the
interaction between the magnetic and elastic subsys-
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tems has gained a new impetus recently. This is a
consequence of numerous experimental studies [8–11]
carried out with magnetically ordered systems, where
the magnetoelastic interaction can be rather strong
[10, 11]. The results of modern researches, both ex-
perimental [11] and theoretical [12], testify to the cre-
ation of special conditions for the propagation of os-
cillations under the influence of the magnetoelastic
interaction. The latter can lead to the non-consistent
propagation of both the spin and elastic waves in mul-
tilayer structures of various types [11, 12]. The cor-
responding results may testify that the influence of
the magnetoelastic interaction can be used in mod-
ern functional elements applied for the quantum in-
formation processing and based on the magnonics and
magnetic spintronics principles [13, 14].

A complete description of collective magnetoelastic
oscillations is evidently impossible, if their damping
is not taken into account. Unfortunately, the scope of
few studies dealing with the dissipation of magnetoe-
lastic oscillations is confined to the consideration of
the damping of only spin waves on the basis of the
relaxation term in the Gilbert form [15]. It should
be noted that the consideration of this issue in the
framework of the Landau–Lifshitz [16] or Gilbert [15]
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model using the corresponding relaxation term is not
correct [17, 18]. Those models do not take the sym-
metry of a crystal into account. This factor directly
affects the propagation of elastic waves. Furthermore,
in many cases, the presence of spatial inhomogeneities
testifies that the relaxation processes of the exchange
origin must be taken into consideration. Of course, an
approach in which the damping of only spin waves is
considered cannot be correct as well, because it ab-
solutely ignores the relaxation processes that may be
associated with the magnetoelastic interaction. A si-
multaneous account for the purely elastic relaxation
is also important in this situation.

Earlier, we have developed a phenomenological the-
ory to describe relaxation phenomena in magnets.
This theory makes it possible to consider the ex-
change relaxation [19, 20]. In this work, proceeding
from the principles expounded in the cited works, we
propose a model that describes the dissipation of cou-
pled magnetoelastic waves, as well as a mechanism for
constructing the dissipative function for such oscilla-
tions in the general form.

2. Dissipative Function
for Magnetoelastic Waves

While constructing the dissipative function that
would describe the damping of collective magnetoa-
coustic waves, we proceed from the expression for the
total energy (the quasiequilibrium thermodynamic
potential) of a ferromagnet,

𝐹 =

∫︁
𝑓

(︂
M,

𝜕M

𝜕𝑥𝑖

)︂
𝑑𝑉, (1)

where M = M(r, 𝑡) is the magnetization vector, and
𝑓(M, 𝜕M/𝜕𝑥𝑖) is the total energy density. In our
case, the latter parameter consists of the magnetic,
𝑓𝑚, elastic, 𝑓𝑒, and magnetoelastic, 𝑓𝑚𝑒, components:

𝑓(M, 𝜕M/𝜕𝑥𝑖) = 𝑓𝑚 + 𝑓𝑒 + 𝑓𝑚𝑒. (2)

The construction of the required quasiequilibrium
thermodynamic potential for a ferromagnet is a fun-
damental result of work [16]. This construction is
based on the crystal-symmetry considerations and the
grouping of interactions in a ferromagnet into two
classes: weak relativistic interactions and strong ex-
change interactions. A not less fundamental result is
the derivation of the equation for the dynamics of

the magnetic moment, which was called the Landau–
Lifshitz equation,

𝜕M

𝜕𝑡
= −𝛾M×Heff +R, (3)

and the introduction of the concept of effective mag-
netic field as a variational derivative of the thermo-
dynamic potential of the ferromagnet with respect to
the magnetization,

Heff = − 𝛿𝐹

𝛿M
= − 𝜕𝐹

𝜕M
+

𝜕

𝜕𝑥𝑖

𝜕𝐹

𝜕 𝜕M
𝜕𝑥𝑖

−

− 𝜕2

𝜕𝑥2
𝑖

𝜕𝐹

𝜕 𝜕2M
𝜕𝑥2

𝑖

+ ...+ (−1)𝑛+1 𝜕𝑛

𝜕𝑥𝑛
𝑖

𝜕𝐹

𝜕 𝜕𝑛M
𝜕𝑥𝑛

𝑖

. (4)

