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BIAS OF THE HUBBLE
CONSTANT VALUE CAUSED BY ERRORS
IN GALACTIC DISTANCE INDICATORS

The bias in the determination of the Hubble parameter and the Hubble constant in the modern
Universe is discussed. It could appear due to the statistical processing of data on the redshifts
of galaxies and the estimated distances based on some statistical relations with limited accu-
racy. This causes a number of effects leading to either underestimation or overestimation of
the Hubble parameter when using any methods of statistical processing, primarily the least
squares method (LSM). The value of the Hubble constant is underestimated when processing
a whole sample; when the sample is constrained by distance, especially when constrained from
above. Moreover, it is significantly overestimated due to the data selection. The bias signifi-
cantly exceeds the values of the erro ofr the Hubble constant calculated by the LSM formulae.
These effects are demonstrated both analytically and using Monte Carlo simulations, which
introduce deviations in the velocities and estimated distances to the original dataset described
by the Hubble law. The characteristics of the deviations are similar to real observations. Errors
in the estimated distances are up to 20%. They lead to the fact that, when processing the same
mock sample using LSM, it is possible to obtain an estimate of the Hubble constant from 96%
of the true value when processing the entire sample to 110% when processing the subsample
with distances limited from above. The impact of these effects can lead to a bias in the Hubble
constant obtained from real data and an overestimation of the accuracy of determining this
value. This may call into question the accuracy of determining the Hubble constant and can
significantly reduce the tension between the values obtained from the observations in the early
and modern Universes, which were actively discussed during the last year.
K e yw o r d s: cosmology, cosmological parameters, Hubble constant tension, statistical
method.

1. Introduction
The basis of modern cosmology is the homogeneous
isotropic model, in which all points in the Universe
and all directions are equivalent. Two details need
a clarification. It is possible that the Universe was
anisotropic at the Big-Bang time, but it became
almost isotropic in the inflationary expansion era
in tiny fractions of a second and has been almost
isotropic ever since. The temperature of the cosmic
microwave background radiation is almost the same
in all directions. This indicates a high degree of ho-
mogeneity and isotropy of the Universe during the
recombination epoch. However, as the Universe ex-
panded, the fluctuations grew, e.g., those of the den-
sity of the matter filling it. This led to the forma-
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tion of a large-scale structure and the appearance of
superclusters, voids, clusters, galaxies, and stars. At
present, we can talk about the homogeneity of the
Universe only on very large spatial scales.

The rate of expansion of the Universe in such mod-
els is characterized by the time-dependent Hubble pa-
rameter 𝐻. It is defined as 𝐻 = �̇�/𝑎, where 𝑎(𝑡) is the
scale factor and dot means the derivative with respect
to the cosmological time 𝑡. Its current value is called
the Hubble constant and is denoted by 𝐻0. Astro-
nomers use the associated dimensionless quantity ℎ,
defined as 𝐻0 = ℎ × 100 km · s−1 ·Mpc−1. With its
help, Hubble velocities are easily converted into dis-
tances measured in Mpc ℎ−1. The modern estimate
gives the value ℎ ≈ 0.7.

Most measurements of the Hubble parameter deal
with distances, which are small by cosmological stan-
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dards. They have small redshifts and relate to the
late Universe. However, a few measurements relate
to the early Universe, e.g., to the recombination era
(redshift 𝑧 ≈ 1100). First of all, these are CMB data
from the Planck satellite [17] and data from the Dark
Energy Survey Year 1 clustering combined with data
on the weak lensing, baryon acoustic oscillations, and
Big-Bang nucleosynthesis [1]. The data on the pri-
mary nucleosynthesis deal with a process that took
place in the first minutes of the existence of the
Universe.

Estimations of the Hubble constant obtained by
different methods are given in [22]. They are ob-
tained from different observational data and based
on different physical effects with their common con-
straints. The values given there, namely, the estima-
tion 𝐻0 = 67.4 ± 0.5 km · s−1 ·Mpc−1 in the recom-
bination era and 𝐻0 = 73.3 ± 0.8 km · s−1 ·Mpc−1

in the modern era differ by 8%. The corresponding
difference is at the level of 4𝜎 − 6𝜎, which, accord-
ing to [22], should be classified as something from a
discrepancy or the problem to a crisis.

Numerous articles have tried to explain this differ-
ence in a variety of ways, including the introduction
of new physical interactions in the early Universe. Na-
turally, the possible connection between the Hubble
tension and the violation of the isotropy or homo-
geneity of the Universe was also considered. The re-
view [4] contains links to 882 papers related to this
issue. Some attempts to explain the Hubble tension
were discussed in [2, 6, 20]. According to [5], a sys-
tematic bias of ∼0.1–0.15 mag in the intercept of the
Cepheid period-luminosity relations of SH0ES galax-
ies could resolves the Hubble tension. Note that, in
[8], the value 𝐻0 = 69.6 ± 0.8 (±1.1% stat) ±1.7
(±2.4% sys) km · s−1 ·Mpc−1 was found for the late
Universe using the direct revised measurement of
the tip of the red giant branch of the Large Mag-
ellanic Cloud. It agrees well with those for the early
Universe.

I want to emphasize that the purpose of this work
is neither to explain the differences in the estimates of
𝐻0 for the early and late Universes due to the impact
of some unaccounted factor nor to criticize any results
obtained earlier. I want to demonstrate the pitfalls
that always exist in the data processing.

For this, I am using the simplest example. The
Monte Carlo method makes it easy to study the accu-
racy and precision of the estimates obtained; the use

of the simplest least squares method with a single
determinable parameter makes it possible not to con-
sider the details of the complex analysis used in the
processing of real data. I am not discussing the Fisher
matrices, possible abnormal distribution of devia-
tions, discarding outliers, and other important pro-
cessing details. My goal is to show that, even in this
simple case, the use of standard processing methods,
but with different processing details, for example, the
cut-off boundaries of the used subsamples, can give
results that are quite different from each other. The
formal application of statistical criteria could lead to
the conclusion that there are significant differences in
the results of processing the same initial data set us-
ing the same method and the same procedure for its
application.

I consider the issues of the statistical processing of
data on redshifts and estimating the distances to gala-
xies in the modern Universe. I will demonstrate that
the differences in 𝐻0 estimations could be explained
by quite trivial reasons such as the usage of statis-
tical dependences when estimating the distances to
galaxies.

To estimate the distances to galaxies independently
of redshifts, the astronomers have to use some dis-
tance indicators such as the distance from Cepheid
variables, the Tully–Fisher relation for spiral galaxies,
the 𝐷𝑛 − 𝜎 or fundamental plane relations for ellip-
tic galaxies, surface brightness fluctuations, brightest
cluster galaxies, or tip of the red-giant branch. All of
them are based of different statistical relations and
provide distances with different accuracies.

The most precise dependence of those statistical
ones can only be used to estimate the distances to
nearby galaxies, whose radial velocities exceed only
slightly the characteristic speed of collective non-
Hubble motions. For example, in [18], the luminosi-
ties of 75 Cepheids from the Milky Way were mea-
sured with errors of 1%. These data were used for the
calibration of distances. The estimate 𝐻0 = 73.0±
± 1.4 km · s−1 ·Mpc−1, which differs by 4.2 𝜎 from
the Planck results, was obtained using the distance
indicators based on these new data.

The Tully–Fisher relation was generally considered
to give the best distances to galaxies in the range re-
quired to define 𝐻0 for some 20 years after its incep-
tion in [21]. It used a correlation for spiral galaxies be-
tween their luminosities and angular rotation velosi-
ties. The latter can be determined from the galaxy
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emission line widths. R.B. Tully wrote in his Scholar-
pedia article about the Tully–Fisher relation that, at
optimal passbands between 600 nm and 800 nm, its
scatter is ∼0.35 magnitudes, equivalent to the 17%
uncertainty in distance. For other ranges or when us-
ing the dependence of the linear diameter on the emis-
sion line width, this uncertainty is bigger. This value
is one of the parameters I use in Monte Carlo simu-
lations. In the modeling, I consider relative errors in
determining the distance to individual galaxies (with-
out using their redshift data) up to 20–30% based on
the accuracy of the Tully–Fisher method. However,
the accuracy of determining the Hubble constant is
significantly higher due to the fact that the statis-
tical processing of a large array of data on galaxies
is used.

Note that, when estimating the distance to the su-
pernova Ia explosions, astronomers deal directly with
the light curve and the spectrum from which the red-
shift can be determined. This was enough to discover
the accelerated expansion of the Universe. Explosions
can be considered the “standard candle” so beloved by
cosmologists.

