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QUANTUM-MECHANICAL MODEL
OF AN ELECTRON WITH SELF-CONSISTENT
ELECTROSTATIC FIELD

A possibility to construct a theory for an electron on the basis of the Dirac equation, where
the electromagnetic field potentials are defined as those created by the electron itself, has been
analyzed. It is shown that the energy conservation law is obeyed for the combined electromag-
netic+ bispinor field of an isolated electron. A stationary quasilinear system of equations for
the electrostatic+ bispinor field is formulated in terms of the quaternion algebra. The quasilin-
ear problem for the electrostatic model of an electron is analyzed. The absence of singularities
in the bispinor field components and the density of the electric charge distributed within elec-
tron’s central region whose radius is about the Compton length is demonstrated.
K e yw o r d s: Dirac equation, Klein–Gordon equation, charge conservation law, electromag-
netic field, bispinor, quaternion.

1. Introduction
The electron is the main object to study in quan-
tum electrodynamics. The latter owes its main suc-
cess to the relativistic Dirac equation [1]. Dirac’s the-
ory turned out sufficient to describe all electron-spin
effects in given electromagnetic fields. It provided a
basis for the formation of a lepton group in the the-
ory of elementary particles. But, in the case of heav-
ier particles, baryons, the Dirac equation failed. Dirac
himself explained this fact by the absence of an inter-
nal structure in an electron and considered his theory
to be adapted exclusively to describe interparticle in-
teractions, where the electron participates. His view-
point was adopted in modern quantum electrodynam-
ics [1,2]. Perhaps, this taboo may be the origin of the
lack of publications in the modern literature concern-
ing theories, where the electron would be deprived of
a point-like, i.e. structureless, character.

All attempts to relate electron’s parameters to
peculiarities in the spatial distribution of the elec-
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tron charge within a confined region remained in the
past. Also unrecognized remained the nonlinear mod-
ification of Maxwell’s equations by Born, which con-
fines the electron field magnitude and the energy of
this field, but retains the point character of an elec-
tron in the field theory and relativistic mechanics [3].
When commenting on this and other examples of sub-
stantial efforts aimed at developing an electron model
with non-zero dimensions of the electron charge local-
ization region that would not create problems for the
field theory, R. Feynman emotionally appraised this
situation as dramatic in the whole [4]. It is this view-
point on the described problem of the electron theory
that allows the studies of the field non-singular struc-
tures localized within the classical boundaries of elec-
tron’s central region to be considered as challenging.

The main idea of the presented work consists in
the identification of the continuity equation, which
follows from the Dirac equation, and the charge con-
servation law in the equations describing the elec-
tromagnetic field generated by the electron. In other
words, the real-valued quantity 𝜓𝜓 normalized to
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unity, where 𝜓 is the bispinor field in Dirac’s theory, is
interpreted as the charge density 𝜌 normalized to the
electron charge, i.e. 𝜌 = 𝑒𝜓𝜓. This assumption allows
the bispinor and electromagnetic fields of the electron
to be combined into a closed system, which is char-
acterized by its own law of energy conservation. Such
an approach makes it possible to formulate a quasilin-
ear Dirac equation with a self-consistent field, where
the electromagnetic potentials are not considered as
external field potentials, as is usually postulated, but
as created by the spatially distributed charge 𝑒𝜓𝜓 of
the electron and its current.

Those terms were used to formulate an electro-
static model for a free electron isolated from ex-
ternal influences and possessing a centrosymmetric
bispinor+electric field. The analysis of the structure
of its components was performed, which proved the
finiteness of the quantity 𝜌 and its localization in
the central region about the Compton length in size,
𝑟𝑒~/(𝑚𝑐) = 3.86 × 10−11 cm. At larger distances,
the field generated by the electron corresponds to
the classical Coulomb law. The self-consistent electro-
magnetic+bispinor field of the electron is considered
in a one-particle phase space, where the actual elec-
tromagnetic field is described in the Schrödinger co-
ordinate representation, and it is quasiclassical from
the viewpoint of the quantum electrodynamics of
fermionic and photonic fields.