The term R in Eq. (3) is responsible for the magne-
tization relaxation. It was proposed by Landau on the
basis of general physical ideas concerning dissipative
processes [16]. Later, Gilbert constructed the dissipa-
tive function of a ferromagnet that corresponds to the
Landau–Lifshitz relaxation and proposed to express
the relaxation term in terms of the time derivative
of the magnetization [15]. Despite the vector charac-
ter of the equation of motion, the Landau–Lifshitz–
Gilbert relaxation term is characterized by a single re-
laxation constant, which corresponds to an isotropic
medium. A consideration of the expression for the
relaxation term in the framework of the models in
[15, 16] shows that it does not make allowance for
the symmetry of a magnetic material. As a result,
there arise a lot of physical contradictions [17, 18]. It
is also important to note that the relaxation term in
the Landau–Lifshitz or Gilbert form corresponds to
the spin-spin and spin-orbit interactions, so that there
is no opportunity to consider the dissipative processes
associated with the exchange interaction in a crystal,
which are important in many cases [19, 20].

In their classical works [21, 22], L.D. Landau and
E.M. Lifshitz proposed to describe the relaxation
processes by introducing the corresponding dissipa-
tive function into the equations of motion. This func-
tion must be a positive quadratic form. According to
the basic phenomenological principles, the dissipative
function 𝑄 =

∫︀
𝑞𝑑𝑉 can be constructed following

the same rules as for the quasiequilibrium thermo-
dynamic potential, and it must include the terms of
the same origin, as the total energy of the crystal
does [21, 22]. Therefore, it is quite reasonable to rep-
resent the dissipative function density 𝑞 similarly to
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expression (2), i.e. as the sum of three terms, each
describing the relaxation processes of the magnetic,
elastic, or magnetoelastic origin,

𝑞 = 𝑞𝑚 + 𝑞𝑒 + 𝑞𝑚𝑒. (5)

The procedure of constructing the dissipative func-
tion for magnetic oscillations was described in our
works [19, 20]. In particular, the term 𝑞𝑚 can be ex-
pressed as a quadratic form of the effective magnetic
field and its spatial derivatives,

𝑞𝑚 =
1

2
𝜆𝑟
𝑖𝑘 𝐻

eff
𝑖 𝐻eff

𝑘 +
1

2
𝜆ex
𝑖𝑘

𝜕Heff

𝜕𝑥𝑖

𝜕Heff

𝜕𝑥𝑘
+ ..., (6)

where the tensors 𝜆𝑟
𝑖𝑘 and 𝜆ex

𝑖𝑘 characterize relativistic
and exchange, respectively, dissipative processes.

The elastic component 𝑞𝑒 of the dissipative function
density (5) must depend on the time derivatives of the
strain tensor and also must be quadratic [21]. So, the
most general form for this component is

𝑞𝑒 =
1

2
𝜂𝑖𝑗,𝑠𝑝

𝜕𝐸𝑖𝑗

𝜕𝑡

𝜕𝐸𝑠𝑝

𝜕𝑡
. (7)

The fourth-rank tensor 𝜂𝑖𝑗,𝑠𝑝 is called the viscosity
tensor, and its components are determined by the
crystal symmetry, like the components of the elas-
ticity tensor that enters the expression for the elastic
energy [21].

The magnetoelastic component 𝑞𝑚𝑒 of the dissipa-
tive function is constructed on the basis of similar
principles and considerations. From expressions (6)
and (7), it follows that 𝑞𝑚𝑒 must consist of the time
derivatives of the strain tensor and the components of
the effective magnetic field. It is known that the dissi-
pative function must be invariant with respect to the
transformations of the crystal symmetry group. The-
refore, the magnetoelastic component of the dissipa-
tive function has to be constructed from the invariant
products of the time derivatives of the strain tensor
and the gradients of the effective magnetic field in the
form of the quadratic form

𝑞𝑚𝑒 =
1

2
𝛽𝑖𝑗,𝑠𝑝

𝜕𝐸𝑖𝑗

𝜕𝑡

(︃
𝜕𝐻eff

𝑠

𝜕𝑥𝑝
+

𝜕𝐻eff
𝑝

𝜕𝑥𝑠

)︃
. (8)

Here, the tensor 𝛽𝑖𝑗,𝑠𝑝 characterizes the contribu-
tion of the magnetoelastic interaction to the energy
dissipation of coupled oscillations and, by analogy
with the viscosity tensor, has to be of the fourth

rank. Hence, the effective magnetic field cannot en-
ter the component 𝑞𝑚𝑒 linearly. The dissipative func-
tion must also be invariant with respect to the time
reflection operation. Therefore, 𝑞𝑚𝑒 cannot also in-
clude even power exponents of the effective magnetic
field (or its gradients).

