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PHYSICS BEYOND PHYSICS:
APPLICATION OF PHYSICAL APPROACHES
IN QUANTITATIVE LINGUISTICS

The application of physical methods to solve non-physical problems has been considered. In
particular, the prospects of physical approaches in quantitative linguistics are analyzed. The
difference between the physical and non-physical methods is illustrated by an example of already
existing “classical” models. A few mathematical models which make it possible to determine the
rank-frequency dependence for words in a frequency dictionary, as well as the dependence of
the dictionary volume on the text length, are proposed. It is shown that the physical approaches
and principles that are used in physics can also be successfully applied to create mathematical
models in linguistics.
K e yw o r d s: physical theory, model, econophysics, sociophysics, quantitative linguistics.

Thy heart by one sole impulse is possess’d;
Unconscious of the other still remain!

Johann Wolfgang von GOETHE,
“Faust”

1. Introduction

The scope of problems tackled by physicists expands
permanently, and physical methods become more and
more involved in solving the problems that are not
directly related to physics. This is not about isolated
cases. The matter concerns a systematic approach in
which economic, social, political, linguistic, and some
other problems are formulated in the forms of models,
similarly to what is a common practice in physics. For
instance, such research directions as econophysics [1–
8] and sociophysics [8–13] are currently quite familiar
and acceptable to the physical community.

Moreover, relevant studies gain recognition among
economists, sociologists, and political scientists – in
other words, non-physical experts. This circumstance
is not trivial, because the methodology of researches
that is inherent, say, to econophysics is fundamentally
different from the methods and models that are com-
mon to professional economists. At the same time, it
is too early to talk about the total recognition of phys-
ical methods in non-physical scientific domains. The
examples of researches given above remain within a
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scope of activity, where mainly physicists play the
roles of both the driving force of researches and the
“consumers” of the results obtained. This situation
seems to be not quite right, especially if we take into
account that the matter concerns approaches that are
at least not worse than the modeling method con-
sidered as a standard in social sciences and humani-
ties. As a confirmation of this statement, a number of
papers devoted to the modeling and research of com-
plex systems can be mentioned [14–18]. Their speci-
ficity consists in that it is sometimes rather difficult
to determine which domain of knowledge the relevant
system should be classified to. But despite that, the
application of physical approaches brings about ex-
cellent results.

Besides econophysics and sociophysics, one of the
research domains in which physical approaches and
models can be successfully applied is quantitative lin-
guistics [19–24]. Here, there is a considerable body of
results obtained till now. Nevertheless, the search for
effective ways to create new models remains a chal-
lenging task. In this work, we analyze the advantages
of the physical modeling methods and outline direc-
tions in quantitative linguistics, where those methods
can be applied.

2. Physical Approach to Modeling

Hence, what can be a motivation for the physical
approaches to be applied when solving non-physical

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 2 143



A.N. Vasilev, I.V. Vasileva

problems, in particular, in quantitative linguistics? In
order to answer this question, several important cir-
cumstances have to be taken into consideration. For
instance, there are many interesting problems in
which the application of a mathematical apparatus is
required or allowed. This is no wonder, and the cor-
responding mathematical direction in linguistics has
a long productive history. Accordingly, mathemati-
cal models, both proposed earlier and permanently
emerging now, are successfully implemented in quan-
titative linguistics to describe a variety of systems and
processes. At the same time, essential is not only the
availability of that or another model, but also how it
was created. Here, we are faced with what could be
called a specific feature of the physical approach to
the modeling.

As a rule, the models developed to describe phys-
ical phenomena or processes are based on a definite
theory. This means that, at first, some rules or laws
are formulated, in that or another way, for the in-
teraction among the elements included in the exam-
ined system. The model is created only afterward, as
a consequence of those laws. Even if the temporal se-
quence of the events is opposite (i.e. firstly either a
model is created or a regression dependence is built
on the basis of empirical data), ultimately there ap-
pears a theory that explains the corresponding math-
ematical relations and later becomes a basis for their
derivation. As an example, we can point to the third
Kepler law or the Stefan-Boltzmann law, which were
first revealed experimentally and only afterward ex-
plained theoretically.

