
Particle-Shape Effect

https://doi.org/10.15407/ujpe66.10.873

A.N. GRIGORIEV, YU.G. KUZOVKOV, I.V. MARKOV, L.A. BULAVIN
Taras Shevchenko National University of Kyiv, Faculty of Physics
(4, Akademika Glushkova Ave., Kyiv 03127, Ukraine; e-mail: andgrigoriev@gmail.com)

PARTICLE-SHAPE EFFECT
ON THERMOPHYSICAL PROPERTIES
OF MODEL LIQUID SYSTEMS.
SOLUTIONS OF HARD SPHEROCYLINDERS

Thermophysical parameters (density, adiabatic and isothermal elastic moduli, thermal ex-
pansion coefficient, and Joule–Thomson coefficient) of a solutions of hard spherocylinders
with various elongations have been determined using the Monte Carlo method applied to an
isothermal-isobaric ensemble characterized by the reduced temperature 𝑇 = 1.0 and the reduced
pressures 𝑃 = 1.0 and 3.5. It is shown that the shape of the particles, provided that their vol-
umes are invariant, affects the thermophysical properties of the studied solutions indirectly
through the free or available volume of the system, rather than the volume fraction occupied
by the particles.
K e yw o r d s: Monte Carlo method, thermophysical properties, influence of particle shape,
free or available volume.

1. Introduction

At the present time, we may recognize that such a
direction of research as the physics of liquids and liq-
uid systems has been formed within molecular physics
[1]. The development of this direction mainly occurs
through the improvement of experimental methods,
in particular, neutron ones [2–4], as well as computer
simulation methods, in particular, the Monte Carlo
and molecular dynamics ones [5].

According to their application scope, the computer
simulation methods can be divided into fundamen-
tal and applied (or engineering) ones. The purpose
of applied methods is mainly to obtain the reliable
and exact information about the macroscopic prop-
erties of a particle system with a known composition
and a given interaction potential between the parti-
cles. The corresponding practical tasks are typical of
many industries.

Nowadays, such effective computer programs as
Gromax [6] and LAMMPS [7] have been created,
which allow information about the thermophysical
properties of specific objects to be obtained in a lot
of cases without performing complicated experiments.
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The reliability and accuracy of the data obtained are
based on the successful choice of the “force field”, i.e. a
set of parameters that characterize the interaction
of atomic groups or individual atoms belonging to
the same or different molecules in the researched sys-
tem. Numerical values of those parameters are deter-
mined by mutually fitting the experimental and sim-
ulation results obtained for a particular macroscopic
characteristic (almost always, this is the density) for
a number of liquid systems selected as the “reference”
ones [8]. The application value of a “force field” is de-
termined by the transferability of its potential pa-
rameters to other liquids or liquid systems, i.e. the
ability to predict the thermophysical characteristics
for liquids different from the “reference” ones.

In the vast majority of works aimed at calculat-
ing the thermophysical properties of liquid systems,
the matter concerns the density, self-diffusion coef-
ficient, and shear viscosity coefficient. This circum-
stance makes it difficult to compare the simulation
results with the experimental ones. In most cases, the
self-diffusion coefficient can be determined only using
the nuclear magnetic resonance and neutron experi-
ment methods [3,9]. Due to the complicated character
of the experiment, there are little relevant data. At
the same time, it is not methodologically quite “hon-

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10 873



A.N. Grigoriev, Yu.G. Kuzovkov, I.V. Markov et al.

a b c
Fig. 1. Hard spherical cylinders with various elongation de-
grees: a hard sphere (HS) with the diameter 𝜎 = 1.0 (𝑎); a
hard spherocylinder (HSC), the diameter of the spherical sur-
face 𝜎 = 0.89, and the length of the cylindrical surface 𝐿 = 0.23

(𝑏); a hard spherocylinder (HSC), the diameter of the spheri-
cal surface 𝜎 = 0.84, and the length of the cylindrical surface
𝐿 = 0.42 (𝑐)

est” to compare the data obtained for the density,
because the model parameters are obtained exactly
on their basis.