The consistency of the approach is illustrated in
Section 2, where the energy conservation law is
proved for the combined system of electron’s elec-
tromagnetic and bispinor fields. In Section 3, the
corresponding stationary problem is formulated in
the form of a system of second-order equations for
spinors, which arises as a result of the splitting of
the bispinor problem using the linear transforma-
tion method. This method makes it possible to rep-
resent spinors as quaternions with real parameters
and use the same algebra of hypercomplex numbers
that is used in the theory of Dirac matrices. Sec-
tion 4 is devoted to the ultimate formulation of the
centrosymmetric problem that is invariant with re-
spect to the coordinate inversion. The electrostatic
field plays a decisive role in this formulation, whereas
the magnetic field effects are neglected. The system
has the form of second-order differential equations
for the scalar and radial components of quaternions,
as well as the Poisson equation for the electrostatic
potential. Those equations are somewhat similar to

the equations known from the theory of a hydro-
gen atom. The asymptotic analysis shows the regu-
lar character of electron’s fields at the center of the
coordinate system, where the charge density satu-
rates, and the electric field disappears. In such a way,
the radius of the electron charge localization region
was estimated to be of the order of the Compton
length 𝑟𝑒.

2. Energy Conservation
Law for the Electromagnetic
and Quantum Fields of an Electron

The proof of the energy conservation law for the elec-
tromagnetic and quantum fields of an isolated elec-
tron is a useful introduction to the self-consistent
model of an electron. The conservation law follows
from the Dirac equation for the bispinors 𝜓,

𝑖~
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓, (1a)

where

𝐻 = 𝑒𝜙+𝛼 · P− 𝜀0𝛽,

𝜀0 = 𝑚𝑐2,

P = −𝑖𝑐~∇− 𝑒A,

(1b)

and the following second-order equation, which is a
direct consequence of this equation and generalizes
the Klein–Gordon scalar equation [1, 5]:

𝐾𝜓 = 𝑖~𝑒𝛼 · (E+ 𝑖 𝜄H)𝜓, (2a)

where

𝐾 =

(︂
𝑖~
𝜕

𝜕𝑡
− 𝑒𝜙

)︂2
−P2 − 𝜀20 (2b)

is the Klein–Gordon scalar operator. In Eqs. (1) and
(2), a somewhat modified notation for the four-row
matrices in the Dirac theory is used. As a rule, they
are written in the form of two-row matrices, the el-
ements of which are two-row matrices 0, I, and the
Pauli matrices 𝜎’s , and they determine the multi-
plication algebra for the linear forms 𝜎 · a = 𝜎𝑥𝑎𝑥 +
+𝜎𝑦𝑎𝑦 + 𝜎𝑧𝑎𝑧 with arbitrary vectors a and b:

𝛼 =

(︂
0 𝜎

𝜎 0

)︂
, 𝛽 =

(︂
𝐼 0

0 −𝐼

)︂
, 𝜄 =

(︂
0 𝐼

𝐼 0

)︂
,

(𝜎 · a)(𝜎 · b) = a · b+ 𝑖𝜎 · a× b,
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(𝛼 · a)(𝛼 · b) = a · b+ �̇�𝛼 · a× b.

The electromagnetic field potentials in the Dirac
equation are determined by external electric charges
and current in the framework of the electrodynamic
theory:

�𝜙 = −4𝜋𝜌, �A = −4𝜋j/𝑐,

E = −∇𝜙− 𝜕

𝑐𝜕𝑡
A, H = rotA,

(3)

where � is the d’Alembert operator. The 𝜓-bispinor
values can affect the quantities 𝜙, A, E, and H only
in the framework of an additional description of the
external field sources 𝜌 and j. The system of equa-
tions (3) is supplemented by the conservation law for
the charge distributed in space,

𝜕

𝜕𝑡
𝜌+ div j = 0. (4)

The Dirac theory also generates the continuity
equation (4), if the notations 𝜌 and j are given a
quantum-mechanical meaning,

𝜌 = 𝑒𝜓𝜓, j = 𝑐𝑒𝜓𝛼𝜓, (5)

where the bar over the bispinors means their Di-
rac conjugation. But the quantum-mechanical theory
deals with a single particle, whereas the quantity 𝜓𝜓
in Eq. (4) is interpreted as the probability density
for an electron to exist in the physical space, and its
integrated value is equal to unity,

∫︀
𝑑r𝜓𝜓 = 1. The

dimensionality of the quantity 𝑒𝜓𝜓 is the charge den-
sity, and Eq. (4) is a quantum-mechanical extension
of its conservation law.