Unlike this physical approach, when the mathemat-
ical modeling is applied to the solution of linguistic
and other problems, the relevant mathematical model
is simply postulated or constructed proceeding from
the convenience and the general appearance of the
available “experimental” dependence. Models of this
type do not always describe the corresponding system
or process efficiently and completely. Why so? There
are two important points to highlight. First of all, the
absence of a theory in the basis of the model does not
allow conclusions to be made about the essence of
the mechanisms that are responsible for the resulting
dependence. In effect, the model is descriptive in this
case, which substantially reduces its value. There im-
mediately arises a question as to whether the model
is applicable, which in turn may call into question
the reliability of the results obtained in its frame-

work. Second, the specificity of a verification of the
quantitative linguistics models on the basis of avail-
able data has to be taken into account. The matter is
that, as a rule, the results of direct “measurements”
are grouped and processed before their usage for the
modeling [21–24]. In the absence of a basic theory, it
is difficult (and sometimes impossible) to determine
how the data grouping affects the character of the
ultimate mathematical dependence. In other words,
the model may turn out so “non-universal” that a
change in the form of data presentation may qualita-
tively impact the behavior of the relevant functional
dependence. This is a serious problem, and the way to
solve it passes through the application of reasonable
and universal principles determining the means for
the creation of mathematical models. Those means
are nothing else but the approaches developed and
used by physicists in order to successfully model sys-
tems of various origins, including the linguistic ones
(see, e.g., works [25–30] and references therein).

3. Models of Quantitative Linguistics

Before proceeding to the analysis of the ways used
for the implementation of physical approaches to the
solution of linguistic problems, let us consider some
already existing “classical” models that are used in
quantitative linguistics. Historically, Zipf’s law was
among the first ones that appeared in linguistics
[31–34]. It relates the frequency 𝑓 at which a cer-
tain word appears in the text to the rank 𝑛 of this
word. More specifically, the number of different words
in a large volume of the text is determined, and the
number of occurrences in the text is calculated for
each word. Conventionally, this parameter is called
the frequency of the word (or the word occurrence)
in the text. The words are ranged in the descend-
ing order of their occurrence in the text. The rank
is an ordinal number of the word in that sequence
(i.e., a word with rank 1 has the largest number of
occurrence in the text). According to Zipf’s law, this
dependence has to be power-law,

𝑓(𝑛) =
𝐴

𝑛𝛼
. (1)

Here, 𝐴 is a certain non-universal constant, and 𝛼 is
the power exponent (index). The calculation of the
latter usually comprises the main purpose of the re-
search, because there is evidence that the value of
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this index is close to unity for many languages and
various non-specialized texts [21, 35]. The causes for
and consequences of 𝛼 deviations from unity are the
subject of a number of separate studies. Relation (1)
is “empirical”, because it was found by processing a
large amount of linguistic data. Moreover, it is only
obeyed within a certain interval of word rank val-
ues. It is evident that, according to the definitions of
the quantities 𝑓 and 𝑛, the following relation has to
be satisfied:

𝑉 =

𝑁∑︁
𝑛=1

𝑓(𝑛), (2)

where 𝑁 denotes the number of different words (lex-
emes) in the text, and 𝑉 stands for the text volume,
i.e., the total number of words in the text.

It should also be noted at once that the validity
of relation (1) means a linear relation between the
quantities ln 𝑓 and ln 𝑛:

ln 𝑓 = 𝐵 − 𝛼 ln 𝑛, (3)

where 𝐵 = ln 𝐴. As an illustration, Fig. 1 demon-
strates the rank versus the frequency relationship
for the text of Notes of Ukrainian Crazy by Lina
Kostenko [36]. This text contains 85227 words, and
the number of lexemes (different words) equals 14796.
On the basis of the data presented at the information
resource www.mova.info, we managed to calculate the
values 𝛼 ≈ 0.948 and 𝐵 ≈ 8.796 of the parameters in
dependence (3) used for the approximation. The coef-
ficient of determination is 𝑅2 ≈ 0.964. In the consid-
ered case, the approximation was performed within
the entire interval of word rank values. If the analysis
is confined only to the interval, where the dependence
is substantially linear (in particular, at 4 ≤ ln 𝑛 ≤ 7),
then the value 𝛼 ≈ 0.995 is obtained, with the coeffi-
cient of determination 𝑅2 ≈ 0.997.