However, when determining the Hubble constant,
the distance scale to them must be calibrated. This
is done on the basis of the data on the distances
to galaxies in which a supernova explosion occurs.
Those data were obtained with the use of some of the
criteria described above and retain all the systematic
biases inherent in them. An overview of the methods
used to determine the Hubble constant and construct
a ladder of distances to distant extragalactic objects
is given, in particular, in review [9].

Whichever distance estimation method is used, one
gets a set of estimated distances 𝑅𝑖 instead of true
distances 𝑟𝑖 to galaxies. The difference between 𝑅𝑖

and 𝑟𝑖 are errors in estimating the distance to each
galaxy we are talking about. They are not so small,
since they accumulate all the errors inherent in all
distance determination techniques used to estimate
and calibrate the statistical dependence on all levels
of the cosmic distance ladder. It is important that
they increase with distance. Their impact leads to the
bias in the value of the Hubble constant, and its error
could be significantly underestimated.

There are several sources of errors in the determi-
nation of the Hubble parameter and the Hubble con-
stant derived from it. One of them is the well-known
bias, which arises because of errors in the argument

of the function. It occurs during any statistical pro-
cessing, including the least squares method (LSM)
and the maximum likelihood estimation (MLE) for
the statistical data processing. It is discussed in Sec-
tion 2. The second one arises due to data selection
effects when processing the data from subsamples lim-
ited by a distance obtained by indicators 𝑅. They
are considered in Section 3. I demonstrate their im-
pact in Subsections 2.4 and 3.2 using the Monte Carlo
method for the mathematical modeling.

I also consider some potential sources of errors that
appeared to have no significant effect on the Hubble
constant value. For example, in Subsection 7.3, the
influence of collective motions of galaxies aka (also
known as) cosmic streams is considered. The analysis
shows that it is not a source of errors when getting
the 𝐻0 value.

I consider and analyze some of the mathematical
features of the used transformations in Subsection 7.1
in Appendix.

I sequentially consider several effects that affect
the values of 𝐻 and 𝐻0 obtained by processing the
observational data. I start with the simplest model,
by gradually adding the additional factors related to
the model used, sample completeness, and processing
details.

2. Underestimation
of the Hubble Constant Caused
by Errors in Galaxy Distances

2.1. The simplest model
of motion of galaxies and errors
in distance and velocities measurements

Consider a sample of galaxies with distances 𝑟𝑖 and
radial velocities 𝑣𝑖. At small redshifts 𝑧 ≪ 1, they are
related by the Hubble law aka the Hubble–Lemâıtre
law

𝑣𝑖 = 𝐻𝑟𝑖, (1)

where 𝐻 is the Hubble parameter. Therefore, one can
exactly determine its value from any sample of 𝑟𝑖 and
𝑣𝑖. But the world is not so ideal, and, instead of this
sample, we have to process slightly different data. It is
possible to determine, with high precision, the actual
measured radial velocity of each individual galaxy 𝑉𝑖

from its redshift. It is the sum of the velocities of its
Hubble motion 𝑣𝑖 and the radial component of the pe-
culiar motion of this galaxy. The last one is the sum
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of radial component of the collective non-Hubble mo-
tion (or a flow) of galaxies and some random motion
of this individual galaxy.

We start from the simplest model without collective
non-Hubble motion. It does not consider significant
variations in the matter density in different regions
of space. It is the reason for the appearance of non-
Hubble flows of galaxies. When processing real data,
we take these collective non-Hubble motions into ac-
count either by using their multipole expansion [15],
or by directly simulating the influence of attractors
and voids. In Section 7.3, I consider the influence of
a collective motion in the bulk motion approxima-
tion. However, let me recall you that my main goal
is to show the pitfalls associated with the statistical
processing. This is more clearly manifested when us-
ing the simplest models. So, I assume

𝑉𝑖 = 𝑣𝑖 + 𝛿𝑉 𝑠𝑖, (2)

where 𝑠𝑖 is a random variable with the normal distri-
bution, zero mean, and unit variance, and 𝛿𝑉 is the
characteristic value of the random component of the
radial velocity of the galaxy.

We deal with a set of estimated distances to galax-
ies 𝑅𝑖 which are different from true ones 𝑟𝑖. One can
assume that

𝑅𝑖 − 𝑟𝑖 = 𝑎𝑟𝑖𝑝𝑖, 𝑅𝑖 = 𝑟𝑖(1 + 𝑎𝑝𝑖), (3)

where 𝑝𝑖 is also a random variable with the normal
distribution, zero mean, and unit variance, and 𝑎 is
the characteristic value of the relative error of the
distance indicator we use.

Instead of (3), one can use

𝑅𝑖 − 𝑟𝑖 = 𝑎𝑅𝑖𝑝𝑖, 𝑅𝑖 = 𝑟𝑖(1− 𝑎𝑝𝑖)
−1. (4)

It is close to (3) for small errors in the distance esti-
mation. In this case, the error is a certain percent of
𝑅𝑖. I discuss the differences between these two types
of noise (3) and (4) in the Sect. 7.1 and show that
they are very different from a mathematical point
of view. In addition to analytic consideration, I use
Eqs. (2) and (3) or (4) to prepare a lot of mock sam-
ples for the Monte Carlo simulations. More details are
discussed in Section 2.3.

What type of the relation can be expected from real
astronomical observations? Statistical dependences
make it possible to estimate a certain parameter of
the galaxy, which does not depend on the distance

to it. Usually, this is its absolute luminosity 𝐿. For
galaxies from the FGC and RFGC catalogues [10,11],
this is their linear diameter 𝐷. The errors of these
values, if they are distributed over a Gaussian by
relation (3). To determine the distance, we need to
use the flux from the galaxy, i.e., its apparent lumi-
nosity, or its angular diameter. Errors in these val-
ues, with their normal distribution, provide relation
(4). In general, we get a certain combination of rela-
tions (3) and (4).

I do not use this more general option. Relations
(3) and (4) are quite enough for generating the mock
samples and the derivation of formulae. After all, the
purpose of our mathematical modeling is to demon-
strate the effects and their rough estimate, and is not
to obtain particularly accurate estimates, by account-
ing for all the nuances of real samples and methods
of their processing.

2.2. Least squares data processing

I use the standard least squares method (LSM) for-
mulae when processing mock samples data. LSM pro-
vides the optimal proportional relation 𝑉 = 𝐴𝑅 be-
tween the 𝑉𝑖 and 𝑅𝑖 for the sample. If the statistical
weights of the data points are the same, then the slope
coefficient can be found by the formula

𝐴 =

∑︀𝑁
𝑖=1 𝑉𝑖𝑅𝑖∑︀𝑁
𝑖=1 𝑅

2
𝑖

. (5)

However, its slope coefficient would be equal to 𝐴 =
= 𝑘𝐻 instead of 𝐻 in (1). The factor 𝑘 characterizes
the deviation of the values of the Hubble parameter
and the Hubble constant obtained from the true ones.

All odd plain central moments for the Gaussian dis-
tribution are zeroed. The mean values of 𝑝𝑛𝑖 are equal
to (𝑛 − 1)!!, if 𝑛 is even. Here, (𝑛 − 1)!! denotes the
double factorial, i.e., the product of all odd numbers
from 𝑛 − 1 to 1. The theoretical mean value of 𝑘 for
noises (2) and (3) is easy to estimate as follows:

𝑘 =
⟨𝐴⟩
𝐻

=

⟨∑︀
(𝐻𝑟𝑖 + 𝛿𝑉 𝑠𝑖)𝑟𝑖(1 + 𝑎𝑝𝑖))

𝐻
∑︀

𝑟2𝑖 (1 + 𝑎𝑝𝑖)2

⟩
≈

≈ ⟨
∑︀

𝑟2𝑖 (1 + 𝑎𝑝𝑖)⟩
⟨
∑︀

𝑟2𝑖 (1 + 𝑎𝑝𝑖)2⟩
=

1

1 + 𝑎2
. (6)

Here, the angle brackets mean the averaging over the
quantities 𝑠𝑖 and 𝑝𝑖. The average value of the numera-
tor is

∑︀
𝐻𝑟2𝑖 . The average value of the denominator is

(1+𝑎2)
∑︀

𝐻𝑟2𝑖 . The average ratio slightly differs from
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the ratio of these average values due to the correla-
tion between the terms with 𝑝𝑖 in the numerator and
denominator. But, for small 𝑎, this can be neglected.

