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MAGNETIZATION AND MAGNETOCALORIC
EFFECT IN ANTIFERROMAGNETS WITH COMPETING
ISING EXCHANGE AND SINGLE-ION ANISOTROPIES

The magnetization of a two-sublattice Ising antiferromagnet with easy-plane single-ion
anisotropy, which is accompanied by two phase transitions, has been studied. The both phase
transitions are induced by the magnetic field. One of them is isostructural, i.e., the system
symmetry remains unchanged and a transition between two antiferromagnetic states with dif-
ferent sublattice magnetizations takes place. The other phase transition occurs when the anti-
ferromagnetic state transforms into the ferromagnetic one. At both phase transitions, the field
dependence of the system entropy has two successive positive jumps, which is not typical of
ordinary antiferromagnets. On the other hand, if the temperature of the system is higher than
the tricritical temperature of the isostructural phase transition, there appears a continuous
maximum in the field dependence of the entropy.
K e yw o r d s: phase transitions of the first kind, antiferromagnet, Ising model, easy-plane
single-ion anisotropy, magnetocaloric effect.

1. Introduction
It is known that the magnetization of a strongly
anisotropic antiferromagnet (AFM) can occur in a
jump-like manner as a metamagnetic phase transition
of the first kind (PT1) [1–8]. Such PTs induced by
an external magnetic field were detected for the first
time in those AFMs for which the magnitude of the
magnetic anisotropy field was found to be larger than
the effective intersublattice exchange field, which is
responsible for the intensity of the intersublattice
spin-spin exchange interaction. A substantial contri-
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bution to the study of the magnetic properties of
the antiferromagnetic iron-group dihalides with weak
intersublattice exchange, magnetostriction, magnetic
PTs, and other phenomena was made by the famous
Ukrainian experimental physicist S.M. Ryabchenko
and his disciples (see, e.g., works [10–15]). This pub-
lication is dedicated to his jubilee.

The process of AFM magnetization can sometimes
be accompanied by several metamagnetic PTs [16–
20], with each of them having a jump-like charac-
ter. This situation is typical, in particular, of mul-
tisublattice AFMs [21, 22]. In work [16], a physi-
cally simpler case was considered, when two meta-
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magnetic PT1s take place even in a two-sublattice
AFM. Such a situation can occur, if an AFM with
a more complicated character of interionic interac-
tions is magnetized; for example, if the intersublat-
tice interaction has an Ising-like limit and orients the
spins in the sublattices along the easy axis; at the
same time, the single-ion magnetic anisotropy has the
easy-plane character rather than the easy-axis one, as
was in work [23]. The easy-plane single-ion magnetic
anisotropy can stabilize the singlet state or, in a more
general case, the transient state [16, 23] with the spin
projection magnitude less than the nominal value in
either of the sublattices.

In this work, we made an attempt to study the
sequence of two metamagnetic PTs in the Ising
AFM [24–26] with the easy-plane single-ion magnetic
anisotropy [27–29] in the case of ionic spins 𝑆 = 1 and
at finite temperatures, 𝑇 ̸= 0. The problem of mag-
netic ordering of an Ising AFM with spins 𝑆 = 1/2
has been exhaustively studied in work [30], where it
was shown that only one PT1 – either metamagnetic
or magnetic isostructural – can take place in such
a model system. In the cited work, the free energy
was used in the form of a power series expansion of
the Landau potential in the magnitude of the anti-
ferromagnetism vector (assuming that this parame-
ter is small) up to the eighth order of magnitude
inclusive.

However, this approximation of the Landau theory
cannot be used in the case of two metamagnetic PTs
with finite (not small) magnetization jumps, even if
the invariants with large power exponents of the or-
der parameter are taken into consideration. Moreo-
ver, the results can only be obtained, if the free en-
ergy is analyzed numerically. Furthermore, the mag-
netic isostructural PT1 in AFMs with 𝑆 = 1/2 ex-
ists only in a narrow temperature interval near the
tricritical point [30]. The same result was obtained
for AFMs with easy-axis single-ion anisotropy and
𝑆 = 1 [31]. However, it should be noted that, as fol-
lows from the results of work [23], in the case of easy-
plane single-ion anisotropy and ion spins 𝑆 = 1, the
isostructural magnetic PT must take place within the
whole temperature interval extending from 𝑇 = 0 to
the tricritical point.