Let us demonstrate the procedure of constructing
the dissipative function for a ferromagnet with uni-
axial symmetry following the proposed method. For
this purpose, expressions for the components of the
total energy density (2) have to be written down at
first. The magnetic part of the energy of the examined
uniaxial ferromagnet in an external magnetic field H
looks like

𝑓𝑚 =
(𝜇2 − 1)2

8𝜒
+

1

2
𝛼𝑖𝑘

𝜕𝜇

𝜕𝑥𝑖

𝜕𝜇

𝜕𝑥𝑘
−

− 1

2
𝐾1𝜇

2
𝑧 −

1

2
𝐾2𝜇

4
𝑧 −MH, (9)

where 𝜒 is the longitudinal magnetic susceptibility,
𝛼𝑖𝑘 is the tensor that characterizes the inhomoge-
neous exchange interaction (for the simplicity, the
case 𝛼𝑖𝑘 = diag(𝛼, 𝛼, 𝛼) will be considered), 𝐾1 and
𝐾2 are the uniaxial anisotropy constants (all the con-
stants have the energy dimensionality), 𝜇 = M/𝑀0

is the normalized magnetization vector, and 𝑀0 is
the saturation magnetization. The first term in ex-
pression (9) makes allowance for the homogeneous ex-
change interaction, which can make an essential con-
tribution to the exchange dissipative processes. This
contribution is especially important when describing
the dissipation of magnetic solitons [23–26], including
domain walls [25] and Bloch points [26].

The elastic energy of the uniaxial crystal can be
written in the form [21]

𝑓𝑒 =
1

2
𝐶11 (𝐸𝑥𝑥 + 𝐸𝑦𝑦)

2
+

1

2
𝐶33𝐸

2
𝑧𝑧 +

+𝐶13 (𝐸𝑥𝑥 + 𝐸𝑦𝑦)𝐸𝑧𝑧 + 2𝐶44 (𝐸𝑥𝑧 + 𝐸𝑦𝑧)
2
+

+
1

2
𝐶66(𝐸

2
𝑥𝑥 + 𝐸2

𝑦𝑦 + 2𝐸2
𝑥𝑦), (10)

where 𝐸𝑖𝑘 are the components of the strain tensor,
and 𝐶𝑖𝑘 are the elastic moduli of the second order (the
components of the elasticity tensor) for the crystal
concerned.

Finally, the last term in expression (2) describes the
interaction between the magnetic and elastic subsys-
tems. In the case of uniaxial crystal symmetry, it
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looks like [22, 27]

𝑓𝑚𝑒 =
1

2
𝐵11

(︀
𝜇2
𝑥 + 𝜇2

𝑦

)︀
(𝐸𝑥𝑥 + 𝐸𝑦𝑦) +

1

2
𝐵33𝜇

2
𝑧𝐸𝑧𝑧 +

+
1

2
𝐵13𝜇

2
𝑧 (𝐸𝑥𝑥 + 𝐸𝑦𝑦) +

1

2
𝐵31

(︀
𝜇2
𝑥 + 𝜇2

𝑦

)︀
𝐸𝑧𝑧 +

+
1

2
𝐵44 (𝜇𝑥𝜇𝑧𝐸𝑥𝑧 + 𝜇𝑦𝜇𝑧𝐸𝑦𝑧)+

+
1

2
𝐵66(𝜇

2
𝑥𝐸𝑥𝑥 + 𝜇2

𝑦𝐸𝑦𝑦 + 2𝜇𝑥𝜇𝑦𝐸𝑥𝑦), (11)

where 𝐵𝑖𝑘 are the constants of magnetoelastic inter-
action corresponding to this case.