Equation (5) provides the ratio of the series for
noise (4)

𝑘 =

⟨∑︀
(𝐻𝑟𝑖 + 𝛿𝑉 𝑠𝑖)𝑟𝑖(1− 𝑎𝑝𝑖)

−1

𝐻
∑︀

𝑟2𝑖 (1− 𝑎𝑝𝑖)−2

⟩
≈

≈ 1 + 𝑎2 + 3𝑎4 + 15𝑎6 + ...

1 + 3𝑎2 + 15𝑎4 + 105𝑎6 + ...
≤ 1. (7)

The numerator and the denominator contain the sum
of two divergent series (11), and there are problems
when applying formula (5). This fact does not prevent
us from using (5) to process mock samples.

This result is nothing new [3]. It is known that,
when using LSM for the fitting by a linear regression,
the errors in the velocities, i.e., in the ordinates of
data points, lead to a scatter of the obtained values
of the slope angle, but not to a bias. On the con-
trary, the errors in the distance estimates, i.e., in the
abscissas of data points, lead to a systematic underes-
timation of this angle. In the considered case,choise
the underestimation is determined only by the pa-
rameter 𝑎. We have an estimate for the mean value
of the coefficient 𝑘 = 0.96 for 𝑎 = 0.2 and 𝑘 = 0.92
for 𝑎 = 0.3. Note that this bias does not disappear at
a large sample size.

2.3. Demonstration of the effect
with the use of Monte Carlo simulations.
Data and routine

It seems to me that the direct demonstration of the
effect is more convincing than theoretical estimates,
especially if the latter are not particularly simple. So,
I use the Monte Carlo (MC) method to demonstrate
this effect and to clarify some important details.

I process 1000 mock samples. I do not use any real
observational data, but I take ranges of distances
close to the real sample for galaxies from the Flat
Galaxies Catalogue (FGC) [10] and the Revised Flat
Galaxies Catalogue (RFGC) [11]. I provide the re-
sults for the values of the parameters close to those
obtained when processing the real data, but I carry
out calculations also for different parameter values,
varying them within reasonable limits. In all cases,
the effects remain the same qualitatively.

Mock samples are generated as follows. The values
of 𝑣𝑖 were determined according to formula (1), cor-
responding to a preselected set of distances 𝑟𝑖. Then

Fig. 1. 𝑉𝑖 and 𝑅𝑖 data for one of the mock samples. The
initial points 𝑣𝑖(𝑟𝑖) lie on the thick straight line. The straight
dashed line drawn by the LSM passes through the origin

1000 random sets of 𝑉𝑖 and 𝑅𝑖 were obtained from
them, calculated by Eqs. (2) and (3) or (4). I used
the values 𝑎 = 0.2 and 𝛿𝑉 = 1000 km · s−1 as a main
choice. For details on how these parameters were ob-
tained, see [15]. The values of the coefficient 𝑘 and its
root-mean-square error Δ𝑘 are determined using the
LSM formulae for each of these mock samples. In all
cases, the average value of 𝑘 is 0.962 in accordance
with (6).

To show the results obtained, I use a dataset of
1402 galaxies located at a distance of 30ℎ−1 Mpc to
100ℎ−1 Mpc. Two galaxies are located at each dis-
tance interval of 0.1ℎ−1 Mpc. Their Hubble velocities,
calculated by (1), lie in the range from 3000 km · s−1

to 10000 km · s−1. Naturally, such a set has nothing
to do with the real distribution of distances to galax-
ies. The impact of this distribution is discussed in
Sec. 3.4. In the meantime, we are talking only about
demonstrating the effect.

2.4. Demonstration of the effect
with the use of Monte Carlo
simulations. Results

Figure 1 shows one of the mock samples 𝑉𝑖(𝑅𝑖) ob-
tained by adding a noise to this original dataset. It
also shows a thick straight line, on which the initial
points 𝑣𝑖(𝑟𝑖) lie, and a straight dashed line drawn
by the least squares method passes through the ori-
gin. The reason for underestimating the coefficient 𝑘
due to the abscissa changing is, in particular, the cir-
cled group of points on the right edge of the graph. In
Fig. 1, we see a specific group of points for one of
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Fig. 2. Histogram distribution of the 𝑘 parameter values for
1000 mock samples

the mock samples. But, for almost any mock sam-
ple, there is a similar group lying to the right of the
straight line describing the Hubble law, which can
be confused with outliers. The reason for this is dis-
cussed in Sec. 3.1 and shown in Fig. 3.

The slope was determined by formula (5), from
which the 𝑘 values for each mock sample were de-
termined. The distribution of 𝑘 values over different
mock samples is close to the normal one. It is shown
in Fig. 2. They were less than 1 for all 1000 mock
samples, and the mean value of the Hubble con-
stant was underestimated by about 4%. The values
of the LSM errors of 𝑘 are obtained in all cases us-
ing the standard LSM formula. Their typical value is
Δ𝑘 ≈ 0.1%. Thus, when processing any of mock sam-
ples, the underestimation of the value of the Hubble
constant significantly exceeded the nominal error of
this value, obtained using the standard data process-
ing procedure.

Smaller average values of 𝑘 were obtained when
using a noise of form (4). For 𝑎 = 0.1, MC simulations
provide the value ⟨𝑘⟩ = 0.98; ⟨𝑘⟩ = 0.956 for 𝑎 = 0.15,
⟨𝑘⟩ = 0.91 for 𝑎 = 0.2, ⟨𝑘⟩ = 0.80 for 𝑎 = 0.25, and
⟨𝑘⟩ = 0.58 for 𝑎 = 0.3. In this case, the impact of the
effect under consideration increased.

Is it possible to obtain a more adequate result
when processing, having an estimate of the values 𝑎
and 𝛿𝑉 ? Let us try the maximum likelihood estima-
tion (MLE). The formulae for calculating the slope
of a straight line passing through the origin and fit-
ting the 𝑉𝑖, 𝑅𝑖 sample are derived in Sec. 7.2. The
MLE at reasonable values of 𝑎 gives results even
more deviating from the true ones than those ob-

tained from the LSM. Using condition (17) for pro-
cessing the mock sample shown in Fig. 1, one can get
𝑘 = 0.93. This sample was generated using (2) and
(3) with 𝑎 = 0.2. Equation (19) provides the value
𝑘 = 0.88 for the mock sample prepared using (2) and
(4) with 𝑎 = 0.2. So, MLE has no advantages over
LSM in this case.

Therefore, in what follows, I will use only LSM for
the data processing and add a noise in accordance
with (3). More sophisticated methods of determina-
tion of the parameter and more accurate treatments
of the measurement error and noise sources will only
complicate the presentation. Qualitative conclusions
about effects are independent of these details.

3. Overestimation of the Hubble
Constant for Subsamples with a Limitation
on the Distances to Galaxies

3.1. An impact of data selection when
limiting the range of the distance indicator

Astronomers, by processing real observational data,
can get some 𝑉 (𝑅) dependence similar to that shown
in Fig. 1. They may have a rather natural idea to pro-
cess not the entire sample, but its subsample obtained
by limiting the range of 𝑅 variations from above or
below, i.e., a subsample with 𝑅 > 𝑅min, 𝑅 < 𝑅max or
𝑅min < 𝑅 < 𝑅max. They have many reasons to do so.

At small distances, the Hubble velocities do not
exceed the velocities of random peculiar motions; it
makes sense to exclude the influence of the Local
Group, not to mention the natural limitation 𝑅 > 0,
which can be violated, although very rarely, by the
noise of type (3) at large random deviations 𝑝𝑖. At
the far end of the sample, there is an influence of
the incompleteness of the sample or its asymmetry,
in particular, due to the difference in observations in
the two celestial hemispheres.

An astronomer dealing with the sample shown in
Fig. 1 may decide to discard the data correspond-
ing to the group of points surrounded by a dotted
oval. One of the possible options is to process a sub-
sample with 𝑅max = 120ℎ−1 Mpc.

However, by limiting the range of variations of the
distance indicator 𝑅, one introduces some data se-
lection into the subsamples. This leads to a statisti-
cal effect similar to the well-known Malmquist bias
[12, 13].The influence of selection effects related to
this has been examined in [14]. What is the mech-
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anism of this selection? It is not difficult to illus-
trate it. Consider a subsample with upper-bounded
distance indicators 𝑅𝑖 < 𝑅max and a subsample in
which a similar constraint is applied to the true dis-
tances 𝑟𝑖 < 𝑅max. In the latter, the slope of the de-
pendence 𝑣(𝑟) is, by definition, equal to the Hubble
parameter; when passing to the dependence 𝑉 (𝑅), it
is determined from (5).