As for other parameters – in particular, the adia-
batic and isothermal elastic moduli, the ultrasound
propagation velocity, the thermal expansion coeffi-
cient, the Joule–Thomson coefficient, and others –
the calculations of those quantities were made in a
limited number of papers [10, 11]. It should be noted
that the ultrasound propagation velocity is a char-
acteristic that can be accurately and rather simply
measured experimentally. Therefore, it is pertinent to
use this parameter to independently evaluate that or
another potential model.

The task of the fundamental direction in computer
simulation is not exactly the obtaining of most accu-
rate data for the macroscopic properties of the ana-
lyzed systems, but sooner the determination of gen-
eral laws that govern the behavior of macroscopic
properties of the systems with given compositions and
given potentials of particle interaction. In particular,
a typical challenging task is to determine the influ-
ence of the shape of molecules on the thermophysical
properties of liquids and liquid systems. This effect on
various thermophysical properties of individual liq-
uids was studied earlier for a number of hard-core
model systems [12–14]. However, in those works, the
cited authors did not pay attention to the fact that
a change in the particle shape can change the own
particle volume. As a result, the reduced density of
the system can also vary. In other words, the ther-
mophysical properties were compared for the systems
that actually were in different reduced states (in dif-
ferent phase diagram regions). The aim of this work
was to elucidate the “pure” influence of the molecular
shape on the thermophysical properties of liquids and
their solutions.

2. Researched Object
and Computer Simulation Technique

The study was performed using the model of binary
solutions of hard spherical cylinders (HSCs) as an ex-
ample. The characteristics of the particles of different
kinds were set so that their volumes were equal to the
volume of a hard sphere (HS) with a unit diameter. In
Fig. 1, the models of three kinds of particles with dif-
ferent elongation degrees that the examined system is
consisted of are presented. Accordingly, three systems
of binary solutions with the concentrations 𝑥 = 0, 0.2,
0.4, 0.6, 0.8, and 1.0 mole fractions were studied.

Using the Monte Carlo method applied to the
isothermal-isobaric ensemble [15] of systems with the
total particle number 𝑁 = 216, the following thermo-
physical characteristics were determined: the density,
the adiabatic and isothermal elastic moduli, the ther-
mal expansion coefficient, and the Joule–Thomson
coefficient. The corresponding calculations were per-
formed using dimensionless variables for which the
hard sphere diameter 𝜎 was selected as the length
unit, the particle mass 𝑚 was the mass unit, and
the quantity

√︀
𝑘B𝑇/𝑚, where 𝑘B is the Boltzmann

constant and 𝑇 the temperature, was the velocity
unit [16].

In a system of hard particles, the density depends
on the parameters 𝑃 and 𝑇 via their ratio so that
the thermodynamic state of the system is also deter-
mined by this ratio. In the selected system of length,
mass, and velocity units, 𝑃/𝑇 = 𝑘/𝜎3. The calcula-
tions were carried out for the reduced 𝑃/𝑇 ratio with
values of 1.0 and 3.5. It is convenient to talk about
them as about calculations for the reduced temper-
ature 𝑇 = 1.0 and the reduced pressures 𝑃 = 1.0
and 3.5.

Four types of a new configuration generation were
used at simulation: the displacement of a molecule as
a whole, the rotation of a molecule at a random an-
gle around its center of mass, a change of the particle
kind, and a change of the main cell volume. The max-
imum displacement, maximum rotation angle, and
maximum volume change were selected so that the
corresponding fraction of accepted configurations was
30% [12].