Another conservation law follows from Eq. (2),

𝜕

𝜕𝑡

[︂
𝑖~
2

(︂
𝜓
𝜕𝜓

𝜕𝑡
− 𝜕𝜓

𝜕𝑡
𝜓

)︂
+ 𝑒𝜙𝜓𝜓

]︂
−

− 𝑐∇ ·
[︂
𝑖~
2
𝑐(𝜓∇𝜓 −∇𝜓𝜓) + 𝑒A𝜓𝜓

]︂
=

= 𝑐𝑒E · 𝜓𝛼𝜓. (6)

A similar equation is discussed to illustrate that the
scalar Klein–Gordon equation cannot serve as a basis
for the relativistic quantum theory, because the quan-
tity whose the time derivative is taken in Eq. (6) can-
not be considered as the probability density [6]. Ho-
wever, Eq. (6) can be given a different sense. It can be
naturally interpreted as an energy balance equation,

which becomes obvious, if the dimensionalities of its
components are examined. An important result of the
bispinor analysis is the presence of the right-hand side
in Eq. (6), which is determined by the contribution
of the electric field. If the time-differentiated quantity
is interpreted as the energy density of the electron’s
quantum field, then the right-hand side corresponds
to the source of the energy transferred to the electron
current by the electric field per unit volume per unit
time, 𝑐𝑒E · 𝜓𝛼𝜓 = E · j.

The same source is present in the conservation law
for the electromagnetic energy, which follows from
Maxwell’s equations, where it is included with the
opposite sign,

𝜕

𝜕𝑡

[︂
1

8𝜋
(𝐻2 + 𝐸2)

]︂
+ div

𝑐

4𝜋
E×H = −E · j. (7)

For an isolated electron, the energy source of its own
electromagnetic field is the electron charge, so it is
natural to assume that the source of this field in
Eq. (7) is the electric current determined in the frame-
work of the quantum-mechanical theory, j = 𝑐𝑒𝜓𝛼𝜓.
The simple summation of Eqs. (6) and (7) brings
about the conservation law for the total energy of
the quantum+electromagnetic field of the electron,

𝜕

𝜕𝑡

{︂
1

8𝜋
(𝐻2 + 𝐸2)− ~

2𝑖

(︂
𝜓
𝜕𝜓

𝜕𝑡
− 𝜓

𝜕𝜓

𝜕𝑡

)︂
− 𝑒𝜙𝜓𝜓

}︂
+

+div

{︂
𝑐

4𝜋
E×H+

~𝑐2

2𝑖
(𝜓∇𝜓 −∇𝜓𝜓)− 𝑐𝑒A𝜓𝜓

}︂
= 0.

(8)

Being written in this form, the obtained result cor-
responds to the Dirac equation, if the electromag-
netic potentials are expressed directly through the
bilinear forms of bispinors, �𝜙 = −4𝜋𝑒𝜓𝜓 and
�A = −4𝜋𝑒𝜓𝛼𝜓, provided the normalization con-
dition

∫︀
𝑑r𝜓𝜓 = 1. Hence, the Dirac equation trans-

forms into a quasilinear differential equation with the
self-consistent field of a single electron.

It is natural to consider the problem aimed at de-
scribing the electron field in the stationary quantum-
mechanical approximation, i.e. taking the wave func-
tion in the form 𝜓(𝑡, r) ∼ exp{−𝑖𝜀𝑡/~}𝜓(r), in an
immovable coordinate system conditionally ‘pinched’
to the electron’s center. In this case, the energy den-
sity in Eq. (8) is given by the expression 1

8𝜋 (𝐻
2 +

+𝐸2)− 𝜌𝜙+ 𝜀𝜓𝜓, which illustrates the heuristic as-
pect of the proposed approach to the possibility of

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 12 1045



A.A. Guryn

interpreting the positive-valued quantity 𝜓𝜓 in the
quantum-relativistic model of the electron.