Another important factor for the study of a system
with several metamagnetic PTs is the possibility to
analyze its magnetic entropy. It will be shown below
that the behavior of such systems and, hence, the

behavior of the magnetocaloric effect differ from the
same effect in AFMs with one metamagnetic PT [32].

2. Model Hamiltonian

Let us present the Hamiltonian of a two-sublattice
system with competing Ising and single-ion anisotro-
pies in the form

�̂� =
1

2

∑︁
𝑓𝛼,𝑔𝛽

𝐼𝑓𝛼,𝑔𝛽𝑆
𝑧
𝑓𝛼𝑆

𝑧
𝑔𝛽

+

+𝐷
∑︁
𝑓𝛼

(𝑆𝑧
𝑓𝛼)

2
−𝐻𝑧

∑︁
𝑓𝛼

𝑆𝑧
𝑓𝛼 . (1)

Here, 𝐼𝑓𝛼,𝑔𝛽 are the constants of the exchange (Ising)
interaction between magnetic ions with spins 𝑆 = 1
(their locations are described by the numbers 𝑓𝛼 and
𝑔𝛽 , where the subscripts 𝛼 and 𝛽 mark the sublattices
(𝛼, 𝛽 = 1, 2); the intrasublattice exchange constant is
negative, if 𝛼 = 𝛽, and positive, if 𝛼 ̸= 𝛽; the ex-
change has an interlattice character, thus providing
the initial AFM structure); 𝑆𝑧

𝑓𝛼
are spin-projection

operators on the 𝑍 axis; 𝐷 is the constant of the pos-
itive (i.e., “perpendicular” to the 𝑍 axis) easy-plane
anisotropy (𝐷 > 0); and the external magnetic field
is assumed to be parallel to the Ising axis (𝐻𝑧‖𝑍).

On the basis of Hamiltonian (1), the interaction
energy between two ions from different sublattices can
be written as follows:

𝐸 =
1

2

∑︁
𝛼𝛽

𝐼𝛼𝛽𝑠𝛼𝑠𝛽 +𝐷
∑︁
𝛼

𝑞𝛼 −𝐻𝑧

∑︁
𝛼

𝑠𝛼. (2)

Here,

𝐼𝛼𝛼 = 𝑝𝑓𝛼𝑔𝛼𝐼𝑓𝛼𝑔𝛼 , 𝐼�̸�=𝛽 = 𝑝𝑓𝛼𝑔𝛽𝐼𝑓𝛼𝑔𝛽 ;

𝑝𝑓𝛼𝑔𝑏𝑓𝛼
and 𝑝𝑓𝛼𝑔𝛽 are the numbers of the nearest

neighbors of an ion in its “native” and “foreign”, re-
spectively, sublattices; 𝑠𝛼 are the thermodynamic av-
erages of the operators 𝑆𝑧

𝑓𝛼
; and 𝑞𝛼 are the thermo-

dynamic averages of the operators (𝑆𝑧
𝑓𝛼
)2 (they cor-

respond to the quadrupole spin moments).
At 𝑇 = 0, the averages in Eq. (2) are determined

as the quantum-mechanical ones with the use of the
ionic wave function |𝜓𝛼⟩ =

∑︀
𝑚𝛼

𝐶𝑚𝛼 |𝑚𝛼⟩, where
𝑚𝛼 = 0 or 1, and 𝐶𝑚𝛼

are variational parameters
(see below). The resulting evident equalities read

𝑠𝛼 = |𝐶+1𝛼 |2−|𝐶−1𝛼 |2, 𝑞𝛼 = |𝐶+1𝛼 |2+|𝐶−1𝛼 |2. (3)
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When determining the states, PT points, and phase
stability boundaries, we can use the Lagrange func-
tion written as a functional of the parameters 𝐶𝑚𝛼

[33, 34]. It looks like

𝐿 =
1

2

∑︁
𝛼𝛽

𝐼𝛼𝛽(|𝐶+1𝛼 |2−|𝐶−1𝛼 |2)(|𝐶+1𝛽 |2−|𝐶−1𝛽 |2)+

+𝐷
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𝛼

(|𝐶+1𝛼 |2 + |𝐶−1𝛼 |2)−
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+
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𝜆𝛼(1− |𝐶+1𝛼 |2 − |𝐶0𝛼 |2 − |𝐶−1𝛼 |2), (4)

where 𝜆𝛼 are the Lagrange factors, and the normal-
ization condition

∑︀
𝑚𝛼

|𝐶𝑚𝛼 |2 = 1 was taken into
account.