It is easy to see that, as the rank increases, the
number of words with the same frequency also in-
creases. Using the notation 𝑚(𝑓) for the number of
words that occur with the frequency 𝑓 , the “spectral”
analog of the rank distribution is the law [21]

𝑚(𝑓) =
𝑀

𝑓1+𝛾
, (4)

where 𝛾 and 𝑀 are the distribution parameters. In
particular, for the text indicated above, we have

Fig. 1. Rank versus the frequency for the text of Notes of
Ukrainian Crazy by Lina Kostenko [36]. Symbols correspond
to “experimental” values. Solid curve is an approximation
based on Zipf’s law. The power exponent in the distribution
𝛼 ≈ 0.948

Fig. 2. “Spectral” word distribution for text [36]. Symbols
correspond to “experimental” values. Solid curve is an approx-
imation based on law (4). The power exponent in the distri-
bution 𝛾 ≈ 0.825

𝛾 ≈ 0.825, 𝑀 ≈ 9.015, and the coefficient of deter-
mination 𝑅2 ≈ 0.889. The corresponding dependence
ln 𝑚 versus ln 𝑓 is plotted in Fig. 2.

Note that relations (1) and (4) are sometimes refer-
red to as the first and second Zipf’s laws, respectively,
and there exists a non-trivial connection between the
corresponding relations (see, e.g., work [37]).

Another example of a dependence that is rather
often used in practice is the dependence of the dictio-
nary size 𝑁 (number of different words in the dictio-
nary text) on the text volume 𝑉 (the number of all
words in the text). This dependence is nonlinear at
large 𝑉 , and there is no general universal formula in
this case. There are various approaches to this prob-
lem, in which the form of the approximation function
is chosen a priori [30, 38–49].
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Fig. 3. Dependence of the dictionary size on the text volume
for works of Taras Prokhas’ko. Symbols correspond to actual
values, and the solid curve is an approximation on the basis of
dependence (5). The parameter 𝛽 ≈ 0.788

On the basis of general considerations, an attempt
can be made to describe the corresponding functional
dependence by the power law

𝑁(𝑉 ) = 𝑘𝑉 𝛽 (5)

or, in terms of logarithms,

ln 𝑁 = 𝛽 ln 𝑉 +𝐾, (6)

where 𝛽, 𝑘, and 𝐾 = ln 𝑘 are model parameters. An
example of the application of this dependence to
describe real data is exhibited in Fig. 3. The fig-
ure illustrates the relationship between the logarith-
mized dictionary size, ln 𝑁 , and the logarithmized
text volume, ln 𝑉 , for a number of works by Taras
Prokhas’ko (the data were obtained from the informa-
tion resource www.mova.info). The calculations gave
the values 𝛽 ≈ 0.788 and 𝐾 ≈ 0.816 for the distribu-
tion parameters and 𝑅2 ≈ 0.982 for the coefficient of
determination.

All the relationships and the results of “empirical”
data processing presented above throw light on two
problems: a technical problem and a methodologi-
cal one. The former arises because each of relations
(1), (4), and (5) describes data only in a certain in-
terval. For example, it is well known that Zipf’s law
(1) is inapplicable to the distribution of words with
low and high ranks. There are some difficulties with
the application of “spectral” law (4) to the distribu-
tion of high-frequency words [21]. The applicability
of dependence (5) is also restricted, because, e.g., the
evident equality 𝑁 = 1 must be obeyed at 𝑉 = 1.

All this means that the functional dependences (1),
(4), and (5) are approximate and should be speci-
fied in principle, but how? Here, we are faced with
a methodological problem. In general, the most com-
plicated expression for the approximation dependence
is chosen in this case, and the parameters of this ex-
pression are determined on the basis of “empirical”
data. However, no clear criteria have been currently
developed to determine which approximation should
be selected. So, it is here where the methods used by
physicists can be useful.

