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SUBBARRIER-FUSION AND ELASTIC-SCATTERING
CROSS-SECTIONS CALCULATED ON THE BASIS
OF THE NUCLEUS-NUCLEUS POTENTIAL
IN THE FRAMEWORK OF THE MODIFIED
THOMAS–FERMI METHOD

The nucleon density distributions and the nucleus-nucleus interaction potentials have been
calculated for the 16O + 208Pb and 12C + 208Pb reactions using the modified Thomas–Fermi
method, in which all terms up to ~2-ones in the quasiclassical series expansion of the kinetic
energy are taken into account. Skyrme forces depending on the nucleon density are used as the
nucleon-nucleon interaction. On the basis of the obtained potentials, the cross-sections of sub-
barrier fusion and elastic scattering are calculated and agree well with the latest experimental
data.
K e yw o r d s: nucleus-nucleus interaction potential, modified Thomas–Fermi method, nucleon
density distribution, cross-section, subbarrier fusion, elastic scattering.

1. Introduction
During the whole period of existence of theoretical
nuclear physics, one of its main tasks consisted in
finding out the regularities in the interaction between
atomic nuclei. To calculate such fundamental charac-
teristics of nuclear reactions as the cross-sections of
various processes, we, first of all, need to know the
potential energy of interaction between the nuclei [1–
4]. Of particular importance is the information about
the magnitude and radial dependence of the interac-
tion potential at small distances between them.

Unfortunately, the potential of the nucleon-nucleon
interaction, and even more so the nucleus-nucleus
one, is currently unknown at length. In general, we
can say that, qualitatively, it can be separated into
the nuclear, Coulomb, and centrifugal parts, with
the properties of the latter two components having
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already been studied rather well. However, the sit-
uation with the nuclear part is much more compli-
cated. Nowadays, a large number of various models
are used for it [1–25], and the height of the barrier of
the nucleus-nucleus interaction potential, which the
reaction mechanism depends on, can differ substan-
tially among those models. That is why the informa-
tion concerning the potential of nucleus-nucleus inte-
raction and the barrier height is extremely important
for the description of the reaction process.

When building the potential of nucleus-nucleus in-
teraction, considerably different methods are used
[26–36]. In this work, a semimicroscopic approach was
applied, in which the distribution of the nucleon den-
sity in nuclei and the distribution of their interaction
energy density will be calculated in the framework of
a modified Thomas–Fermi approach with concentra-
tion-dependent Skyrme forces [4,7,8,10,11,13–17,19–
25]. At present, there are already a large number of
successful parametrizations for the Skyrme interac-
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tion. In this work, the SkM* parametrization [32] is
applied. In so doing, all possible terms up to ~2 in
the series expansion of the quasiclassical distribution
of the kinetic energy are taken into account. The cal-
culations performed earlier by us and other authors
for particular nuclear problems testify that the ac-
count of all gradient terms in the kinetic energy up
to ~2 in the corresponding quasiclassical expansion is
a rather accurate approximation, so we used it be-
low. Under those conditions, the modified Thomas–
Fermi approach with Skyrme forces can describe well
the nucleon density distributions, the binding energy
of nuclei, the root-mean-square nuclear radii, and
many other characteristics of the ground and excited
states of atomic nuclei [26–32, 34].

In our previous work [37], we constructed the po-
tential of nucleus-nucleus interaction in the frame-
work of the modified Thomas–Fermi method with
Skyrme forces and calculated the subbarrier-fusion
and elastic-scattering cross-sections for the 16O +
+ 58,60,62,64Ni systems. The results obtained demon-
strate a good agreement with the experimental
data. In this work, we extend this approach to the
16O + + 208Pb and 12C + 208Pb systems: in the same
manner, we calculate the potential of nucleus-nucleus
interaction and, on this basis, obtain the subbarrier-
fusion cross-sections and the angular distributions for
the elastic scattering within the optical model.