At 𝑇 = 0, the states are determined by minimizing
the Lagrange function with respect to the wave func-
tion parameters, 𝐿(𝐶𝑚𝛼

) [33, 34]. In so doing, it is
easy to verify that the following states can be stable:

1. the AFM state with 𝑠1 = 1, 𝑠2 = −1, and the
energy 𝐸AFM1 = 𝐼11 + 𝐼12 + 2𝐷;

2. the AFM state with 𝑠1 = 1, 𝑠2 = 0, and the
energy 𝐸AFM2 = 1

2𝐼11 + 𝐷 − 𝐻𝑧 (in this state, if
H𝑧 ̸= 0, the ions in either of the sublattices are in the
van Fleck nonmagnetic ground state |0⟩; if this spin
configuration is ground at H𝑧 = 0, this state should
be defined as ferrimagnetic);

3. the FM state with 𝑠1 = 1, 𝑠2 = 0, and the energy
𝐸FM = 𝐼11 + 𝐼12 + 2𝐷 − 2𝐻𝑧.

It is evident that the energy 𝐸AFM1 does not
depend on the magnetic field, whereas the energy
𝐸AFM2 does. The FM state energy also depends on
the magnetic field magnitude. Such peculiarities in
the field behavior of the ground state energy are re-
sponsible for the appearance of two sequential PTs
in the course of magnetization. The critical field of
the first PT1 between two AFM states equals 𝐻I =
= − 1

2𝐼11 + 𝐼12 − 𝐷. The critical field of the sec-
ond PT1 between the AFM phase with the non-
magnetic sublattice and the FM state equals 𝐻II =
= 1

2𝐼11 + 𝐼12 +𝐷. As was shown in work [23], the in-
equality 𝐻I < 𝐻II may hold true. The field of transi-
tion from the non-magnetized AFM state to the FM
state equals 𝐻𝑐 = 𝐼12. Hence, for two PTs to take
place, there must be 𝐻I < 𝐻𝑐, i.e., the inequality
− 1

2𝐼11 −𝐷 < 0 must be satisfied, which is only pos-
sible in the case of easy-plane single-ion anisotropy.

It should be noted that Hamiltonian (1) with 𝐷 <
< 0, i.e., in the case of easy-axis single-ion anisotropy,
was analyzed in works [17, 31].

3. Free Energy of the System

In the case 𝑇 ̸= 0, the equations of states and the
boundaries of the phase stability regions are deter-
mined from the minimum of the free energy 𝐹 . The
latter is defined in the standard way by the formula
𝐹 = 𝐸 − 𝑇𝜎, which includes the entropy

𝜎 = −
∑︁
𝑚𝛼

𝑝𝑚𝛼 ln 𝑝𝑚𝛼 ,

where 𝑝𝑚𝛼 is the thermodynamic probability for an
ion to be in the state with𝑚𝛼 = (0,±1). The required
normalization condition follows from the equality for
the total probability 𝑝1𝛼 + 𝑝1𝛼 + 𝑝−1𝛼 = 1. Then the
thermodynamic averages can be written in the simple
form

𝑠𝛼 = 𝑝1𝛼 − 𝑝−1𝛼 , 𝑞𝛼 = 𝑝1𝛼 + 𝑝−1𝛼 , (5)

and the expression for the free energy can be easily
represented as a functional of the thermodynamic av-
erages 𝑠𝛼 and 𝑞𝛼,

𝐹 =
1

2

∑︁
𝛼𝛽

𝐼𝛼𝛽𝑠𝛼𝑠𝛽 +𝐷
∑︁
𝛼

𝑞𝛼 −𝐻𝑧

∑︁
𝛼

𝑠𝛼 +

+𝑇
∑︁
𝛼

(︂
𝑞𝛼 + 𝑠𝛼

2
ln
𝑞𝛼 + 𝑠𝛼

2
+
𝑞𝛼 − 𝑠𝛼

2
×

× ln
𝑞𝛼 − 𝑠𝛼

2
+ (1− 𝑞𝛼) ln(1− 𝑞𝛼)

)︂
. (6)

The equilibrium states and the boundaries of their
stability can be found by minimizing the free energy
𝐹 (𝑠𝛼, 𝑞𝛼) [33]. In the general case, the problem of
finding the sequence of PTs is nonlinear and has to
be solved numerically.