3. Quasilinear System
of Equations with the Self-Consistent Field

The second-order equation (2) doubles (from 4 to
8) the number of complex parameters to be deter-
mined. Therefore, the solution of this equation must
be somehow conditioned. This problem is solved by
changing to the spinors 𝜓±, which are determined by
the spinor components 𝜓1 and 𝜓2 of the bispinor 𝜓:
𝜓± = 𝜓1 ± 𝜓2. Furthermore, one can see that the
consideration can be reduced to the analysis of the
second-order spinor equation for either of them. The
procedure that introduces new spinor components
and splits Eq. (2) can be most easily implemented
with the help of the unitary real transformation

𝑈 =
1√
2

(︂
1 1

1 −1

)︂
, (9)

so that 𝑈2 = 1 and

𝑈𝜓 = 𝑈

(︂
𝜓1

𝜓2

)︂
=

1√
2

(︂
𝜓+

𝜓−

)︂
. (10)

The operator 𝑈 diagonalizes symmetric matrices. In
particular,

𝑈𝛼𝑈 =

(︂
𝜎 0

0 −𝜎

)︂
. (11)

Multiplying Eq. (2) on the left side by 𝑈 , we obtain
two second-order spinor equations

[𝐾 − 𝑖𝑐𝑒~𝜎 · (±E+ 𝑖H)]𝜓± = 0. (12)

In terms of 𝜓±, formulas (5) look like

𝜌 = 𝑒𝜓𝜓 = 𝑒𝜓𝑈2𝜓 =
𝑒

2
(𝜓+𝜓+ + 𝜓−𝜓−), (13a)

j = 𝑐𝑒𝜓𝛼𝜓 = 𝑐𝑒𝜓𝑈2𝛼𝑈2𝜓 =

=
𝑐𝑒

2
(𝜓+𝜎𝜓+ − 𝜓−𝜎𝜓−). (13b)

The operators on the left-hand side of Eqs. (12) only
differ in the sign in front of the electric field and trans-
form into each other at the coordinate inversion op-
eration, because the operator 𝐾 contains the squared
momentum P, the latter being a polar vector in the
initial equations. Hence, the difference between the

operators in Eqs. (12) can be associated with the in-
version of the coordinate system. The inversion of op-
erators can be provided by multiplying Eqs. (12) by 𝛽
and making use of the commutators 𝛽𝛼 = −𝛼𝛽 and
𝛽𝜄𝛼 = 𝜄𝛼𝛽 to obtain the equation for 𝛽𝜓. The factor
𝛽 is known [2,6] to ensure the invariance of the Dirac
equation with respect to the coordinate inversion. At
the same time, the application of the splitting proce-
dure (10) and (11) to the product 𝛾0𝜓 makes the per-
mutation 𝜓+ ↔ 𝜓−. Therefore, in order to construct
an inversion-invariant model, it is enough to solve, in
any way, only one of the equations and afterward to
perform the inversion transformation of the result to
obtain the solution for the other equation.

The analysis made above dealt with the formulas
written in a too general form. In particular, in the
stationary approximation, E = −∇𝜙 and div j = 0,
which allows the solution j ̸= 0. Although prob-
lems (12) are equivalent in this sense, the inequality
𝜓+ ̸= 𝜓− always holds true. This fact means a neces-
sity to include the effects of the own magnetic field
of the electron into its self-consistent model. Such
a possibility cannot be excluded in principle. Never-
theless, let us consider below a simplified electrostatic
model in which the magnetic field does not play a
decisive role. The main purpose of this work was to
demonstrate a possibility to describe the model of the
self-consistent electric+quantum field of the electron
within its central region.

4. Analysis of the Electrostatic Model

The simplest representation of the electrostatic model
is achieved by using quaternions instead of spinors
in Eqs. (12) provided the absence of the magnetic
field. It can be done by making the substitution

𝜓± ≺𝑊±𝜎0, (14a)

where

𝑊± = (𝑤±0 + 𝑖𝜎 · w±) (14b)

and

𝜎0 =

(︂
1 0

0 0

)︂
. (14c)

This operation complements the spinors to two-row
matrices by using zero spinors, and the equality sym-
bol is substituted by the symbol ≺. The quaternions
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𝑊±, which are hypercomplex numbers, are deter-
mined by four real parameters (𝑤±0,w±). The two-
row matrix 𝜎0 provides a one-to-one correspondence
of the quaternion parameters to two complex num-
bers, the spinor components [7]:

𝜓± =

(︂
𝑎± + 𝑖𝑏±

𝑐± + 𝑖𝑑±

)︂
≺ (𝑤0± + 𝑖𝜎 · w±)𝜎0 =

=

(︂
𝑤0± + 𝑖𝑤𝑧± 0

−𝑤𝑦± + 𝑖𝑤𝑥± 0

)︂
. (15)

The conjugate spinor is defined by a similar for-
mula,

𝜓± ≺ 𝜎0�̄�±,

where

�̄�± = (𝑤±0 − 𝑖𝜎 · w±).

In other words, the Dirac conjugation is ensured by
the classical conjugation of the quaternion.

The correctness of the application of quaternions
instead of spinors, as well as biquaternions instead
of bispinors, can be demonstrated by the example of
the calculation of the Dirac numbers, bilinear forms of
the 𝜌- and j-types. For instance, for the current 𝑗𝑧 [see
Eq. (13b)], we have to use multiplication rules (3). In
so doing, the simplification of linear forms (they arise
as a result of the quaternion multiplication) under
the action of projective factors 𝜎0 should be taken
into account: 𝜎0𝜎𝑥𝜎0 = 𝜎0𝜎𝑦𝜎0 = 0. Hence, 𝜎0𝜎𝜎0 =
= 𝜎0𝜎𝑧𝜎0e𝑧 and

𝑗𝑧 =
1

2
𝑐𝑒𝜎0(�̄�+𝜎𝑧𝑊+ − �̄�−𝜎𝑧𝑊−)𝜎0 =

=
1

2
𝑐𝑒𝜎0[(𝑤+0 − 𝑖𝜎 · w+)𝜎𝑧(𝑤+0 + 𝑖𝜎 · w+)−

− (𝑤−0 − 𝑖𝜎 · w−)𝜎𝑧(𝑤−0 + 𝑖𝜎 · w−)]𝜎0 =

=
1

2
𝑐𝑒𝜎0𝜎𝑧𝜎0{[(𝑤2

+0 +w2
+)+

+2e𝑧 ·w+ × (𝑤+𝑦e𝑥 − 𝑤+𝑥e𝑦)]− [(𝑤2
−0 +w2

−)+

+2e𝑧 ·w− × (𝑤−𝑦e𝑥 − 𝑤−𝑥e𝑦)]}.

Finally, since 𝜎0𝜎𝑧𝜎0 = 𝜎0, it is easy to obtain the fol-
lowing ultimate expression for 𝑗𝑧, which is identical to

the spinor definition of this quantity [Eq. (13)], if cor-
respondence (15) of the real parameters (𝑤±0, w±) to
the parameters (𝑎, 𝑏, 𝑐, 𝑑) is taken into account:

𝑗𝑧 =
𝑐𝑒

2
𝜎0{[𝑤2

+0 + 𝑤2
+𝑧 − 𝑤2

+𝑥 − 𝑤2
+𝑦]−

− [𝑤2
−0 + 𝑤2

−𝑧 − 𝑤2
−𝑥 − 𝑤2

−𝑦]} =

= 𝜎0

{︁𝑐𝑒
2
(𝜓+𝜎𝑧𝜓+ − 𝜓−𝜎𝑧𝜓−)

}︁
.

The Dirac numbers occupy the upper left corner of
the matrix, whereas the other matrix elements equal
zero. The main advantage of applying the quaternions
is the ability to arrange eight spinor parameters in
the form of two vector sets and two scalars, similarly
to the vector formulation of Maxwell’s equations (it is
well known [7] that the latter can also be conveniently
formulated in terms of quaternions).