The Vega algorithm [17] was applied to calculate
the distance between the surfaces of spherical cylin-
ders. The generated sequence of system configura-
tions was used to find the mean and root mean square
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fluctuations of the system volume. To estimate the er-
ror of the calculated values, the total sequence of con-
figurations was divided into 10 subsequences, and the
average values of the volume and other quantitieswere
calculated for each of them. Then, the average value
and the random error were determined for a set of 10
“measurements”.

The density 𝜌 and the isothermal elastic modulus
𝐾𝑇 were calculated according to the formulas [18]

𝜌 =
𝑁

⟨𝑉 ⟩
, (1)

where 𝑁 is the number of particles, and ⟨𝑉 ⟩ is the
average cell volume, and

𝐾𝑇 =
𝑇 ⟨𝑉 ⟩
⟨Δ𝑉 2⟩

, (2)

where 𝑇 is the temperature, and ⟨Δ𝑉 2⟩ is the mean
square fluctuation of the cell volume. Since the po-
tential energy in the system of hard particles is zero,
the expressions for calculating the thermal expansion
coefficient 𝛼𝑝 and the isobaric heat capacity 𝐶𝑃 are
simpler in comparison with the general case:

𝛼𝑝 =
𝑃

𝑇𝐾𝑇
, (3)

where 𝑃 is the pressure, and

𝐶𝑃 = 𝐶𝑉 + 𝑃 ⟨𝑉 ⟩𝛼𝑝. (4)

Here, 𝐶𝑉 is the isochoric heat capacity, which equals
3
2𝑁 for 𝑁 hard spheres, 5

2𝑁 for 𝑁 hard spherical
cylinders, and 3

2𝑁1 +
5
2𝑁2 for a mixture of 𝑁1 hard

spheres and 𝑁2 hard spherical cylinders.
The obtained data were used to calculate the ratio

𝛾 between the isobaric and isochoric heat capacities,
the adiabatic elastic modulus

𝐾𝑆 = 𝐾𝑇

(︂
1 +

𝑃 ⟨𝑉 ⟩𝛼𝑝

𝐶𝑉

)︂
, (5)

and the Joule–Thomson coefficient

𝜇JT =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
⟨𝑉 ⟩
𝐶𝑃

[𝑇𝛼𝑝 − 1], (6)

where 𝐻 is the enthalpy.

3. Results of Calculations

The concentration dependences of the researched
thermophysical quantities are shown in Figs. 2, 3, and
5 to 7. As one can see from Fig. 2, the density of bi-
nary solutions of hard spherical cylinders does not de-
pend on the concentration. The densities of both indi-
vidual systems of hard spheres (HSs) and hard spher-
ical cylinders (HSCs) with various particle elongation
degrees, as well as their mutual solutions, are identi-
cal at the fixed pressure and temperature. Therefore,
provided that the particle volumes are the same, the
particle shape does not affect the solution density.
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Fig. 2. Concentration dependences of the binary HSC solution
density 𝜌: the HS-HSC system with 𝐿/𝜎 = 0.25 (𝑎); the HS-
HSC system with 𝐿/𝜎 = 0.50 (𝑏); the HSC system with 𝐿/𝜎 =