4. Field Dependences of Magnetization

The field dependences of magnetization can be calcu-
lated using the functional expressions (4) and (6). For
convenience, the model parameters should be made
dimensionless. Then the dimensionless temperature
is 𝑡 = 𝑇/𝑇𝑁 , where 𝑇𝑁 = |𝐼11| + 𝐼12, is the Néel
temperature of the AFM without taking its easy-
plane anisotropy into account. The intrasublattice ex-
change constant, single-ion anisotropy constant, mag-
netic field, and free energy are normalized by the
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same quantity, namely, 𝑘 = 𝐼12/𝑇𝑁 , 𝑑 = 𝐷/𝑇𝑁 , and
ℎ = 𝐻𝑧/𝑇𝑁 .

As an example, Fig. 1 demonstrates the field de-
pendence of the magnetization 𝑚 = (𝑠1+𝑠2)/2 calcu-
lated at 𝑡 = 0.12 in the case where the dimensionless
anisotropy constant 𝑑 = 0.45 and the intra-sublattice
exchange constant 𝑘 = 0.6. At this parameter combi-
nation, a sequence of two metamagnetic PT1s takes
place.

The first PT1 is determined by the equality be-
tween the free energies. Its critical field equals ℎI =
= 0.245 at 𝑡 = 0.12 and ℎI= 0.25 at 𝑡 = 0. At the
point ℎI(𝑡 = 0.12), there arises a magnetization jump,
which is indicated by a double arrow. The point ℎI is
a point of the metamagnetic PT1 from the AFM state
with 𝑚 ≈ 0 and 𝑠1 ≈ −𝑠2 (the spin in sublattice 1 is
directed along the field, 𝑠1 ↑↑ ℎ, and the spin in sub-
lattice 2 against the field, 𝑠2 ↑↓ ℎ ) into the AFM state
with 𝑚 = 1/2, for which 𝑠1/ |𝑠2| ≫ 1. Therefore,
the first metamagnetic PT occurs between two AFM
states, which are different in the magnitude of the
average spin in sublattice 2, although being charac-
terized by almost the same spin value in sublattice 1.

The critical field of the second transition equals
ℎII = 0.54 at 𝑡 = 0.12 and ℎII = 0.55 at 𝑡 = 0. At
the point ℎII(𝑡 = 0.12), there arises a magnetiza-
tion jump, which corresponds to a metamagnetic
PT1 from the AFM state into the FM one with
𝑚 ≈ 𝑠1 = 𝑠2. This jump is also indicated by a double
arrow in Fig. 1. As one can see, the values of both
critical fields corresponding to the PT1s weakly de-
pend on the temperature.

In Fig. 1, the magnetization of steady states is indi-
cated by solid curves. The AFM phase is stable within
the field interval [0, ℎAFM], and the equilibrium phase
within the field interval [0, ℎII]. The less magnetized
AFM phase is stable within the field interval [0, ℎ𝑅],
and the more magnetized AFM phase remains stable
within the field interval [ℎ𝐿, ℎAFM]. The FM phase
is stable at the fields ℎ > ℎFM and equilibrium at
ℎ > ℎII.

Figure 2 illustrates the field dependence of the mag-
netization at the temperatures 𝑡 = 0.16 (solid curve)
and 0.22 (dashed curve). Only one metamagnetic
PT1 takes place at the temperature 𝑡 = 0.16. This
is a PT between the AFM and FM phases. The mag-
netization jump is also indicated in the figure by a
double arrow, and the critical field equals ℎII. The
AFM phase is stable at the fields ℎ < ℎAFM and equi-

Fig. 1. Field dependence of the magnetization, 𝑚(ℎ). Nota-
tions: ℎI and ℎII are critical fields of PT1s, ℎAFM is the stabil-
ity boundary of the AFM state, ℎFM is the stability boundary
of the FM state, and ℎ𝐿 and ℎ𝑅 are the stability fields of the
AFM phase with different spin values for sublattice 2