However, the application of quaternions to analyze
problem (2) is restricted, because the operators on
the left-hand side of Eq. (2) or (12) cannot be de-
fined in the field of quaternions with real parameters
even in the framework of the stationary problem, if
the effects of magnetic potential are made allowance
for. Identical modifications in the Dirac equation are
possible to remove obstacles to the quaternion for-
malism [7]. However, the application of quaternions
has no obstacles in the framework of the simplified
electrostatic approximation and allows the algebra of
hypercomplex numbers (3) to be used when formu-
lating a system of equations for the real-valued scalar
and vector components of all fields. Equations (12)
are convenient to be written in the dimensionless
form by expressing the quantities r, 𝜙, 𝜓, and 𝜀 in
the ~/(𝑚𝑐)-, 𝑒 [~/ (𝑚𝑐)]−1-, [~/ (𝑚𝑐)]−3/2-, and 𝑚𝑐2-
units, respectively:

[𝐾 ± 𝑖𝛿𝑒𝜎 · ∇𝜙](𝑤±0 + 𝑖𝜎 · w±) = 0,

where

𝐾 = Δ+ (𝜀− 𝛿𝑒𝜙)
2 − 1,

or, for real-valued quantities,

𝐾𝑤±0 ∓ 𝛿𝑒∇𝜙 ·w± = 0, (16a)
𝐾w± ± 𝛿𝑒∇𝜙𝑤±0 ∓ 𝛿𝑒∇𝜙×w± = 0, (16b)

where 𝛿𝑒 = 𝑒2/ (𝑐~) = 1/137. The system of equa-
tions also includes the Poisson equation

Δ𝜙 = 2𝜋(𝑤2
+0 + 𝑤2

−0 +w2
+ +w2

−) (16c)
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and the normalization condition

1

2

∫︁
𝑑r(𝑤2

+0 + 𝑤2
−0 +w2

+ +w2
−) = 1, (16d)

the both being expressed in terms of new variables. In
the formulated quasilinear problem, the parameter
is determined from the standard requirement that a
complete solution of system (16) must exist.

The system of equations (16) will be satisfied, if
we assume that the vector field w± and the gra-
dient ∇𝜙 are collinear. In the centrosymmetric ap-
proximation, the choice of the set 𝜙(r) = 𝜙(𝑟),
w±(r) = e𝑟𝑤±𝑟(𝑟), and e𝑟 = r/𝑟 = ∇𝑟 written
in the spherical coordinates makes it possible to for-
mulate a system of equations that is invariant with
respect to the coordinate inversion by applying the
simple substitution (𝑤0+ = 𝑤0−,w+ = −w). Taking
into account that Δe𝑟𝑤±𝑟(𝑟) = e𝑟(Δ𝑟 − 2𝑟−2)𝑤±𝑟,
this choice brings about a system of scalar equations
for only two quantities: 𝑤𝑟 = 𝑤+𝑟 = −𝑤−𝑟 and
𝑤0 = 𝑤+0 = 𝑤−0. Then, in accordance with defini-
tions (14) and (16), the formula for the charge density
reads 𝜌 = 𝑤2

0+𝑤
2
𝑟 . Finally, it is convenient to use the

substitutions 𝑤𝑟 = 𝜒/𝑟, 𝑤0 = 𝜂/𝑟, 𝜙 = 𝑞/𝑟, and
𝜌 = 𝜌/𝑟2, and to get rid of the radial Laplacians,

Δ𝑟𝑤𝑟 = 𝑟−2(𝑟2𝑤′
𝑟)

′ = 𝜒′′/𝑟,

Δ𝑟𝑤0 = 𝜂′′/𝑟,

Δ𝑟𝜙 = 𝑞′′/𝑟,

so that Eqs. (16) acquire the final form

𝜂′′ + [(𝜀− 𝛿𝑒𝜙)
2 − 1]𝜂 − 𝛿𝑒𝜙

′𝜒 = 0, (17)

𝜒′′ +

[︂
(𝜀− 𝛿𝑒𝜙)

2 − 1− 2

𝑟2

]︂
𝜒+ 𝛿𝑒𝜙

′𝜂 = 0, (18)

𝑞′′ = 4𝜋
𝜌

𝑟
, (19)

4𝜋

∞∫︁
0

𝑑𝑟𝜌 = 1, (20)

where 𝜌 = 𝜒2 + 𝜂2.
The limiting value of the potential 𝜙 at 𝑟 → ∞

can be chosen to equal zero, which corresponds to
the classical definition: an arbitrary choice of the po-
tential is guaranteed by the gradient invariance of
the Dirac equation [2]. The integration of the Pois-
son equation (19) within an arbitrary interval (0, 𝑅)

as 𝑅 → ∞ with regard for the normalization condi-
tion (20) for the charge density 𝜌 results in the classi-
cal expression for the asymptotics of the electric field
and its potential,

𝑅∫︁
0

𝑟𝑑𝑟𝑞′′ = 𝑅𝑞′(𝑅)− 𝑞(𝑅) = 𝑅2𝜙′(𝑅) −→
𝑅→∞

−1,

i.e.