The line in Fig. 3 corresponds to the Hubble law
𝑣 = 𝐻𝑟. It contains the sample points 𝑣𝑖, 𝑟𝑖 indi-
cated by circles. Distance limits are shown with ver-
tical dashed lines. The sample 𝑉𝑖, 𝑅𝑖 is plotted on the
same graph. Adding noise (3) shifts circles to the right
or left, and noise (2) up or down. This corresponds to
the arrows in Fig. 3. The squares show the positions
of points with coordinates 𝑣𝑖, 𝑅𝑖, i.e., the averaged
positions of the sample points 𝑉𝑖, 𝑅𝑖.

If we consider two subsamples bounded by two ver-
tical lines and fill, in black, the symbols of the points
that fall there, then black circles will fall into the sub-
sample with 𝑅min < 𝑟 < 𝑅max, and the subsample
with 𝑅min < 𝑅 < 𝑅max will get values shifted ran-
domly up or down relative to the black squares. This
is the effect of non-Hubble motions. White circles and
squares will be excluded from the corresponding sub-
samples. From Fig. 3, it is easy to see how the centers
of the possible locations of the sample points 𝑉𝑖, 𝑅𝑖

are placed relative to the straight line.
Thus, the subsample with 𝑅𝑖 < 𝑅max includes

some black squares obtained by shifting the white
circles that are missing in the 𝑟𝑖 < 𝑅max subsam-
ple, these are points with 𝑅𝑖 < 𝑅max < 𝑟𝑖. When
adding the noise according to formula (3), they shift
to the left in Fig. 3. A noise like (2) shifts their posi-
tions up or down, but they are, on the average, above
the straight line representing the Hubble law (1). In
addition, some black circles that are present in the
𝑟𝑖 < 𝑅max subset are discarded. They are shifted to
the right so that 𝑟𝑖 < 𝑅max < 𝑅𝑖 and, on the average,
would be below the straight line.

So, in comparison with the sample 𝑟𝑖 < 𝑅max, the
sample 𝑅𝑖 < 𝑅max has additional points above the
line 𝑣 = 𝐻𝑟 and a number of points below it are
excluded from the subsample. Therefore, the slope of
the straight line approximating the points of this sub-
sample is increased in comparison with the slope of
the full sample (5). This is the effect of the selection,
and it is caused by the statistical nature of distance
indicators described by formula (3).

V

r, RRmin Rmax

Fig. 3. Explanation of the data selection mechanism caused
by cropping the range of variation of the indicator of distances
to galaxies

It is easy to show from a similar reasoning that set-
ting the lower limit of the distance indicators 𝑅 also
leads to some selection. However, in this case, the ad-
ditional points are located mainly under the line, and
the discarded points are above it. In addition, in ac-
cordance with (3), the horizontal shifts near the lower
boundary are significantly less than near the upper
boundary; this weakens the influence of the selection
due to the establishment of the lower boundary.

3.2. Monte Carlo
simulations. Data and routine

I use the Monte Carlo simulations to produce a lot of
𝑅𝑖 and 𝑉𝑖 sets and then cut off all data outside the
preselected limits of the distance indicator to obtain
mock subsamples. After processing them by LSM, I
get a set of the coefficients 𝑘 according to (5) and cal-
culate their mean value. This value is determined not
only by the original sample, but also by the bound-
aries of the subsample.

What is it for? Each set of random deviations
𝑝𝑖, 𝑠𝑖 gives a random mock sample. After the cutting
from above and below, we get a set of mock subsam-
ples. The values of 𝑘 calculated for these subsamples
are described by a distribution close to the normal
one. It is characterized by its mean value ⟨𝑘⟩ and
the standard deviation 𝜎. According to the central
limit theorem, the mean value of 𝑘 obtained from 𝑁
subsamples is ⟨𝑘⟩, and its root-mean-square deviation
from the mean is close to 𝜎𝑁−1/2. The error calcu-
lated by the LSM drops to zero with an increase in
𝑁 and can become significantly less than the devia-
tion from the true value 𝑘 = 1. This could lead to a
significant overestimation of the accuracy of the value
obtained by the LSM, in particular, the value of the
Hubble constant.

Naturally, we are primarily interested in the value
of ⟨𝑘⟩. It depends on a number of parameters, primar-
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Fig. 4. Dependence of ⟨𝑘⟩ on 𝑅max at fixed 𝑅min. The lines
(from top to bottom) correspond to 𝑅min = 20, 30, 40, 50, 60,
70, 80, 90, and 100ℎ−1 Mpc

Fig. 5. Dependence of ⟨𝑘⟩ on 𝑅min at fixed 𝑅max. The lines
(from bottom to top) correspond to 𝑅max = ∞, 120, 110, 100,
90, 80, 70, 60, and 50ℎ−1 Mpc

ily 𝑎. Obviously, for 𝑎 → 0, we have ⟨𝑘⟩ → 1. The de-
viation from ⟨𝑘⟩ = 1 monotonically increases with the
growth of the parameter 𝑎. The value of ⟨𝑘⟩ slightly
depends on the distribution of the initial distances
𝑟𝑖. We will discuss this issue a little further, when we
consider the distribution of distances to galaxies in a
realistic sample and the effect of its incompleteness.

In addition, the value of ⟨𝑘⟩ is affected by details
of generating the subsample such as the presence or
absence of the clipping at the top and bottom and
the position of the boundaries of these clippings. I use
the Monte Carlo method to study this dependence. It

is much simpler and intuitive than complex analytic
calculations.

The simplest initial sample is used: 991 galaxies
with distances forming an arithmetic progression with
an interval of 0.1ℎ−1 Mpc. The distance to the most
distant galaxy is 𝑟max = 100ℎ−1 Mpc, to the nearest
one is 𝑟min = 0.01𝑟max = 1ℎ−1 Mpc. In Figs. 4 and
5, the lower border lies slightly to the right of the
ordinate axis, and the upper one is indicated on it by
a vertical dashed line.

I have added random variations to the initial data
using (1–3) with parameters 𝑎 = 0.2 and 𝛿𝑉 =
= 1000 km · s−1. The subsamples are formed by a
simple cropping of the same 1000 mock samples,
which excludes the possibility of influencing the result
by including or excluding some individual points.

3.3. Monte Carlo simulations. Results

Figures 4 and 5 show the ⟨𝑘⟩ dependence on 𝑅max

and 𝑅min values. Before discussing its details, I want
to emphasize that all points on them are obtained by
processing the different subsamples of the same mock
samples with the use of the LSM. Nevertheless, the
average 𝑘 values differ by ten percent or more. So,
processing the details is important.

Figure 4 shows the mean ⟨𝑘⟩ versus 𝑅max value for
subsamples with different fixed values of 𝑅min. The
lines correspond to the different 𝑅min values. The top
one corresponds to 𝑅min = 20ℎ−1 Mpc and almost
coincides with the line drawn for subsample with-
out the cut-off from the bottom. Then there are lines
with 𝑅min = 30ℎ−1 Mpc, 40ℎ−1 Mpc, 50 ℎ−1 Mpc,
60ℎ−1 Mpc, 70ℎ−1 Mpc, 80ℎ−1 Mpc, 90ℎ−1 Mpc,
and 100ℎ−1 Mpc. I discard the leftmost edges of
the curves corresponding to subsamples with a small
number of points by the reason of a slight difference
between 𝑅max and 𝑅min.

The right parts of curves reach plateaus. This is be-
cause of the effect of the selection associated with the
upper bound of the subsample disappears at 𝑅max ≫
≫ 𝑟max. The height of the plateau depends on 𝑅min,
increasing, as it decreases. At 𝑅min ≪ 𝑟min, the influ-
ence of the selection associated with the lower cutoff
limit disappears. In the absence of the selection as-
sociated with both cuts, we get ⟨𝑘⟩ = 0.96 in full
accordance with (6). This corresponds to the height
of the upper plateau. From Fig. 4, it can be seen that
the value ⟨𝑘⟩, obtained by the LSM, decreases mono-
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tonically with increasing either 𝑅max or 𝑅min. This
dependence is associated with an explanation of the
reason for the selection effect and follows from Fig 3.

The left edges of the curves correspond to values
at which the subsample still contains the minimum
reasonable number of data points.

For clarity, Fig. 5 shows ⟨𝑘⟩ as a function of 𝑅min

for subsamples with different fixed 𝑅max. The lines
from bottom to top correspond to the values 𝑅max =
= ∞, 120, 110, 100, 90, 80, 70, 60, 50ℎ−1 Mpc.