In Section 2, the mathematical apparatus needed
to implement the chosen approach is expounded. Sec-
tions 3 and 4 contain a discussion of the results ob-
tained and our conclusions, respectively.

2. Modified Thomas–Fermi method

As was already mentioned, the potential of nucleus-
nucleus interaction, 𝑉 (𝑅), consists of the nuclear,
𝑉𝑁 (𝑅), Coulomb 𝑉COUL(𝑅), and centrifugal 𝑉𝑙(𝑅),
components depending on the distance 𝑅 between the
centers of mass of the nuclei:

𝑉 (𝑅) = 𝑉𝑁 (𝑅) + 𝑉COUL(𝑅) + 𝑉𝑙(𝑅). (1)

For the Coulomb and centrifugal parts, we use the
well-known expressions, which can be found, in par-
ticular, in works [20, 23, 24]. The nuclear part of the
interaction potential, 𝑉𝑁 (𝑅), was calculated in the
framework of a modified Thomas–Fermi method, in
which all terms up to the second degree of ~ in the
quasiclassical series expansion of the kinetic energy

are taken into account [4, 7, 8, 10, 11, 13–25]. The
density-dependent Skyrme forces –namely, the SkM*

parametrization [32] – were used as the nucleon-
nucleon interaction. In this work, we apply the ap-
proximation of “frozen” nucleon densities, which is
completely applicable to the case of near-barrier col-
lision energies.

The potential of nucleus-nucleus interaction is de-
fined as the difference between the energies of a sys-
tem of two nuclei located at a finite distance 𝑅,
𝐸12(𝑅), and at the infinite distance from each other,
𝐸1 + 𝐸2 [8, 10], i.e.

𝑉 (𝑅) = 𝐸12(𝑅)− (𝐸1 + 𝐸2), (2)

𝐸12 =

∫︁
𝜖
[︀
𝜌1𝑝(r) + 𝜌2𝑝(r, 𝑅), 𝜌1𝑛(r) + 𝜌2𝑛(r, 𝑅)

]︀
𝑑r.

(3)

The energy of the system at the infinite distance be-
tween the nucleons is the sum of the binding energies
of separate nuclei,

𝐸1(2) =

∫︁
𝜖
[︀
𝜌1(2)𝑝(r), 𝜌1(2)𝑛(r)

]︀
𝑑r. (4)

Here, 𝜌1(2)𝑛 and 𝜌1(2)𝑝 are the neutron (𝑛) and proton
(𝑝) densities in nucleus 1(2), 𝜖[𝜌1(2)𝑝(r), 𝜌1(2)𝑛(r)] is
the energy density, and 𝑅 is the distance between the
centers of mass of the nuclei.

The energy density is the sum of the kinetic, po-
tential, and Coulomb terms:

𝜖 = 𝜖kin + 𝜖pot + 𝜖coul, (5)

where 𝜖kin, 𝜖pot, and 𝜖coul denote the densities of
the kinetic, potential, and Coulomb energies, respec-
tively. If the density-dependent Skyrme forces are
used, the specific formula for the energy density is
well-known and was repeatedly cited in the litera-
ture [24–28, 30, 32, 37]. Therefore, since this formula
is cumbersome, we do not present it here.

Let 𝜏 denote the kinetic energy density, which is
the sum of the kinetic energy densities for protons and
neutrons, 𝜏 = 𝜏𝑝+𝜏𝑛. If the terms including up to the
second degree of ~ are retained in the quasiclassical
expansion of the kinetic energy, we can write [7, 8, 10,
11, 24, 27, 28, 37] that

𝜏 = 𝜏TF + 𝜏2, (6)
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where 𝜏TF is the kinetic energy of neutrons (pro-
tons) in the standard Thomas–Fermi approxima-
tion, and 𝜏2 is the ~2-order gradient correction. The
corresponding expressions are also rather cumber-
some, and they can also be found in the literature
[24, 25, 27, 28, 37]. Note that the contribution of the
first term on the right-hand side of formula (6) domi-
nates, but the gradient corrections also begin to play
a significant role near the surface of the nucleus. Since
the nucleus-nucleus potential at finite distances is as-
sociated with the interaction of nucleons in the over-
lap region of their density distribution “tails”, the ac-
count for gradient terms in the kinetic energy den-
sity and the realistic behavior of the nucleon density
distribution in the diffuse region are very important
while calculating the potential.