𝜙(𝑟 → ∞) =
1

𝑟
, 𝑞(𝑟 → ∞) = 1

provided that the function 𝑞(𝑟) is differentiable at
𝑟 = 0 and 𝑞(𝑟 = 0) = 0. The Poisson equation writ-
ten in terms of the quantity 𝑞 demonstrates indirectly
what the potential and charge density distributions
should be in the regular electron model. The function
𝑞(𝑟) = 𝑟𝜙(𝑟) is convex and grows monotonically from
zero to unity in the interval (0,∞). Accordingly, the
derivative 𝑞′ decreases from the maximum positive
value 𝑞′(0) = 𝜙(0) = 𝜙0 to zero. The reduced charge
density 𝜌 equals zero not only at 𝑟 → ∞ but also
at electron’s center. The regular amplitudes 𝜂 and 𝜒
are also characterized by the behavior (𝜂, 𝜒) → 0
at 𝑟 → 0. Therefore, 𝜌 is a small parameter of an
order of at least 𝑟2 at 𝑟 → 0 and symmetric at
the formal substitution 𝑟 → −𝑟. At the same time,
according to the Poisson equation, there must be
𝑞/𝑟 ≈ 𝜙0 + 𝑎𝑟2, where 𝑎 < 0. Those general conclu-
sions drawn from the requirements of regularity for
the amplitudes have to be confirmed by the analysis
of Eqs. (17) and (18).

The coefficients depending on 𝜙, as well as the co-
efficient 2/𝑟2, in front of the operators are small in
comparison with unity and vanish at 𝑟 → ∞. The
contribution of the others can be compensated only
by the differential operator. The behavior of the am-
plitudes 𝜂 and 𝜒 is governed by identical equations,
e.g., 𝜂′′ − (1− 𝜀2)𝜂 = 0 for 𝜂. An acceptable solution
is the exponential damping law in space

(𝜂, 𝜒) ∼ 𝑒−𝜅𝜀𝑟, (21)

where 𝜅𝜀 =
√
1− 𝜀2. This formula is a modifica-

tion of the known Yukawa result 𝜓 ∼ 𝑒−𝑟/𝑟 ob-
tained for the scalar solution of the Klein–Gordon
equation and expressed on the Compton-length scale
[4,6]. The performed analysis restricts the conclusion
about the exponential localization of the amplitudes

1048 ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 12



Quantum-Mechanical Model of an Electron

of the electron’s quantum field by the critical require-
ment 𝜀2 < 1.

Equations (17) and (18) are similar to the equa-
tions for the radial functions in the hydrogen atom
theory. Therefore, a similar analysis can be applied
at the center (𝑟 → 0) in our case. The behavior of
the amplitudes of the radial functions is determined
by the condition that the singular coefficient −2/𝑟2

should be annihilated with the help of the differen-
tial operator, i.e. 𝜒′′ − 2𝜒/𝑟2 = 0, whence the pos-
itive solution 𝑠 = 2 is obtained for the asymptotics
𝜒 = 𝑟𝑠. The operator in the equation for the scalar
amplitude 𝜂 does not contain singular components at
𝑟 = 0. However, taking the small contributions of the
electric field and the radial function 𝜒 into account,
the asymptotic equation reads

𝜂′′ + [(𝜀− 𝛿𝑒𝜙0)
2 − 1]𝜂 = 0.

Its solution depends on the sign of the difference (𝜀−
− 𝛿𝑒𝜙0)

2 − 1, i.e. on the parameter ratio
𝜀/ (𝛿𝑒𝜙0). The solution looks like

𝜂 ∼ sin
(︁
𝑟
√︀

(𝜀− 𝛿𝑒𝜙0)2 − 1
)︁

if (𝜀− 𝛿𝑒𝜙0)
2 > 1. Otherwise, i.e. if 1 > (𝜀− 𝛿𝑒𝜙0)

2,
the asymptotics satisfying the requirement 𝜂(0) = 0
has the form

𝜂 ∼ sinh
(︁
𝑟
√︀
1− (𝜀− 𝛿𝑒𝜙0)2

)︁
.