Fig. 2. Field dependence of the magnetization, 𝑚(ℎ). Nota-
tions: ℎII is the critical field of PT1 between the AFM and FM
phases, ℎAFM the stability boundary of the AFM state, ℎFM

the stability boundary of the FM state, and ℎ𝑐 the critical field
of the PT2 between the AFM and FM phases

librium at ℎ < ℎII. The FM phase remains stable at
the fields ℎ > ℎFM and is equilibrium at ℎ > ℎII. At
the same time, if 𝑡 = 0.22, the transition from the
AFM phase into the FM one occurs continuously, be-
ing a PT of the second kind (PT2) at the point ℎ𝑐. In
this case, the AFM state exists at ℎ < ℎ𝑐 and is con-
tinuously transformed into the FM state at the point
ℎ = ℎ𝑐.

By calculating the values of the critical fields that
are indicated by arrows in Figs. 1 and 2, it is possible
to determine their temperature dependences.
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Fig. 3. ℎ–𝑡 phase diagram. Solid curves denote PT1s, dashed
curves are phase stability boundaries, and the dash-dotted
curve corresponds to the PT2

Fig. 4. Field dependence of the magnetic entropy, 𝜎(ℎ), at two
metamagnetic PTs. The parameter values 𝑡 = 0.12, 𝑑 = 0.45,
and 𝑘 = 0.6

Fig. 5. Field dependences of the magnetic entropy, 𝜎(ℎ), at
𝑡 = 0.16 (solid curve) and 0.22 (dashed curve)

5. ℎ–𝑡 Phase Diagram

By plotting the temperature dependences of the
fields ℎI(𝑡), ℎII(𝑡), ℎAFM(𝑡), ℎFM(𝑡),ℎ𝐿(𝑡), ℎ𝑅(𝑡), and
ℎ𝑐(𝑡), we can find the corresponding ℎ − 𝑡 phase
diagram. For the magnetization types considered in
Figs. 1 and 2, this diagram is shown in Fig. 3.

The curves corresponding to the PT1s and the
phase stability fields converge at the tricritical points
𝑡𝑡𝑘𝑟1 and 𝑡𝑡𝑘𝑟2 . One can see that 𝑡𝑡𝑘𝑟2 < 𝑡𝑡𝑘𝑟1. The
tricritical point 𝑡𝑡𝑘𝑟2 is also an endpoint for the curve
ℎ𝑐(𝑡) corresponding to the PT2 between the AFM and
FM phases. At high temperatures, the curve ℎ𝑐(𝑡)
tends to the Néel point.

6. Magnetic Entropy

Figure 4 demonstrates the field dependence of the
magnetic entropy 𝜎(ℎ) at 𝑡 = 0.12 < 𝑡𝑡𝑘𝑟1 and for the
model parameters used when calculating the magne-
tization dependences in Figs. 1 and 2. The solid and
dashed sections correspond to the entropy in the equi-
librium and nonequilibrium, respectively, states.

At the critical fields ℎI and ℎII corresponding to
the PT1s, the magnetic entropy has jumps: the jump
Δ𝜎AFM−AFM at the isostructural PT and the jump
Δ𝜎AFM−FM at the AFM–FM phase transition. The
behavior of the entropy near the critical fields ℎI
and ℎII differs little qualitatively and even quantita-
tively. Therefore, in the course of magnetization, the
maximum value of the magnetocaloric effect will actu-
ally be reached at the lower critical field ℎI. The field
dependence of the entropy plotted in Fig. 4 and cor-
responding to the two-lattice Ising AFM with easy-
plane single-ion anisotropy differs substantially from
its counterpart for the AFM with one metamagnetic
PT [32]. The curve in Fig. 4 has two maxima and two
jumps of the entropy. In the absence of a single-ion
anisotropy, there is only one maximum and one jump
of the entropy at the PT point between the AFM and
FM phases.