3. Calculations of the Nucleus-Nucleus
Interaction Potential, and the Fusion
and Elastic-Scattering Cross-Sections

To calculate the potential of nucleus-nucleus interac-
tion, we have to know the distributions of nucleon
densities in the interacting nuclei. In this work, we
used the nucleon densities obtained in the frame-
work of the modified Thomas–Fermi approach [4, 7,
8,10,11,13–25] with Skyrme forces. In particular, the
SkM* parametrization [32] was applied to the lat-
ter. The nucleon density distributions for the 12C,
16O and 208Pb nuclei, which were calculated using
this method, are shown in Fig. 1.

Knowing the nucleon densities, we can write an ex-
pression for the energy density and proceed to the
calculation of the nucleus-nucleus interaction poten-
tial. For this purpose, we can also apply the modi-
fied Thomas–Fermi approach with Skyrme forces (3)–
(6). The resulting interaction potentials obtained by
us for the 16O + 208Pb and 12C + 208Pb reactions are
shown in Fig. 2.

From this figure, one can see that the calculated
potentials of nucleus-nucleus interaction demonstrate
a substantial repulsion at short distances. This repul-
sion results from the incompressibility of nuclear mat-
ter and the strong overlap of nucleon density distribu-
tions, because we calculated the interaction potential
in the “frozen density” approximation. Such an over-
lap gives rise to the appearance of a region, where the
nuclear matter density exceeds a value typical of the
center of atomic nuclei, which is close to the density

Fig. 1. Neutron and proton densities in the 12C, 16O, and
208Pb nuclei calculated in the framework of the modified
Thomas–Fermi approach

of nuclear matter. The presence of a pronounced re-
pulsion core associated with both the strong overlap
of the nucleon density distributions and a low value
of the compression modulus for nuclear matter also
leads to their relaxation.

On the basis of obtained potentials, we can pass to
direct calculations of the cross-sections of nuclear re-
actions. First of all, we parametrize the nuclear parts
of the nucleus-nucleus interaction potentials using the
Woods–Saxon potential [1–4], because most of the
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Fig. 2. Nucleus-nucleus interaction potentials calculated in
the framework of the modified Thomas–Fermi approach for the
16O + 208Pb and 12C + 208Pb systems

known codes for the calculation of the cross-sections
of nuclear reactions take the interaction potential into
account just in this form:

𝑉WS(𝑅) =
−𝑉0

1 + exp
𝑅−𝑟0(𝐴

1/3
1 +𝐴

1/3
2 )

𝑑0

. (7)

The main attention was focused on the quality of the
parametrization in a vicinity of the contact point of
the nuclei, because this region is the most important
for describing both the elastic scattering and subbar-

Table 1. Parameters of the Woods–Saxon
potential (7) used to approximate the nuclear parts
of the interaction potentials obtained in the framework
of the modified Thomas–Fermi approach

Reaction 𝑉0, MeV 𝑟0, fm 𝑑0, fm

12C+ 208Pb 55.4837 1.1363 0.6591
16O+ 208Pb 66.1147 1.1333 0.7421

Fig. 3. Woods–Saxon potentials used to approximate the nu-
clear parts of the interaction potentials obtained in the frame-
work of the modified Thomas–Fermi approach

rier fusion phenomena. The values of the parameters
of the Woods–Saxon potential (7) calculated for the
16O + 208Pb and 12C + 208Pb systems are quoted
in Table 1. In addition, in Fig. 3, one can see the
nuclear parts of the interaction potentials and their
approximations using the Woods–Saxon potential. It
is evident that the obtained Woods–Saxon potentials
describe well the nuclear part of the interaction at
the distances when the nuclei begin to contact each
other. As was already mentioned, this interval of dis-
tances is especially important for describing nuclear
processes at energies close to the barrier ones.