Following the results of works [19, 20], let us write
down the tensors that characterize the relaxation of
spin waves in a ferromagnet with uniaxial symme-
try in the form 𝜆𝑟

𝑖𝑘 = diag(𝜆𝑟, 𝜆𝑟, 0) and 𝜆ex
𝑖𝑘 =

= diag(𝜆ex, 𝜆ex, 𝜆ex). Then, for the magnetic compo-
nent (6) of the dissipative function, we obtain

𝑞𝑚 =
1

2
𝜆𝑟
(︁(︀
𝐻eff

𝑥

)︀2
+
(︀
𝐻eff

𝑦

)︀2)︁
+

1

2
𝜆ex

(︂
𝜕Heff

𝜕𝑥𝑖

)︂2
. (12)

The elastic component (7) of the dissipative func-
tion should be constructed analogously to the corre-
sponding component (10) of the total energy. Hence,
for a uniaxial crystal, it looks like

𝑞𝑒 =
1

2
𝜂11

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂2
+

1

2
𝜂33

(︂
𝜕𝐸𝑧𝑧

𝜕𝑡

)︂2
+

+ 𝜂13

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+
𝜕𝐸𝑦𝑦

𝜕𝑡

)︂
𝜕𝐸𝑧𝑧

𝜕𝑡
+2𝜂44

(︂
𝜕𝐸𝑥𝑧

𝜕𝑡
+
𝜕𝐸𝑦𝑧

𝜕𝑡

)︂2
+

+
1

2
𝜂66

(︃(︂
𝜕𝐸𝑥𝑥

𝜕𝑡

)︂2
+

(︂
𝜕𝐸𝑦𝑦

𝜕𝑡

)︂2
+ 2

(︂
𝜕𝐸𝑥𝑦

𝜕𝑡

)︂2)︃
. (13)

The magnetoelastic component 𝑞𝑚𝑒 of the dissipa-
tive function is constructed proceeding from the gen-
eral form (8) and similarly to the corresponding com-
ponemt of the total ferromagnet energy,

𝑞𝑚𝑒 = 𝛽11

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂(︃
𝜕𝐻eff

𝑥

𝜕𝑥
+

𝜕𝐻eff
𝑦

𝜕𝑦

)︃
+

+𝛽33
𝜕𝐸𝑧𝑧

𝜕𝑡

𝜕𝐻eff
𝑧

𝜕𝑧
+ 𝛽13

(︂
𝜕𝐸𝑥𝑥

𝜕𝑡
+

𝜕𝐸𝑦𝑦

𝜕𝑡

)︂
𝜕𝐻eff

𝑧

𝜕𝑧
+

+𝛽31
𝜕𝐸𝑧𝑧

𝜕𝑡

(︃
𝜕𝐻eff

𝑥

𝜕𝑥
+

𝜕𝐻eff
𝑦

𝜕𝑦

)︃
+

+2𝛽44
𝜕𝐸𝑥𝑧

𝜕𝑡

(︂
𝜕𝐻eff

𝑥

𝜕𝑧
+

𝜕𝐻eff
𝑧

𝜕𝑥

)︂
+

+2𝛽44
𝜕𝐸𝑦𝑧

𝜕𝑡

(︃
𝜕𝐻eff

𝑦

𝜕𝑧
+

𝜕𝐻eff
𝑧

𝜕𝑦

)︃
+

+𝛽66

(︃
𝜕𝐸𝑥𝑥

𝜕𝑡

𝜕𝐻eff
𝑥

𝜕𝑥
+

𝜕𝐸𝑦𝑦

𝜕𝑡

𝜕𝐻eff
𝑦

𝜕𝑦

)︃
+

+2𝛽66
𝜕𝐸𝑥𝑦

𝜕𝑡

(︃
𝜕𝐻eff

𝑥

𝜕𝑦
+

𝜕𝐻eff
𝑦

𝜕𝑥

)︃
. (14)

Thus, formulas (12), (13), and (14) allow us to ob-
tain a complete expression for the dissipative func-
tion. On its basis, the frequencies of the coupled mag-
netoelastic oscillations making allowance for the os-
cillation damping can be calculated.

3. Dispersion Law
for Magnetoelastic Waves
in a Uniaxial “Easy-Axis” Ferromagnet

On the basis of the results obtained above, let us
calculate the dispersion law for coupled magnetoe-
lastic waves in a uniaxial “easy-axis” ferromagnet in
the ground state. In this case, the magnetic moment
of the ferromagnet, 𝜇, is directed along the easy-
magnetization axis 𝑂𝑧, and the condition for this
state to exist is 𝐾1+𝐾2 > 0 [28]. In accordance with
the standard method used to phenomenologically de-
scribe the dynamics of the magnetic moment [3, 20],
let us consider small adiabatic fluctuations of the
magnetic moment density in the ferromagnet. Then
we can write

𝜇(r, 𝑡) = 𝜇0 +m(r, 𝑡), (15)

where 𝜇0 = (0, 0, 1) is the vector of the “easy-axis”
phase magnetization in the equilibrium state, and
m(r, 𝑡) are small deviations of the fluctuation origin
from 𝜇0.