In Fig. 5, the field dependences of the magnetic en-
tropy 𝜎(ℎ) are shown for 𝑡 = 0.16 and 0.22. In the
former case, 𝑡𝑡𝑘𝑟1 < 𝑡 < 𝑡𝑡𝑘𝑟2 and there is only one
PT1 in the course of magnetization, namely, from the
AFM phase to the FM one, at which a finite jump
Δ𝜎AFM−FM of the entropy takes place. It is of inter-
est that this jump is preceded by a maximum in the
dependence 𝜎(ℎ), where the latter changes continu-
ously. This maximum is a result of the rapid magne-
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tization, as one can see from Fig. 2. At the same time,
the magnitude of the entropy jump Δ𝜎AFM−FM turns
out insignificant. At the higher temperature 𝑡 = 0.22
corresponding to the condition 𝑡 > 𝑡𝑡𝑘𝑟2, there are no
entropy jumps, but the dependence 𝜎(ℎ) has a cusp
point, which testifies to the presence of the PT2 from
the AFM phase into the FM one. In low fields, the
dependence 𝜎(ℎ) may have a wide maximum, which
disappears at temperatures much higher than 𝑡𝑡𝑘𝑟2.

7. Conclusions

In this work, it was shown that two PT1s may take
place at the magnetization of an Ising AFM with
easy-plane single-ion anisotropy and ionic spins 𝑆 =
= 1. Owing to the easy-plane magnetic anisotropy,
the first PT is isostructural. It is a transition between
two AFM phases with different lattice magnetization
values. At 𝑇 = 0, it is a magnetic quantum PT [33–
38], at which the ground state of ions in sublattice 2
becomes a singlet one, |−1⟩ → |0⟩, and the single-
ion anisotropy energy becomes lower. At 𝑇 ̸= 0, the
minimization of the single-ion anisotropy energy at
the isostructural PT is associated with a jump-like
change in the ionic states: the population is maxi-
mum for ions in sublattice 2 with a spin projection
of −1 before the transition point and with the zero
spin projection after it. Therefore, the isostructural
PT can be considered as a magnetic quantum PT
even at 𝑇 ̸= 0. An inhomogeneous multidomain AFM
state, the domains of which differ from one another
by the sublattice spin magnitudes, can exist in the
interval of stability fields from ℎL(𝑡) to ℎ𝑅(𝑡).

The PTs induced by the magnetic field lead to the
appearance of jumps in the magnetic entropy. The en-
tropy jumps are positive for both PT1s, and the field
dependence of the magnetic entropy at the isostruc-
tural PT differs little from its counterpart at the PT
into the FM phase. At higher temperatures, when the
isostructural PT disappears, a rather narrow maxi-
mum can be observed in the field dependence of the
magnetic entropy. It becomes more acute when the
temperature approaches the tricritical temperature of
the isostructural PT. It is important that, because
of the competition between the Ising exchange inter-
action and the easy-plane single-ion anisotropy, the
isostructural PT1 occurs at a magnetic field that is
much lower than the critical field of the phase transi-
tion from the AFM phase into the FM one. Therefore,
owing to such a competition between the interactions,

the appearance of a substantial magnetocaloric effect
can be expected at lower external magnetic fields.
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В.M.Калита, Г.Ю.Лаванов, В.М.Локтєв

НАМАГНIЧУВАННЯ I МАГНIТОКАЛОРИЧНИЙ
ЕФЕКТ В АНТИФЕРОМАГНЕТИКУ
З КОНКУРУЮЧИМИ IЗIНГIВСЬКОЮ ОБМIННОЮ
ТА ОДНОIОННОЮ АНIЗОТРОПIЯМИ

Р е з ю м е

Дослiджено намагнiчування двопiдґраткового iзiнгiвського
антиферомагнетика з легкоплощинною одноiонною анiзо-
тропiєю, яке може супроводжуватися двома фазовими пе-
ретвореннями 1-го роду. Перше, iндуковане магнiтним по-
лем, є iзоструктурним, коли симетрiя системи не змiнює-
ться i вiдбувається перехiд мiж двома антиферомагнiтними
станами з рiзними величинами намагнiченостi пiдґраток.
Друге, також iндуковане магнiтним полем, перетворення
має мiсце при змiнi стану системи з антиферомагнiтного на
феромагнiтний. При обох цих фазових перетвореннях пове-
дiнка ентропiї в залежностi вiд поля мiстить два послiдов-
них i додатних за величиною стрибки її величини, що не є
типовим для класичних антиферомагнетикiв. З iншого бо-
ку, коли температура системи перевищує трикритичну тем-
пературу iзоструктурного фазового переходу, в залежностi
ентропiї вiд поля виникає неперервний максимум.
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