In order to calculate the cross-sections of subbarrier
fusion, we used the well-known CCFULL program
code [38], which involves the coupling of reaction
channels with low-lying multipole vibrational surface
excitations 2+ and 3− in the interacting nuclei. The
CCFULL code also includes the nonlinear effects of
the coupling with multiphonon multipole surface ex-
citations. The parameters for the quadrupole and oc-
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tupole deformations and the excitation energy of low-
energy vibrational 2+ and 3− states (see Table 2) were
taken from the corresponding tables in works [39–41].

The subbarrier-fusion cross-sections obtained for
the 12C + 208Pb and 16O + 208Pb systems using the
CCFULL program code [38] are shown in Figs. 4 and
5, respectively. As one can see, the calculated cross-
sections of the subbarrier fusion describe well the lat-
est experimental data for those reactions, which were
taken from works [42–44].

For the 12C + 208Pb and 16O + 208Pb systems,
we also calculated the elastic-scattering cross-sections
in the framework of the optical model using the ob-
tained nuclear components of the potentials as the
real parts of the interaction. Our calculations in the
optical model took only the elastic channel into ac-
count and did not consider the coupling with low-
energy surface vibrational states. In calculations, the
imaginary part was added to the obtained nuclear po-
tential in the form of the sum of the bulk and surface
terms:

𝑊 (𝑅) = − 𝑊𝑊

1 + exp[𝑅− 𝑟𝑊 (𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑊 ]

−

− 𝑊𝑆 exp[𝑅− 𝑟𝑆(𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑆 ]

𝑑𝑆(1 + exp[𝑅− 𝑟𝑆(𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑆0])

. (8)

Table 2. Parameters of quadrupole
and octupole deformations and excitation energies
of low-energy vibrational states 2+ and 3− [39–41]

Nucleus 𝛽2 𝐸𝑥(2
+
1 ), keV 𝛽3 𝐸𝑥(3

−
1 ), keV

12C 0.582 4438.9 0.832 9641
16O 0.349 6917.1 0.729 6130
208Pb 0.0553 4085.5 0.111 2615

Table 3. Parameters of the imaginary part
of the nuclear potential obtained by fitting
the experimental elastic-scattering
cross-sections using the Woods–Saxon potential,
which approximates the nucleus-nucleus potential
in the modified Thomas–Fermi method,
for the 16O + 208Pb and 12C + 208Pb reactions

Reaction 𝑊𝑊 𝑟𝑊 𝑑𝑊 𝑊𝑆 𝑟𝑆 𝑑𝑆

16O+ 208Pb 20.205 1.100 0.516 14.999 1.299 0.553
12C+ 208Pb 19.000 1.265 0.699 13.397 1.286 0.633

E, MeV

m
b

a
rn

Fig. 4. Subbarrier-fusion cross-section for the 12C + 208Pb
system obtained on the basis of the interaction potential in the
framework of the modified Thomas–Fermi approach. Experi-
mental data were taken from work [42]

m
b

a
rn

E, MeV

Fig. 5. Subbarrier-fusion cross-section for the 16O + 208Pb
system obtained on the basis of the interaction potential in the
framework of the modified Thomas–Fermi approach. Experi-
mental data were taken from works [43, 44]

Here, the parameters 𝑊𝑊 , 𝑟𝑊 , 𝑑𝑊 , 𝑊𝑆 , 𝑟𝑆 , and 𝑑𝑆
are the force, radius, and diffusivity, respectively, of
the bulk (𝑊 ) and surface (𝑆) parts of the imaginary
nuclear potential. Just this expression is used, as a
rule, in the theory of nuclear collisions [2, 4, 36]. The
parameters of the imaginary part of the nuclear po-
tential (see Table 3) were found by fitting the exper-
imental elastic-scattering cross-section making use of
the Woods–Saxon potential (7), which approximates
the nucleus-nucleus potential obtained by the modi-
fied Thomas–Fermi method (Table 1).