Therefore, the above-presented attributes of the reg-
ular character of the analytical model for the field
distribution in the electrostatic model of electron be-
come confirmed. The main requirement concerning
the second order of smallness, 𝜌 ∼ 𝑟2, is satisfied
by means of the corresponding behavior of the scalar
amplitude, 𝜂 ∼ 𝑟.

5. Conclusions

The considered centrosymmetric model of the elec-
tron corresponds to the physical scenario in which
Coulomb’s law is realized beyond the central region of
the electron, whereas the electron charge is smoothly
distributed within this region. The estimated value of
the size of this region 𝑟𝑒, which was obtained in the
Compton-length units, differs from the classical value
of the electron radius 𝑟𝑐 = 𝑒2/

(︀
𝑚𝑐2

)︀
. The size of the

electron charge localization region turns out in be-
tween the electron radius 𝑟𝑐 and the Bohr orbit radius
𝑟B = ~2/

(︀
𝑚𝑒2

)︀
. The corresponding proportion is

𝑟𝑐 : 𝑟𝑒 : 𝑟B = 𝛿𝑒 : 1 : 𝛿−1
𝑒 ,

where 𝛿𝑒 = 1/137.
The ultimate answer concerning the adequacy of

the proposed model can be obtained by numerically
solving the system of equations (17)–(20). In particu-
lar, it would be very interesting to calculate the quan-
tity 𝜀, which determines the bispinor contribution to
the total electron energy. Note that, according to for-
mula (8), the total energy density of a stationary com-
bined field is determined by the sum

1

8𝜋
(𝐻2 + 𝐸2)− 𝜌𝜙+ 𝜀𝜓𝜓.

Hence, the value of the parameter 𝜀 is crucially im-
portant for the proposed model. The determination
of this quantity cannot be considered as an example
describing the application of the standard quantum-
mechanical spectral theory. The Hamiltonian in the
Dirac equation with the self-consistent field is not a
linear operator and, therefore, generates a confined
spectrum.

It is important to estimate the integrated energy
value

𝜀+

∫︁
𝑑r

(︂
𝐸2

8𝜋
− 𝜌𝜙

)︂
for the electrostatic model and compare it with unity,
which corresponds to the electron rest energy. The
problem of calculating the spectrum for a certain
quantity in the stationary quasilinear Dirac equation
has common roots with the problem of finding the ex-
istence conditions for solitons, which are considered
in the plasma theory and nonlinear optics. The is-
sue of the confined spectrum of this quantity can be
raised, if we take into account that the existence of a
muon is theoretically supposed as an excited state of
an electron.

The approach used in this work can be verified
in the course of a broader study of electron’s field
structure making allowance for internal currents and
magnetostatic effects, because the proposed theory is
not exhaustive without them. The determination of
the magnetic moment of an electron requires a more
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complicated analysis of the Dirac equation modified
in terms of biquaternions.
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КВАНТОВА МОДЕЛЬ
ЕЛЕКТРОНА З САМОУЗГОДЖЕНИМ
ЕЛЕКТРОСТАТИЧНИМ ПОЛЕМ

Р е з ю м е

Розглянуто можливiсть побудови теорiї електрона на осно-
вi рiвняння Дiрака, у якому потенцiали електромагнiтно-
го поля визначаються як такi, що створюються самим еле-
ктроном. Показано, що для сукупного електромагнiтного i
бiспiнорного поля iзольованого електрона виконується за-
кон збереження енергiї. Сформульовано стацiонарну квазi-
лiнiйну систему рiвнянь для сукупного електростатичного i
бiспiнорного поля в термiнах алгебри кватернiонiв. Викона-
но аналiз квазiлiнiйної задачi для електростатичної моделi
електрона; показано вiдсутнiсть сингулярностi компонент
бiспiнорного поля та густини електричного заряду, розпо-
дiленого в межах центральної областi радiусом порядку
комптонiвської довжини.
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