Let me recall you that the initial points be-
fore adding the noise corresponded to the distances
to galaxies from 𝑟min = 30ℎ−1 Mpc to 𝑟max =
= 100ℎ−1 Mpc. The lower limit lies to the left from
the curves in Fig. 4, and the upper one is indicated
on it by a vertical dashed line. The number of points
to the left of 𝑟min is insignificant, so it depends little
on 𝑅min < 𝑟min. Therefore, the lines in Fig. 4 cor-
responding to 𝑅min = 20ℎ−1 Mpc and no clipping
almost coincide and are represented by one upper
curve. The ⟨𝑘⟩ value decreases with increasing 𝑅min

and constant 𝑅max. This is caused by two reasons: a
decrease in the number of points far from the edges
and an increase in abscissa errors near the lower cutoff
edge due to (3).

As 𝑅max increases, the number of points increases
as well, and the average value increases both for this
reason and due to the influence of the above-described
effect caused by the upper bound. At 𝑅max ≫ 𝑟max,
the number of points included in the subsample de-
creases greatly with a further increase in 𝑅max, and
the curve reaches a plateau. Its value depends on
𝑅min and, from 𝑅min ≪ 𝑟min, tends to value (6).

Figures 4 and 6 show the results of LSM process-
ing of the subsamples obtained by cutting 𝑅max and
𝑅min. They also include some exotic variants with
a strange choice of these values, which are unlikely
to be used in the processing of real astronomical
data. I want to return to the question of the depen-
dence of ⟨𝑘⟩ on 𝑎 and consider a subsample with
reasonable boundaries 𝑅min = 30ℎ−1 Mpc, 𝑅max =
= 70ℎ−1 Mpc. The value 𝛿𝑉 = 1000 km · s−1 does
not change, and the initial 𝑟𝑖 set and other details
are the same as for the previous calculations in this
section. The plot of ⟨𝑘⟩ versus 𝑎 is shown in Fig. 6. It
can be seen from it that 𝑘 is overestimated by 2%
at 𝑎 = 0.1 and by 5% at 𝑎 = 0.16. Thus, the intro-
duction of the upper or/and lower bound significantly
changes the obtained mean value of 𝑘.

Fig. 6. Dependence of ⟨𝑘⟩ on 𝑎 for the subsample with 𝑅min =

= 30ℎ−1 Mpc, 𝑅max = 70ℎ−1 Mpc

Fig. 7. Histogram distribution of the 𝑘 parameter values for
1000 subsamples obtained from mock samples by the distance
limitation

In this case, the distribution of 𝑘 is also close to
the normal one as we can see in Fig. 7. Note that the
histogram is based on the results of simulations with
the same noise parameters, but for a different initial
dataset. It contains more than 21400 points modeling
galaxies evenly distributed from 𝑟min = 10ℎ−1 Mpc
to 𝑟max > 1080ℎ−1 Mpc. A subsample is chosen to
be sufficiently distant from these boundary values,
having 𝑅min = 50ℎ−1 Mpc = 5𝑟min and 𝑅max =
= 90ℎ−1 Mpc < 0.09𝑟max and containing over 800
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mock data. The exact number for each simulation is
determined by a set of random variables 𝑝𝑖 and ranges
from 776 to 892 for 1000 mock samples used to con-
struct Fig. 7. The scatter of values for different sub-
samples is greater than that for Fig. 2. However, they
are all not only greater than 1, but even greater than
1.07. The obtained distribution of values can be con-
sidered typical of the subsamples with the lower and
upper boundaries removed from the boundaries of the
original distribution over distances.

Monte Carlo calculations confirm that the selection
caused by the upper limit 𝑅max leads to the over-
estimating of 𝑘, while the selection associated with
the lower limit 𝑅min to its underestimation. The first
effect is superior to the second one with a reason-
able choice of cutoff boundaries for errors of form
(3). The impact of the data selection because of an
upper limit on the distance indicator to the galaxy
is several times greater than the effect previously de-
scribed in Secs. 2.2–2.4. Note that the source of both
is the use of statistical relations to obtain a galaxy
distance estimate independent of the redshift. The
standard deviation of the mean for a sample of 𝑁
objects decreases with increasing 𝑁 in proportion to
𝑁−1/2 and can become very small. But this average
is biased, and one deals with a classic example of an
estimation with high precision and low accuracy.

3.4. Influence of the distance
distribution of galaxies

In the previous simulations, I used the initial uni-
form distribution of galaxies over a certain interval
of distances. This is not valid for real samples. At
small distances, the number of galaxies falling within
the range of distances from 𝑟 to 𝑟 + 𝑑𝑟 is propor-
tional to 𝑟2, simply because they fall into the volume
4𝜋𝑟2𝑑𝑟. A number of far galaxies begins to decrease,
as the distances increase, due to the incompleteness
of the sample, which simply does not include very dis-
tant galaxies. Naturally, a similar dependence is ob-
served for the distribution of galaxies over the values
of the distance indicators 𝑅.

I want to discuss the impact of both these ef-
fects. They not only affect the effect caused by limit-
ing the sample from above, but also lead to the ap-
pearance of another type of errors associated with the
data selection.

If we restrict the subsample by the condition 𝑅 <
< 𝑅max, and if it has a high degree of completeness,

then, compared to the uniform initial distribution of
galaxies over distances, a large part of galaxies is lo-
cated near the upper boundary, and the influence of
the selection discussed in the section is intensified. It
is easy to verify this by applying the Monte Carlo
method to a sample of 2815 galaxies distributed with
a number proportional to 𝑟2. There are 36 galaxies
at a distance of 30 ℎ−1 Mpc, 49 galaxies at a dis-
tance of 35 ℎ−1 Mpc, and so on up to a distance
of 100 ℎ−1 Mpc, where 400 galaxies are located. A
random noise is added to this initial sample accord-
ing to (2) and (3). The resulting 1000 mock samples
are processed using the LSM formulae. The results
obtained are perfectly described by formula (4), as
expected. For 𝑎 = 0.2, the average value is 𝑘 = 0.96,
for 𝑎 = 0.25 𝑘 = 0.94 and, for 𝑎 = 0.3, 𝑘 = 0.92 on
the average.

But the mean values of 𝑘 obtained for subsamples
with 𝑅max = 80ℎ−1 Mpc turn out to be slightly larger
than with the initial uniform distribution. For 𝑎 =
= 0.15 on the average, 𝑘 = 1.08; for 𝑎 = 0.2, 𝑘 =
= 1.12; for 𝑎 = 0.25, 𝑘 = 1.16; and, for 𝑎 = 0.3 on
the average, 𝑘 = 1.19.

With an increase in 𝑅max, the influence of selec-
tion effects associated with the sample incomplete-
ness begins to take effect. As I mentioned in Sec-
tion 7.1, statistical dependences allow us to estimate
a certain quantity that does not depend on the dis-
tance to the galaxy, for example, its absolute lumi-
nosity or linear size. Then, the photometric distance
or angular distance is obtained from it and observable
quantities such as the apparent magnitude or angular
dimensions.

Since the dependences are statistical, the luminos-
ity or size of each individual galaxy deviates from
the average estimate. If they are larger or brighter,
then we underestimate the distance to the galaxy,
considering it closer than in reality. If it is weaker or
smaller in size, then we overestimate the distance. In
formula (3), this corresponds to negative and pos-
itive values of 𝑝𝑖, and, in Fig. 3, to left and right
shifts.

However, a brighter or larger galaxy is more likely
to get into the sample than a faint small galaxy. The-
refore, it should be expected that the number of
galaxies shifted to the right will exceed the number
of galaxies shifted to the left. The distribution of the
𝑝𝑖 values for the galaxies included in it will still be
random, but it will not only be different from Gaus-
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sian, but also have a nonzero mean. As a result, the
sample will include fewer galaxies lying above the line
𝑉 = 𝐻𝑅 and more ones lying below it. This will lead
to an additional underestimation of the value of 𝑘
obtained by processing the data with the use of the
LSM versus the complete sample. As one can see, this
selection acts in exactly the opposite way than the se-
lection associated with the consideration of subsam-
ples limited by distance. Note that both in deriving
(6) and in simulations, I did not consider the influence
of this effect in Sect. 3.1 assuming that a galaxy can
move in the 𝑉,𝑅 plane relative to its true position,
but not disappear from the sample.

4. Impact of Distance-Dependent
and Independent Errors

For completeness, I also performed similar simula-
tions with the distance estimation errors in the form

𝑅𝑖 = 𝑟𝑖 +Δ𝑅𝑝𝑖. (8)

In this case, the distribution of deviations in the es-
timation of the distance does not depend on this
distance, in contrast to the previously considered
errors of form (3) or (6). So, the effect associated
with the difference in the magnitudes of errors for
nearby and distant galaxies disappears. But this does
not mean that there is no difference between the ef-
fects of cutoffs at the upper bound of the subsam-
ple, described by 𝑅max, and at the lower, charac-
terized by 𝑅min. The reason is that we fit the data
with a relation in form (1), i.e., a line through
the origin. Naturally, the origin is nearer to a lower
border.