Analogously, the components of the strain tensor
𝐸𝑖𝑘 can be expressed as the sums of the equilibrium
values 𝐸𝑖𝑘0 and small deviations 𝜀𝑖𝑘 from them,

𝐸𝑖𝑘(r, 𝑡) = 𝐸0
𝑖𝑘 + 𝜀𝑖𝑘(r, 𝑡). (16)

The equilibrium values of the strain tensor compo-
nents in the ground state of a uniaxial ferromagnet
can be easily found from the condition 𝜕𝑓/𝜕𝐸𝑖𝑘 =
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0. In this case, only the following equilibrium compo-
nents differ from zero [5]:

𝐸0
𝑥𝑥 = 𝐸0

𝑦𝑦 =
𝐵13𝐶33 −𝐵33𝐶13

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

,

𝐸0
𝑧𝑧 =

−𝐵13𝐶13 −𝐵33(2𝐶11 + 𝐶66)

2(2𝐶2
13 − 𝐶33(2𝐶11 + 𝐶66))

.

(17)

The inhomogeneous term of the elastic strain tensor,
𝜀𝑖𝑘(r, 𝑡), can be expressed in terms of the vector of
particle displacements U using the formula [4]

𝜀𝑖𝑘(r, 𝑡) =
1

2

(︂
𝜕𝑈𝑖

𝜕𝑥𝑘
+

𝜕𝑈𝑘

𝜕𝑥𝑖

)︂
. (18)

The dispersion laws for coupled magnetoelastic
waves can be calculated using the dynamic equation
for the magnetization vector (3), which, making al-
lowance for definition (15), takes the form

𝜕m

𝜕𝑡
= −𝛾𝜇×Heff +R𝑚, (19)

as well as the dynamic equation for the particle dis-
placement vector U [4, 21],

𝜌
𝜕2U

𝜕𝑡2
= − 𝛿𝐹

𝛿U
+R𝑒. (20)

Here, 𝛾 ≈ 2|𝜇𝐵 |
~ is the gyromagnetic ratio, and 𝜌 is

the magnet material density.
The relaxation terms in the dynamic equations (19)

and (20) can be obtained as the variations of the mag-
net dissipative function [20, 21],

R𝑚 =
𝛿𝑄

𝛿Heff
, R𝑒 =

𝛿𝑄

𝛿
(︀
𝜕U
𝜕𝑡

)︀ . (21)

Let us consider the oscillations, whose wave vec-
tor k is directed along the magnetic moment of the
crystal, k ‖ 𝜇0 ‖ 𝑂𝑧. In this case, only the following
components of the elastic-strain tensor and the gra-
dients of the effective magnetic field remain different
from zero:

𝜀𝑧𝑧 =
𝜕𝑈𝑧

𝜕𝑧
, 𝜀𝑥𝑧 = 𝜀𝑧𝑥 =

1

2

𝜕𝑈𝑥

𝜕𝑧
,

𝜀𝑦𝑧 = 𝜀𝑧𝑦 =
1

2

𝜕𝑈𝑦

𝜕𝑧
,

(22)

and

𝜕𝐻eff
𝑥

𝜕𝑧
,

𝜕𝐻eff
𝑦

𝜕𝑧
,

𝜕𝐻eff
𝑧

𝜕𝑧
.

By applying relations (22) to components (12), (13),
and (14) of the dissipative function and taking ad-
vantage of definitions (21), the following components
are obtained:

for the magnetic relaxation term,

𝑅𝑚𝑥 = 𝜆𝑟𝐻eff
𝑥 − 𝜆ex 𝜕

2𝐻eff
𝑥

𝜕𝑧2
− 𝛽44

𝜕

𝜕𝑡

𝜕2𝑈𝑥

𝜕𝑧2
,

𝑅𝑚𝑦 = 𝜆𝑟𝐻eff
𝑦 − 𝜆ex

𝜕2𝐻eff
𝑦

𝜕𝑧2
− 𝛽44

𝜕

𝜕𝑡

𝜕2𝑈𝑦

𝜕𝑧2
, (23)