= 0.25 (𝑐) and 0.50. 𝑃 = 1.0 (�) and 3.5 (∙)
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Fig. 3. Concentration dependences of the isothermal elastic
modulus 𝐾𝑇 for binary HSC solutions: the HS-HSC system
with 𝐿/𝜎 = 0.25 (𝑎); the HS-HSC system with 𝐿/𝜎 = 0.50 (𝑏);
the HSC system with 𝐿/𝜎 = 0.25 (𝑐) and 0.50. 𝑃 = 1.0 (�)
and 3.5 (∙)
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a b
Fig. 4. The accessible or free volume (grey-colored, a) and
the volume not occupied by the particles (grey-colored, b) in a
system of hard disks
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Fig. 5. Concentration dependences of the thermal expansion
coefficient 𝛼𝑝 for binary HSC solutions: the HS-HSC system
with 𝐿/𝜎 = 0.25 (𝑎); the HS-HSC system with 𝐿/𝜎 = 0.50 (𝑏);
the HSC system with 𝐿/𝜎 = 0.25 (𝑐) and 0.50. 𝑃 = 1.0 (�)
and 3.5 (∙)
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Fig. 6. Concentration dependences of the adiabatic elastic
modulus 𝐾𝑆 for binary HSC solutions: the HS-HSC system
with 𝐿/𝜎 = 0.25 (𝑎); the HS-HSC system with 𝐿/𝜎 = 0.50 (𝑏);
the HSC system with 𝐿/𝜎 = 0.25 (𝑐) and 0.50. 𝑃 = 1.0 (�)
and 3.5 (∙)
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Fig. 7. Concentration dependences of the Joule–Thomson
coefficient 𝜇JT or binary HSC solutions: the HS-HSC system
with 𝐿/𝜎 = 0.25 (𝑎); the HS-HSC system with 𝐿/𝜎 = 0.50 (𝑏);
the HSC system with 𝐿/𝜎 = 0.25 (𝑐) and 0.50. 𝑃 = 1.0 (�)
and 3.5 (∙)

Concerning the isothermal elastic modulus, its
thermodynamic behavior is more complicated. At low
pressures (𝑃 = 1.0), the 𝐾𝑇 -values for the HS so-
lutions and the HSC solutions with various particle
elongation degrees almost do not depend on the solu-
tion composition (Fig. 3).

As the pressure increases (𝑃 = 3.5), some decrease
of the elastic modulus is observed for those systems in
which particle shapes more deviate from the spherical
one (Fig. 3, 𝑐). In particular, for most solutions of the
HS–HSC system with the ratio 𝐿/𝜎 = 0.25, the value
of 𝐾𝑇 is close to 14 (Fig. 3, 𝑎), whereas, for the solu-
tions of the same system with the ratio 𝐿/𝜎 = 0.5, the
value of 𝐾𝑇 is close to 12 (Fig. 3, 𝑏). For most solu-
tions of the HSC system with various particle elonga-
tion degrees, the value of 𝐾𝑇 is close to 10 (Fig. 3, 𝑐).

A specific feature in the concentration dependence
of the isothermal elastic modulus of the systems with
the most elongated spherical cylinders is the pres-
ence of a minimum in the concentration interval near
𝑥 ∼ 0.6. Therefore, at such concentrations, the so-
lution can be compressed more easily, which testifies
to its more “loose” structure. Since the particle vol-
umes are identical, this feature cannot be explained
by the difference in the packing coefficients, i.e. the
fraction of the system volume occupied by the parti-
cles themselves.

In this regard, it is reasonable to refer to the con-
cepts of the excluded and free volumes introduced by
Van der Waals [19]. The excluded volume is the part
of the system volume, where the center of mass of a
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particle cannot be placed without the overlapping of
the latter with neighbor particles. According to Van
der Waals, for the loose systems of particles with a
hard core, the excluded volume is equal to four times
the volume of the particles themselves and coincides
with the volume correction in the equation named af-
ter him. The part of the system volume, where the
center of mass of a particle can be placed without the
overlapping with other particles is called either free
[20] or accessible [21] volume. In book [22], the con-
cepts of free and accessible volumes are used as syn-
onyms. The difference between the free (or accessible)
volume and the volume not occupied by particles is
illustrated in Fig. 4.

The ability to compress the system is evidently as-
sociated with the presence of such regions, where the
particle can move, i.e. with the presence of the free
or accessible volume. The difference between the 𝐾𝑇

values for the solutions of elongated particles and the
solutions of spherical particles testifies to the differ-
ence between the free volumes in those systems. In
our case, this means that the free volume of the elon-
gated particle system is larger than that of the spher-
ical particle system. Qualitatively, this result can be
explained by the fact that an elongated particle can
more likely be “squeezed” into the system by “rotat-
ing” it, i.e. finding an orientation in which it does
not overlap with the neighbors. For spherical parti-
cles, such a possibility is absent.