I applied the Monte Carlo method to the initial
dataset with data for 991 mock galaxies, which is sim-
ilar to the one used in the previous section and ap-
plied the noise to it 1000 times. I add random errors
of form (2) with the same value 𝛿𝑉 = 1000 km · s−1

and form (8) with different values of Δ𝑅. A bias also
exists in this case.

I do not show graphs similar to Fig. 4 or 5 and go
straight to the analog of Fig. 6, i.e., the dependences
of ⟨𝑘⟩ on Δ𝑅 for various cuttings of a noisy sam-
ple. In this Fig. 8, the solid lines depict three natural
choices of the values of 𝑅max and 𝑅min. These curves
are indicated by the numbers 9, 8, and 4. Curve 9 cor-
responds to the absence of any clipping. For it, from
(5) by a method similar to (6), it is easy to obtain

Fig. 8. Dependence of ⟨𝑘⟩ on Δ𝑅 with errors of distances in
form (8) for subsamples with different 𝑅min and 𝑅max. The
numbered curves 1–9 correspond to the following 𝑅min values:
0, 10, 20, 30, 30, 30, 30, 0 ℎ−1 Mpc and without cropping from
the bottom. The 𝑅max values are 70, 70, 70, 70, 85, 100, 120
ℎ−1 Mpc and two curves without cropping from the top

the theoretical estimate

𝑘 =
⟨𝐴⟩
𝐻

=

⟨∑︀
(𝐻𝑟𝑖 + 𝛿𝑉 𝑠𝑖)(𝑟𝑖 +Δ𝑅𝑝𝑖))

𝐻
∑︀

(𝑟𝑖 +Δ𝑅𝑝𝑖)2

⟩
≈

≈
(︂
1 +

Δ𝑅2

𝑈2

)︂−1

. (9)

Here, 𝑈2 = ⟨𝑟2𝑖 ⟩. For the initial sample, I used 𝑈 ≈
60ℎ−1 Mpc for MC simulations.

However, due to errors, there could be some galax-
ies with distance estimates 𝑅𝑖 < 0. It is hard to imag-
ine that they are not discarded during the process-
ing. Therefore, I also considered a subsample with
𝑅min = 0 without cutting from the top. It is easy
to understand that the obtained values of 𝑘 will be
larger for it than (9) due to the fact that points in
the region 𝑅 < 0 provide a negative contribution to
numerator (9) on the average. By discarding them,
we increase 𝑘 and decrease its deviation from 1. This
subsample corresponds to curve 8 in Fig. 8.

I use the bounds 𝑅min = 30ℎ−1 Mpc, 𝑅max =
= 70ℎ−1 Mpc, i.e, those that were used to calculate
the graph in Fig. 6, as the third natural choice (curve
4 in Fig. 8). One can see that, in this case, the devi-
ation of 𝑘 from 1 is significantly less than for the full
sample, for which it is well described by Eq. (9). This
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demonstrates that the influence of the data selection
is significant even for errors of type (8). Comparing
Fig. 8 and Fig. 6, one can see that errors of form (3)
lead to an overestimation of 𝑘, and those of form (8)
to its underestimation at the same subsample bounds.

Some additional lines are drawn in Fig. 8 to show
how the values of 𝑅max and 𝑅min affect 𝑘. The dashed
lines 1–3 correspond to different values of 𝑅max

with the same value of 𝑅min = 30ℎ−1 Mpc and
the lines 5–7 with longer dashes correspond to dif-
ferent values of 𝑅min ≥ 0 with the same value of
𝑅max = 70ℎ−1 Mpc. For curves 4, 3, 2, 1, 𝑅min =
= 30, 20, 10, 0 ℎ−1 Mpc. It can be seen that, with a
decrease in 𝑅min, the average 𝑘 increases, and the un-
derestimation is replaced by the overestimation. Li-
nes 4, 5, 6, 7 correspond to the upper bounds with
𝑅max = 70, 85, 100, 120 ℎ−1 Mpc, and the line for
a subsample without the upper distance limitation
(𝑅max = ∞) absent on the chart is slightly above
curve 9. It can be seen that an increase in 𝑅max leads
to an increase in the bias.

So, the bias is caused by a combination of three
effects, namely, the general underestimation (6) or
(9) and the influence of a selection when cutting off
at the upper and lower boundaries of the subsample,
the latter depends on 𝑅max and 𝑅min. The ratio of
them is different for errors (6) and (8).

I now compare the total bias for a reasonable choice
of boundaries. For (3) with 𝑎 = 0.2, the standard
deviation of the distances, i.e., a value similar to
Δ𝑅 in (8) for the sample with 𝑅min = 30ℎ−1 Mpc,
𝑅max = 70ℎ−1 Mpc varies from 6ℎ−1 Mpc at its lower
boundary to 14ℎ−1 Mpc at its upper boundary. The
bias is much less than 1% for curve 4 and ≤ 5% for
all curves in Fig. 8 for Δ𝑅 ≤ 14ℎ−1 Mpc. It can be
seen that the errors of form (3) provide a larger bias
and more often lead to an overestimation of the value
of 𝑘 than that of form (8).

This is an important detail that makes it possible
to quite successfully apply the LSM in the case where
the random error of the abscissa is constant. It is not
met in the case of determining the Hubble parameter
and the Hubble constant, when, as the distance to
the galaxy increases, so does the error in its determi-
nation.

5. Bias Correction

Naturally, astronomers usually do not process obser-
vational data using standard software packages. They

try to minimize a possible bias by corrections. They
account for the factors that directly affect the mea-
sured quantities such as the extinction or the aper-
ture of a telescope. The data are corrected to reduce
the influence of known physical effects. For example,
a change in the luminosity depending on the redshift
or the space-time curvature is considered. The influ-
ence of statistical factors is also taken into account,
for example, a correction for the Malquist bias.

The effect described in Sec. 2.2 can be corrected
by applying the so-called “correction for attenuation”
which would multiple 𝐴 by 1 + 𝑎2, assuming that 𝑎
is known. However, you need to know the error dis-
tribution and all its parameters for the effective bias-
correction. In real measurements, deviations are usu-
ally caused by several factors. In Section 2.1, I gave
an example of errors in estimating the distance from
the Tully–Fisher dependence in the “linear diameter –
the emission line-width” version, where errors of the
method itself, as well as errors of measurements of
the angular dimensions and line width, led to differ-
ent dependences of errors on the distance.

It is difficult to account for and compensate the
effect of a cut-off of the sample and its incomplete-
ness without knowing the distribution of objects in
the sample. So, we can correct the value of the de-
termined quantity rather ambiguously. They can be
affected during the processing.

A well-known example of such an influence is pro-
vided by experiments on measuring the charge of
an electron. R.A. Millikan was awarded the Nobel
Prize in Physics in 1923 “for his work on the ele-
mentary charge of electricity and on the photoelec-
tric effect”. This is how this phenomenon is described
in R. Feynman’s autobiographical book [7]: “One ex-
ample: Millikan measured the charge on an electron
by an experiment with falling oil drops, and got an
answer which we now know not to be quite right.
⟨...⟩ It is of interest to look at the history of measure-
ments of the charge of an electron, after Millikan. If
you plot them as a function of the time, you find
that one is a little bigger than Millikan’s value, and
the next one a little bit bigger than that, and the
next one a little bit bigger than that, until they settle
down to finally a number which is higher. ⟨...⟩ When
they got a number that was too high above Millikan’s
value, they thought something must be wrong, and
they would look for and find a reason why something
might be wrong. When they got a number closer to
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Millikan’s value, they didn’t look so hard. So, they
eliminated the numbers that were too far off, and did
other things like that.”

Note that the history of measuring the charge of
an electron is somewhat similar to the definition of
the Hubble constant in another aspect, too. A group
of researchers from the University of Vienna, headed
by F. Ehrenhaft, obtained the value of the electron
charge less than Millikan;s value, and, for a long
time, there was a kind of “electron’s charge tension”
in physics.

Thus, the correction can reduce, but not eliminate
the influence of the discussed effects, and its applica-
tion also can be a potential source of errors.