𝑅𝑚𝑧 = −𝜆ex 𝜕
2𝐻eff

𝑧

𝜕𝑧2
− 𝛽33

𝜕

𝜕𝑡

𝜕2𝑈𝑧

𝜕𝑧2
,

and for the elastic relaxation term,

𝑅ex = −𝜂44
𝜕

𝜕𝑡

(︂
𝜕2𝑈𝑥

𝜕𝑧2
+

𝜕2𝑈𝑦

𝜕𝑧2

)︂
− 𝛽44

𝜕2𝐻eff
𝑥

𝜕𝑧2
,

𝑅𝑒𝑦 = −𝜂44
𝜕

𝜕𝑡

(︂
𝜕2𝑈𝑥

𝜕𝑧2
+

𝜕2𝑈𝑦

𝜕𝑧2

)︂
− 𝛽44

𝜕2𝐻eff
𝑦

𝜕𝑧2
, (24)

𝑅𝑒𝑧 = −𝜂33
𝜕

𝜕𝑡

𝜕2𝑈𝑧

𝜕𝑧2
− 𝛽33

𝜕2𝐻eff
𝑧

𝜕𝑧2
.

For further calculations, let us expand the total
energy density (2) in a power series in small devi-
ations m(r, 𝑡) and 𝜀𝑖𝑘. Then we should substitute
the result and the relaxation terms (23) and (24)
into the dynamic equations (19) and (20) and lin-
earize them. Afterward, we should pass in the re-
sulting equations to the Fourier components of the
small deviations m(r, 𝑡) ∼ exp(−𝑖(𝜔𝑡 − kr)) and
U(r, 𝑡) ∼ exp(−𝑖(𝜔𝑡 − kr)) with respect to the time
𝑡 and the coordinates 𝑟, where 𝜔 is the frequency
and k the wave vector of collective waves. As a result,
Eqs. (8) and (9) bring about a system of six equations
for the components of the vectors m and U. From
the condition that this system of equations has a so-
lution (the determinant of the system has to be equal
to zero), it is possible to obtain the dispersion law
for coupled magnetoacoustic oscillations taking their
damping into account. In the linear approximation in
the dissipative constants, the dispersion law looks like

𝜔2

(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︂

𝜔2 − 2𝐶44

𝜌
𝑘2
)︂(︁

𝜔2 − 𝛾2𝑀2
0𝜔

2
𝑚‖

)︁
−

−
(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︂

𝜔2 − 𝐶44

𝜌
𝑘2
)︂

𝛾2𝐵2
44𝑘

2𝜔𝑚‖

8𝜌
+

+ 𝑖𝜔

(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︂

𝜔2 − 2𝐶44

𝜌
𝑘2
)︂
×
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×𝜔2𝜔𝑚1

(︀
𝜆𝑟 + 𝜆ex𝑘2

)︀
+

+ 𝑖𝜔

(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︂

𝜔2 − 2𝐶44

𝜌
𝑘2
)︂
×

×
(︁
𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚‖

)︁(︀
𝜔𝑚2𝜆

ex𝑘2
)︀
−

− 𝑖𝜔

(︂
𝜔2 − 2𝐶44

𝜌
𝑘2
)︂(︁
𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚‖

)︁ 𝜂33𝜔
2𝑘2

𝜌
−

− 𝑖𝜔

(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︁
𝜔2 − 𝛾2𝑀2

0𝜔
2
𝑚‖

)︁ 𝜂44𝜔
2𝑘2

𝜌
+

+ 𝑖

(︂
𝜔2 − 𝐶33

𝜌
𝑘2
)︂(︂

𝜔2 − 𝐶44

𝜌
𝑘2
)︂
×

×
𝛾2𝐵44𝛽44𝜔𝑚‖𝜔𝑚3𝑘

3

2𝜌
= 0. (25)

Here, the following notations were introduced:

𝜔𝑚1 =
𝛼𝑘2

𝑀2
0

+
(𝐵11 +𝐵66)𝐸

0
𝑥𝑥

𝑀2
0

+
𝐵11𝐸

0
𝑦𝑦

𝑀2
0

+

+
𝐵31𝐸

0
𝑧𝑧

𝑀2
0

+
(𝑀2

𝑧 −𝑀2
0 )