As for the thermal expansion coefficient 𝛼𝑝, its
value decreases with the increasing pressure for all
three systems (Fig. 5). At low pressures, 𝛼𝑝 is al-
most independent of 𝑥 for all solutions. At high pres-
sures, the concentration dependence of the thermal
expansion coefficient has peculiarities at the same
concentrations of elongated spherical cylinders as
𝐾𝑇 has. Namely, 𝛼𝑝 of solutions with 𝑥 ∼ 0.4÷0.6
exceeds the corresponding values of 𝛼𝑝 for one-
component liquids. This effect can also be explained
by the growth of the free volume in the solution as
compared with that in one-component systems.

The concentration dependence of the adiabatic
elastic modulus 𝐾𝑆 is similar to that of the isothermal
elastic modulus (Fig. 6). The only difference consists
in their magnitudes.

Figure 7 exhibits the concentration dependences of
the Joule–Thomson coefficient. As one can see, within
the determination error, the dependence 𝜇JT(𝑥) is
close to linear. The pressure growth from 𝑃 = 1.0

to 𝑃 = 3.5 leads to the increase of the Joule–Thom-
son ratio from −0.4 to −0.2. The negative 𝜇JT-values
mean that, at all pressure and concentration val-
ues, the liquid temperature increases under adiabatic
throttling conditions (the slow gas flow through a
porous partition).

4. Main Results and Conclusions

1. The Monte Carlo method is applied to the isother-
mal-isobaric ensemble in order to determine the set of
thermophysical parameters of the liquids consisting of
particles with various shapes (the elongation degree),
namely, hard spherical cylinders. In order to distin-
guish the influence of the particle form on the thermo-
physical properties, the researched systems were as-
sumed to be in the same reduced state, i.e. the shape
of the particles was changed, but their volume was
left constant.

2. An analysis of the thermophysical characteristics
of binary solutions of hard spherical cylinders shows
that those parameters are determined by the free (or
accessible) volume of the examined systems, rather
than the particle packing coefficient.

3. The influence of the particle shape on the ther-
mophysical properties of the studied solutions pro-
vided the constancy of particle volume is carried out
indirectly by means of the free or accessible volume
parameter. In this connection, it is shown that, when
studying the influence of particle shape on the ther-
mophysical properties of both model systems and real
molecular solutions, just the free or accessible volume
parameter is pertinent to be applied.
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Translated from Ukrainian by O.I. Voitenko

А.М. Григор’єв, Ю.Г.Кузовков,
I.В.Марков, Л.А.Булавiн

ВПЛИВ ФОРМИ ЧАСТИНОК НА ТЕПЛОФIЗИЧНI
ВЛАСТИВОСТI МОДЕЛЬНИХ РIДИННИХ СИСТЕМ.
РОЗЧИНИ ТВЕРДИХ СФЕРОЦИЛIНДРIВ

Методом Монте-Карло в iзотермiчно-iзобаричному ансам-
блi визначено теплофiзичнi характеристики систем твер-
дих сфероцилiндрiв рiзного ступеня видовженостi: густину,
адiабатичний та iзотермiчний модулi пружностi, коефiцi-
єнт теплового розширення та коефiцiєнт Джоуля–Томсона
за приведеної температури 𝑇 = 1,0 та приведених тискiв
𝑃 = 1,0 i 3,5. Показано, що вплив форми частинок за умови
сталостi їх об’єму на теплофiзичнi властивостi дослiджених
розчинiв здiйснюється опосередковано не через коефiцiєнт
пакування частинок, а через вiльний або доступний об’єм.

Ключ о в i с л о в а: метод Монте-Карло, теплофiзичнi вла-
стивостi, вплив форми частинок, вiльний або доступний
об’єм.
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