6. Discussion and Conclusions

Two points can be drawn based on the results of this
work. One is more general, and the second refers to
the Hubble tension. The first is associated with the
result of the data processing by any of the statistical
methods used, starting with the LSM. The simplest
simulations, which can be easily repeated by anyone,
show that there is a bias in defining the simple quan-
tities like the slope of a straight line running through
the origin. It is associated with the error in estimat-
ing the quantity used as the abscissa. In our example,
these are the distances to galaxies. The result is a bi-
ased estimation which can be quite precise for a large
sample, but not necessarily accurate.

The bias in the estimation of a slope cannot be
eliminated using more sophisticated statistical pro-
cessing methods such as MLE.

Naturally, one can try to estimate it and introduce
a correction for the bias into the resulting value, sim-
ilar to how a correction for the Malmquist bias is
introduced in some astronomical calculations. How-
ever, this is not easy to do. The bias is caused both
by a general underestimation of type (6) or (9) and
by the influence of the selection due to a truncation
of the sample or its incompleteness. The impact of
a cutoff is different for the upper and lower sample
boundaries. The total bias depends on the magnitude
and distribution of the errors and on the distribution
of both data points and errors over the abscissa. It
could lead either to the underestimation or overesti-
mation of the obtained slope, as can be seen in spe-
cific examples using the Monte Carlo method. All this
greatly complicates the calculation of the correction

that would compensate the impact of the effect under
consideration.

These effects can significantly bias the value of the
Hubble parameter as the slope of the straight line
𝑣(𝑟) determined from the redshift and the estimated
distances to galaxies. The bias is quantitatively char-
acterized by the deviation of the parameter 𝑘 defined
as the ratio of the calculated value of the Hubble
parameter to the true one from 𝑘 = 1. The influ-
ence of the above-mentioned factors and some oth-
ers, the influence of which turned out to be insignif-
icant, is investigated both analytically and using the
Monte Carlo method. The value of the Hubble pa-
rameter and the Hubble constant obtained by LSM
are underestimated in accordance with formulae (6)
and (9). For typical precision distance indicators of
20%–30%, the effect is about 4%–8%. The error of
the Hubble parameter obtained by the least squares
formula is much less than the bias. The distribution
of the factor 𝑘 is close to the normal one. All 𝐻 val-
ues obtained by LSM are underestimated in all sets
of 1000 simulations each.

If the mock sample is additionally cut off from
above by the condition 𝑅𝑖 < 𝑅max or/and from be-
low by the condition 𝑅𝑖 > 𝑅min, this will lead to
an additional bias of the value of the Hubble param-
eter obtained by LSM. The reason for this effect is
explained in Sect. 3. The results of MC simulations
presented in Figs. 4, 5 and 8 show that the values of
𝑘 for subsamples obtained at different cutoffs of the
same sample may differ significantly. The impact of
the sample cutoff can not only exceed the influence
of the aforementioned underestimation, but also leads
to a general overestimation of the Hubble parame-
ter value by about 8% when using distance indicators
with an accuracy of 20%. Note that the impact of the
effect is highly dependent on the used model of the
distance indicator error.

It can be assumed that the indicated effects can
bias the value of the Hubble constant, determined by
processing the data of real observations. Therefore, to
check the adequacy of the processing methods applied
in each specific case, it is advisable to carry out the
modeling with the use of the Monte Carlo method by
adding a noise to the set of initially accurate data.

From a practical point of view, we are talking about
the following sequence of actions. When processing
the data, one of the measured values is considered as
a function of the rest of the measured values, con-
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sidered as arguments of this function, and the set of
parameters that we are calculating. Initially, the val-
ues and errors of all parameters are determined using
the conventional data processing. Then a mock sam-
ple is created. For this, the values of the arguments
are taken from the sample used. They coincide with
the measured values, after the necessary corrections
have been made, if any. The value of the quantity,
considered as a function, is calculated for each set of
these arguments using the formulae used in the pro-
cessing; the parameters obtained in the first stage are
applied.

Then the Monte Carlo method is used. The charac-
teristic values of the random deviations of the argu-
ments are selected in accordance with their errors. At
the final stage, the bias of the each parameter is esti-
mated. It is determined as the difference between the
parameters obtained at the final and first stages. If
necessary, one can try to correct the values of cal-
culated parameters taking into account the obtained
bias estimate.

The more specific conclusion is related to the Hub-
ble tension. Astronomers use a complex ladder of
distances, many steps of which are based on some sta-
tistical dependence. Errors associated with them ac-
cumulate as the number of steps increases. Therefore,
the values obtained using such distance estimates can
have a significant bias. In particular, estimates of the
Hubble constant may have a low accuracy in spite of
the high precision.

As I already mentioned, the difference between the
Hubble constants for the early and modern Universes
is 8% [22]. The overestimation of this value caused by
the effects discussed in the paper could be from 8%
to 12% for a reasonable choice of the boundaries of
the subsample. Thus, it is quite capable of explaining
the Hubble tension on the observed level.

The estimates obtained in this work using the Mon-
te Carlo method demonstrate that the effect caused
by a bias during the data processing can exceed the
difference in the estimates of the Hubble constant val-
ues for high- and low-𝑧 observations. Occam’s razor
principle suggests not looking for a more complex
explanation for a phenomenon that can still be ex-
plained by measurement and processing errors leading
to a bias of the Hubble constant. Especially in com-
parison with alternative ones, which imply a change
in the foundations of physics or the existence of fun-
damentally new entities in our Universe.

APPENDIX
7.1. Some mathematical
features of two types of errors
in estimating the distances to galaxies

Inverse transformations from 𝑅 to 𝑟 for (3) and (4) coincide
with transformations (4) and (3), respectively, with the replace-
ment 𝑟 ↔ 𝑅 and change of the sign of the 𝑎 parameter. The
last detail is absolutely unimportant because of the symmetry
of the Gaussian distribution of 𝑝𝑖. So, the distribution of 𝑅

values obtained at a fixed value of 𝑟 by formula (3) completely
coincides with the distribution of 𝑟 values obtained at a fixed
value of 𝑅 by formula (4). The same statement remains true
after the interchange of (3) and (4).

However, we use the values of 𝑟 and 𝑅 in an apparently
asymmetric manner when generating the mock samples. The
initial distribution of 𝑟 values is chosen in advance, so that
this value is fixed for each galaxy. We are interested in the
distribution of the 𝑅 values generated by formulae (3) and (4)
for a fixed 𝑟. Their properties are different in some details. Let
me point out these differences. The distribution of 𝑅 values
described by (3) is the normal one, and that described by (4)
is a non-Gaussian and asymmetric one.

Note that 𝑅 becomes negative for large deviations, namely,
for 𝑝 < −𝑝0 with 𝑝0 = |𝑎|−1 in (3) and for 𝑝 > 𝑝0 in (4). In
this case, this value turns to 0 for 𝑝 = −𝑝0 in (3), and becomes
infinitely large for 𝑝 = 𝑝0 in (4). This happens very rarely. For
𝑎 = 0.2, this corresponds to a deviation of 5𝜎 in a certain
direction and occurs with a probability of ∼3 × 10−7. It is
practically not realized when preparing 1000 mock samples. In
principle, such problems theoretically exist for any case of the
normal distribution, and, usually, deviations at the 5𝜎 level are
discussed only to show that they are not random. If this small
probability is realized during the mock sample generation, one
just needs to regenerate the sample.

It is easy to assume a distribution of errors that does not
allow negative values of 𝑅𝑖 and coincides with (3, 4) in the
first term of the expansion in the Taylor series in 𝑎. This is the
model with lognormal multiplicative errors

𝑅𝑖 = 𝑟𝑖 exp (𝑎𝑝𝑖). (10)

It is obvious that all the described types of a bias are also
typical of it. Since we are more interested in simple quanti-
tative estimates, there is no point in multiplying entities be-
yond necessity and considering this model additionally, be-
cause the qualitative conclusions have to remain the same when
using it.

However, even this theoretical possibility of generating the
very large 𝑅 values leads to unpleasant consequences. All mo-
ments of the distribution 𝑅 obtained for a fixed value of 𝑟

become infinitely large. I show this using the fact that, for the
Gaussian distribution, all odd plain central moments are equal
to 0 and the mean values of 𝑝𝑛𝑖 are equal to (𝑛−1)!!, if 𝑛 is even.