4. Implementation of Physical
Approaches in Linguistics

The idea is extremely simple. It is based on the fact
that the approximation dependence can be obtained
by solving a differential equation. The equation, in
turn, is written on the basis of general concepts about
the character of the processes that “govern” the ana-
lyzed dependence. For example, formula (1) for Zipf’s
law can be obtained as a solution of the first-order
differential equation

𝑑𝑓

𝑓
= −𝛼𝑑𝑛

𝑛
. (7)

According to it, the relative change of the word fre-
quency is proportional to the relative change of the
word rank. It is easy to guess that a similar equation
can serve as a basis for obtaining laws (4) and (5) with
an accuracy of notations used in the corresponding re-
lationship. In effect, this means that, analogously to
the proportionality between the relative change of the
word occurrence frequency and the relative change of
the word rank, the relative change in the number of
words occurring with a certain frequency is propor-
tional to the relative frequency change, and the rel-
ative change in the number of different words in the
text is proportional to the relative change of the text
volume.

Those laws can be summarized and made a bit
more universal. As an initial point, let us assume that
two parameters (like the number of different words in
the text and the text volume) change in such a way
that, by nonlinearly transforming them separately,
the corresponding changes can be made proportional
to each other. Using the notations 𝑥 and 𝑦 for those
parameters, our assumption can be written down in
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the form of a differential equation

𝜑(𝑦) 𝑑𝑦 = 𝜓(𝑥) 𝑑𝑥, (8)

where 𝜑(𝑦) and 𝜓(𝑥) are some functions, which are
unknown a priori. We can estimate them by expand-
ing them into Taylor series in negative powers of
the corresponding argument (in order to obtain the
known laws already in the first approximation). In
particular, if the linear (in the reciprocal argument)
approximation is used for the function 𝜑(𝑦) and the
cubic approximation for the function 𝜓(𝑥), then, tak-
ing into account that any of the coefficients can be
chosen arbitrarily, we obtain the following equation:

𝑑𝑦

𝑦
=

(︂
𝑎

𝑥
+

𝑏

𝑥2
+

2𝑐

𝑥3

)︂
𝑑𝑥, (9)

where the parameters 𝑎, 𝑏, and 𝑐 are determined by
approximating the “empirical” data. The solution of
this equation looks like

𝑦(𝑥) = 𝑦0𝑥
𝑎 exp

(︂
− 𝑏

𝑥
− 𝑐

𝑥2

)︂
. (10)

It serves as a basis for constructing an approximation
dependence (with four parameters: 𝑎, 𝑏, 𝑐, and 𝑦0). In
terms of the new variables 𝑧 = ln 𝑦 and 𝑡 = ln 𝑥, the
sought approximation dependence reads

𝑧(𝑡) = 𝑎𝑡− 𝑏 exp(−𝑡)− 𝑐 exp(−2𝑡) + 𝑑, (11)

where 𝑑 = ln 𝑦0.
Hence, we obtained a dependence with logarith-

mic variables. It can be regarded as containing the
exponential corrections to the linear law. Moreover,
the approximated dependences are rather monotonic,
and several parameters are used for the approxima-
tion. Therefore, when calculating those parameters,
not only the least squares method (or another crite-
rion) can be applied, but some additional constraints
can also be imposed, which is important for the solu-
tion of linguistic problems.

As an example, Fig. 4 demonstrates the approxi-
mation results for the word rank distribution in Lina
Kostenko’s text [36], but now the analysis is based
on expression (11). In particular, this is a relation be-
tween the logarithms of the word frequency, ln 𝑓 , and
the word rank, ln 𝑛. The corresponding distribution
parameters are as follows: 𝑎 ≈ −0.951, 𝑏 ≈ 1.531,

Fig. 4. Rank versus frequency for text [36]. Symbols corre-
spond to “experimental” values. Solid curve is an approxima-
tion based on law (11)

Fig. 5. Spectral word distribution for text [36]. Symbols cor-
respond to “experimental” values. The solid curve corresponds
to the approximation over the minimum values, and the dashed
curve to the approximation over the maximum values, the both
on the basis of law (11)

𝑐 ≈ −0.285, and 𝑑 ≈ 8.822. The coefficient of de-
termination 𝑅2 ≈ 0.964. At calculations, two addi-
tional conditions were monitored: (i) the value of the
approximation function at the starting point had to
coincide with the corresponding “experimental” value
and (ii) the derivative could not exceed zero.