2𝑀2
0𝜒

,

𝜔𝑚2 =
𝛼𝑘2

𝑀2
0

+
𝐵13

(︀
𝐸0

𝑥𝑥 + 𝐸0
𝑦𝑦

)︀
𝑀2

0

+
𝐵33𝐸

0
𝑧𝑧

𝑀2
0

− 𝐾1

𝑀2
0

−

− 3𝐾2

𝑀2
0

+
(3𝑀2

𝑧 −𝑀2
0 )

2𝑀2
0𝜒

,

𝜔𝑚3 =
𝐻

𝑀0
−

𝐵13

(︀
𝐸0

𝑥𝑥 + 𝐸0
𝑦𝑦

)︀
𝑀2

0

− 𝐵33𝐸
0
𝑧𝑧

𝑀2
0

+

+
𝐾1

𝑀2
0

+
𝐾2

𝑀2
0

+
(𝑀2

0 −𝑀2
𝑧 )

2𝑀2
0𝜒

,

𝜔𝑚‖ = 𝜔𝑚1 + 𝜔𝑚3.

Thus, the general method presented in this work
to describe the dissipative processes makes it possible
to calculate the spectrum of coupled magnetoacous-
tic waves taking their damping into account. Let us
analyze the obtained result.

4. Discussion and Conclusions

The calculated dispersion law (25) consists of seven
terms. Each of them characterizes the corresponding
dynamic process in the ferromagnet. If the relaxation
processes and the magnetoelastic interaction in the
magnet are neglected, only the first term remains in
expression (25). Then the latter decays into three in-
dependent spectral equations; one for spin waves [28],

𝜔2
sw = 𝛾2𝑀2

0𝜔
2
𝑚‖

and two for acoustic waves [21],

𝜔2
ph2 =

2𝐶44

𝜌
𝑘2, 𝜔2

ph5 =
𝐶33

𝜌
𝑘2.

The combination of first and second terms gives
the spectrum of coupled magnetoelastic waves with-
out taking their damping into account [5]. The third
and fourth terms characterize the damping of spin
waves and, together with the first term, give the cor-
responding dispersion law [18–20]. The fifth and sixth
terms describe the energy dissipation in the 𝜔ph2 and
𝜔ph5, respectively, sound modes. The seventh term
is responsible for the influence of the magnetoelas-
tic interaction on the energy dissipation of coupled
oscillations.

It is well known that the magnetoelastic interac-
tion makes a substantial contribution to the disper-
sion law of coupled oscillations, when their frequency
approaches the magnetoacoustic resonance. In work
[5], it was shown that, for the “easy-axis” ground
state and the wave vector direction k ‖ 𝜇, this oc-
curs, when 𝜔2 → 2𝐶44

𝜌 𝑘2. In this case, only the first,
second, fifth, and seventh terms in expression (25)
survive. The terms responsible for the spin contribu-
tion to the dissipation become of the second order of
smallness and can be omitted. So, the relaxation of
magnetoelastic waves makes the magnetoelastic con-
tribution (seventh term) that is comparable with the
purely elastic contribution (fifth term). This means
that the contribution of the magnetoelastic interac-
tion to dissipative processes can play an essential role
in the case of magnetoacoustic resonance.

The result obtained for a uniaxial ferromagnet has
a general character and, no doubt, can also be valid
for magnetically ordered materials of other types.

The work contains the results of research supported
in the framework of the project No. 0117U000433 of
the National Academy of Sciences of Ukraine.
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ЗАТУХАННЯ МАГНIТОПРУЖНИХ ХВИЛЬ

Р е з ю м е

Представлено загальний метод побудови моделi дисипатив-
ної функцiї, що описує релаксацiйнi процеси, зумовленi за-
туханням зв’язаних магнiтоакустичних хвиль у магнiто-
впорядкованих матерiалах. Отримана модель дисипатив-
ної функцiї базується на врахуваннi симетрiї магнетика та
описує як обмiнну, так i релятивiстичну взаємодiю в кри-
сталi. При цьому враховано внески в дисипацiю як магнi-
тної i пружної пiдсистеми, так i релаксацiю, пов’язану з
магнiтопружною взаємодiєю. Розраховано закон дисперсiї
зв’язаних магнiтопружних хвиль для одноосного ферома-
гнетика типу “легка вiсь”. Показано, що внесок магнiтопру-
жної взаємодiї в дисипативнi процеси може вiдiгравати сут-
тєву роль у випадку магнiтоакустичного резонансу.
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