The results of calculations of the elastic-scattering
cross-sections for the 16O + 208Pb system at the beam
energy 𝐸lab = 95 MeV and the 12C + 208Pb sys-
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deg.

Fig. 6. Elastic-scattering cross-section for the 16O + 208Pb
system obtained on the basis of the interaction potential of
the modified Thomas–Fermi approach with density-dependent
Skyrme forces. The beam energy 𝐸lab = 95 MeV. Experimen-
tal data were taken from work [45]

deg.

Fig. 7. Elastic-scattering cross-section for the 12C+ 208Pb
system obtained on the basis of the interaction potential of
the modified Thomas–Fermi approach with density-dependent
Skyrme forces. The beam energy 𝐸lab = 75.7 MeV. Experi-
mental data were taken from work [45]

tem at the beam energy 𝐸lab = 75.7 MeV are il-
lustrated in Figs. 6 and 7, respectively, where the
elastic-scattering cross-section values are normalized
to the Rutherford cross-section. The experimental
data shown in the figures were taken from work
[45]. As we can see from those figures, the calculated
elastic-scattering cross-sections agree well with the
corresponding experimental data.

4. Conclusions

In this work, we have calculated the nucleus-nucleus
interaction potentials for the 16O + 208Pb and

12C + 208Pb reactions in the framework of the modi-
fied Thomas–Fermi approach with density-dependent
Skyrme forces using the nucleon densities obtained
within the same approach. The potentials were cal-
culated in the “frozen density” approximation, which
is quite applicable at the collision energies close to
the barrier ones. This approximation allowed us to
analyze the properties of nucleus-nucleus interaction
in a vicinity of the contact point of the nuclei in de-
tail. On the basis of the obtained potentials, we have
calculated the subbarrier-fusion and elastic-scattering
cross-sections for the 16O + 208Pb and 12C + 208Pb
systems. The obtained cross-sections of these pro-
cesses are found to be in good agreement with the
latest experimental data. Note that the application
of a single potential made it possible to simultane-
ously describe the experimental cross-sections of both
subbarrier fusion and elastic scattering.
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Translated from Ukrainian by O.I. Voitenko

В.О.Нестеров, О.I. Давидовська, В.Ю.Денисов

ПОПЕРЕЧНI ПЕРЕРIЗИ ПIДБАР’ЄРНОГО
ЗЛИТТЯ ТА ПРУЖНОГО РОЗСIЯННЯ, ОДЕРЖАНI
НА ОСНОВI МIЖЯДЕРНОГО ПОТЕНЦIАЛУ
В МОДИФIКОВАНОМУ МЕТОДI ТОМАСА–ФЕРМI

Густини розподiлу нуклонiв та потенцiали мiжядерної вза-
ємодiї для реакцiй 16O+ 208Pb та 12C+ 208Pb було розра-

ховано в рамках модифiкованого методу Томаса–Фермi, з
урахуванням усiх доданкiв до членiв другого порядку по
~ у квазiкласичному розкладi кiнетичної енергiї. В ролi
нуклон-нуклонної взаємодiї використовувалися сили Скiр-
ма, залежнi вiд густини нуклонiв. На основi одержаних по-
тенцiалiв були обчисленi перерiзи пiдбар’єрного злиття та
пружного розсiяння, що добре узгоджуються з новiтнiми
експериментальними даними.

Ключ о в i с л о в а: потенцiал мiжядерної взаємодiї, мо-
дифiкований метод Томаса–Фермi, розподiл густини ну-
клонiв, поперечний перерiз, пiдбар’єрне злиття, пружне
розсiяння.
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