When modeling the spectral distribution, we are
faced with a problem that the corresponding func-
tion becomes essentially ambiguous, as the word fre-
quency increases. In this case, for example, we can do
the approximation after fixing the values of the first
and last points in the dependence. In Fig. 5, the re-
sults of the corresponding approximation for the text
[36] are shown. If the approximation is performed af-
ter fixing the values of the first point (the zero value
for the logarithm of the word frequency ln 𝑓) and the
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Fig. 6. Dependence of the dictionary size on the text vol-
ume for works of Taras Prokhas’ko. Symbols correspond to
“experimental” values. Solid curve is an approximation based
on law (11)

first point at which the logarithm of the number of
words with a given frequency equals zero (ln 𝑚 = 0),
then we obtain the following approximation param-
eter values: 𝑎 ≈ −2.424, 𝑏 ≈ 1.081, 𝑐 ≈ −0.045,
and 𝑑 ≈ 10.061. The coefficient of determination
𝑅2 ≈ 0.898. But if we fix the last point for which
the logarithm of the number of words with the cor-
responding frequency equals zero, the approximation
gives the following parameter values: 𝑎 ≈ −0.708,
𝑏 ≈ −8.643, 𝑐 ≈ 4.981, and 𝑑 ≈ 5.362. The co-
efficient of determination 𝑅2 ≈ 0.290. In the lat-
ter case, one can hardly talk about the qualita-
tive approximation, but rather about a curve that
describes the limiting values for the corresponding
dependence.

Finally, Fig. 6 illustrates the results of approxima-
tion of the relationship between the number of lex-
emes in the text (the dictionary size) and the text
volume on the basis of expression (11) applied to
Taras Prokhas’ko’s texts (www.mova. info). At cal-
culations, the following additional restrictions were
used: (i) for texts consisting of one word, the corre-
sponding dictionaries were considered to also consist
of one word; and (ii) the number of words in the dic-
tionary could not be negative. Provided the indicated
additional conditions, the following values of the ap-
proximation parameters were obtained: 𝑎 ≈ 0.786,
𝑏 ≈ 2.670, 𝑐 ≈ −1.835, and 𝑑 ≈ 0.835. The coefficient
of determination 𝑅2 ≈ 0.982. In this case, the effect
of using a nonlinear dependence is insignificant, but
this dependence made it possible to build another de-
pendence that gave correct values even for texts with
small volumes.

5. Conclusions

To summarize, an approach has been proposed which
enables the creation of general approximate depen-
dences that can be applied to the mathematical mod-
eling in quantitative linguistics. The basic idea con-
sists in the application of a certain differential equa-
tion to the description of a process or a relation-
ship. The approximation dependence is based on the
general solution of this differential equation. In ad-
dition to the immediate advantage that an approxi-
mate dependence can be obtained, this approach al-
lows the classification of linguistic models and the de-
termination of their scope of applicability to be made,
which can be a crucial factor from the methodologi-
cal standpoint. The examples presented in the article
to illustrate this approach give grounds to assume
that its application can be promising in other cases
as well. Furthermore, the proposed methodology may
provide additional confirmation and substantiation of
the results obtained in the framework of alternative
theories; as it occurs, e.g., with various explanations
of Zipf’s law [21, 35, 50].
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ФIЗИКА ЗА МЕЖАМИ
ФIЗИКИ: ФIЗИЧНI ПIДХОДИ
В КВАНТИТАТИВНIЙ ЛIНГВIСТИЦI

Р е з ю м е

В статтi розглядається проблема використання фiзичних
методiв для розв’язання задач нефiзичного характеру.
Зокрема, аналiзуються перспективи застосування фiзичних

пiдходiв в кiлькiснiй (квантитативнiй) лiнгвiстицi. Рiзни-
ця мiж фiзичними та нефiзичними способами моделюва-
ння iлюструється на прикладi уже iснуючих “класичних”
моделей. Також пропонуються математичнi моделi, котрi
дозволяють встановлювати рангово-частотну залежнiсть
для слiв у частотному словнику та залежнiсть розмiру
словника вiд об’єму тексту. Показано, що пiдходи i прин-
ципи, котрi є характерними для фiзики, можуть бути з
успiхом задiянi при створеннi математичних моделей у
лiнгвiстицi.
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