So, the average estimate of the distance to galaxies becomes
infinitely large after adding a noise of form (4), as well as higher
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powers of this quantity. Really, for given 𝑟𝑖, one have

⟨𝑅𝑖⟩ = 𝑟𝑖⟨(1− 𝑎𝑝𝑖)
−1⟩ = 𝑟𝑖⟨1 + 𝑎𝑝𝑖 + 𝑎2𝑝2𝑖 +

+ 𝑎3𝑝3𝑖 + 𝑎4𝑝4𝑖 + 𝑎5𝑝5𝑖 + 𝑎6𝑝6𝑖 + ...⟩ = 𝑟𝑖(1 + 𝑎2 +

+3𝑎4 + 15𝑎6 + ...) = 𝑟𝑖
∞∑︀

𝑛=0
(2𝑛− 1)!!𝑎2𝑛 = ∞,

⟨𝑅2
𝑖 ⟩=𝑟2𝑖 ⟨(1− 𝑎𝑝𝑖)

−2⟩=𝑟2𝑖 ⟨1 + 2𝑎𝑝𝑖 + 3𝑎2𝑝2𝑖 +

+4𝑎3𝑝3𝑖 + 5𝑎4𝑝4𝑖 + 6𝑎5𝑝5𝑖 + 7𝑎6𝑝6𝑖 + ...⟩ =

= 𝑟2𝑖 (1 + 3𝑎2 + 15𝑎4 + 105𝑎6 + ...) =

= 𝑟2𝑖

∞∑︀
𝑛=0

(2𝑛+ 1)!!𝑎2𝑛 = ∞,

(11)

etc. Here, the angle brackets mean the averaging over values
𝑝𝑖. Both of these series diverge. This is evident from the fact
that the ratio of two consecutive terms is equal to (2𝑛 − 1)𝑎2

and (2𝑛 + 1)𝑎2, respectively, and exceeds 1 for large 𝑛 and
nonzero 𝑎.

The same feature of the relation between 𝑅 and 𝑟 is man-
ifested in the case where we fix the value of 𝑅 and study the
distribution of the values of 𝑟. It is needed when using the max-
imum likelihood method. The probability density distribution
for (4) is easy to obtain:

𝑃 (𝑝𝑖) = (2𝜋)−1/2 exp

(︂
−
𝑝2𝑖
2

)︂
∝

∝ exp

(︂
−
(𝑅𝑖 − 𝑟𝑖)

2

2𝑎2𝑅2
𝑖

)︂
. (12)

It vanishes at 𝑟 → ∞ as it should. For relation (3), we get

𝑃 (𝑝𝑖) ∝ exp

(︂
−
(𝑅𝑖 − 𝑟𝑖)

2

2𝑎2𝑟2𝑖

)︂
−−−−→
𝑟𝑖→∞

exp

(︂
−

1

2𝑎2

)︂
. (13)

For the normal distribution of the random variable 𝑝𝑖, the prob-
ability density distribution for 𝑟𝑖 becomes constant as 𝑟𝑖 → ∞,
which excludes the possibility of its normalization.

7.2. Maximum likelihood data processing

The correct use of MLE is impossible for relation (3) because
of (13), and we have no choice but to use (4). If a galaxy is
located at a distance 𝜉 and has a Hubble velocity 𝜂, then the
probability of its observation with a velocity 𝑉𝑖 and an estimate
of the distance 𝑅𝑖 according to (2), (4) is equal to

𝑤(𝑅𝑖, 𝑉𝑖, 𝜉, 𝜂) =
1

2𝜋𝛿𝑉 𝑎𝑅𝑖
exp

(︂
−
𝑠2𝑖 + 𝑝2𝑖

2

)︂
∝

∝ exp

(︂
−
(𝑉𝑖 − 𝜂)2

2𝛿𝑉 2

)︂
exp

(︂
−
(𝑅𝑖 − 𝜉)2

2𝑎2𝑅2
𝑖

)︂
. (14)

Therefore, the probability of observing a galaxy with param-
eters 𝑉𝑖 and 𝑅𝑖, assuming that the true distance 𝜉 and the
Hubble velocity 𝜂 are related by 𝜂 = 𝐴𝜉, is proportional to

𝑃𝑖(𝑅𝑖, 𝑉𝑖, 𝐴) =

∞∫︁
0

𝑤(𝑅𝑖, 𝑉𝑖, 𝜉, 𝐴𝜉)𝑑𝜉 ∝

∝
∞∫︁
0

exp

(︂
−
(𝑉𝑖 −𝐴𝜉)2

2𝛿𝑉 2

)︂
exp

(︂
−
(𝑅𝑖 − 𝜉)2

2𝑎2𝑅2
𝑖

)︂
𝑑𝜉. (15)

The integrand decreases rapidly, as the distance from the sam-
pling points increases. So, this value is practically independent
of the integration limits, if they are far from the sampling
points. So, we can put −∞ as the lower limit of integration.

The total probability for a given sample of 𝑁 galaxies is

𝑃 (𝐴) =

𝑁∏︁
𝑖=1

𝑃𝑖(𝑅𝑖, 𝑉𝑖, 𝐴) ∝

∝
𝑁∏︁
𝑖=1

∞∫︁
−∞

exp

(︂
−
(𝑉𝑖 −𝐴𝜉)2

2𝛿𝑉 2
−

(𝑅𝑖 − 𝜉)2

2𝑎2𝑅2
𝑖

)︂
𝑑𝜉. (16)

According to MLE, the optimal slope of the straight line pass-
ing through the origin and fitting the dataset will correspond to
the value 𝐴 = 𝑘𝐻 at which value (16) is maximum. The corre-
sponding complex nonlinear equation for this quantity is easily
obtained after equating the derivative of ln(𝑃 ) with respect to
the parameter 𝐴 to zero:

𝑁∑︁
𝑖=1

∞∫︀
−∞

(𝑉𝑖 −𝐴𝜉)𝜉𝐹 (𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖)𝑑𝜉

∞∫︀
−∞

𝐹 (𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖)𝑑𝜉

= 0,

𝐹 (𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖) = exp

(︂
−
(𝑉𝑖 −𝐴𝜉)2

2𝛿𝑉 2
−

(𝑅𝑖 − 𝜉)2

2𝑎2𝑅2
𝑖

)︂
.

(17)

For small values of 𝑎 ≪ 1, one can estimate integrals (15)
using the steepest descent method and can obtain

𝑃𝑖(𝑅𝑖, 𝑉𝑖, 𝐴) ≈ (2𝜋)1/2𝑎𝑅𝑖 exp

(︂
−
(𝑉𝑖 −𝐴𝑅𝑖)

2

2𝛿𝑉 2

)︂
, (18)

and MLE gives the standard LSM formula. By expanding the
integrand from (15) into a series in powers of 𝜉 − 𝑅𝑖, one can
obtain corrections to this expression. However, this makes no
sense, since, for small 𝑎 ≪ 1, it is easier to use estimate (6),
and, for arbitrary 𝑎, the value of 𝐴 is easier to find numeri-
cally. In any case, it is necessary to have an estimate of the
accuracy of the distance indicators 𝑎 and the average peculiar
velocity of galaxies 𝛿𝑉 to obtain the Hubble constant.

One can try the following trick: to use the MLE with relation
(3), not paying attention to the value of the normalization con-
stant, which disappears after the differentiation of ln(𝑃 ). This
gives the condition

𝑁∑︁
𝑖=1

∞∫︀
−∞

(𝑉𝑖 −𝐴𝜉)𝐹1(𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖)𝑑𝜉

∞∫︀
−∞

𝜉−1𝐹1(𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖)𝑑𝜉

= 0,

𝐹1(𝜉, 𝐴, 𝑉𝑖, 𝑅𝑖) = exp

(︂
−
(𝑉𝑖 −𝐴𝜉)2

2𝛿𝑉 2
−

(𝑅𝑖 − 𝜉)2

2𝑎2𝜉2

)︂
.

(19)

Note that such incorrect techniques are often used in various
fields of physics and sometimes make it possible to obtain cor-
rect results. As an example, I mention the methods of work-
ing with divergent integrals used in field theory, including the
renormalization. However, in our case, this does not give any
improvement in the estimates, as can be seen from the results
of the Monte Carlo simulation.

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 11 969



S.L. Parnovsky

7.3. An impact of the large-scale
collective motion of galaxies

In the previous model, I neglect the effect of the large-scale
collective motion of galaxies. It is not only well known, but
also makes a significant contribution to the velocities of a pe-
culiar motions of individual galaxies. The radial component of
the velocity depends both on the distance to the galaxy and
on the direction toward it. The form of this dependence can
be quite complex and includes many terms, whose values and
statistical significances are determined when processing the ob-
servational data as it is done in papers [15,16]. By the way, the
influence of errors in determining the distance by the parame-
ters of the velocity field of collective motion was investigated in
[14]. Knowing this field, it is possible to determine the density
distribution of matter, including dark matter, in the area with
a radius of about 75ℎ−1 around us [19].

In this article, we are interested in the effect of errors in
estimating the distance to galaxies by the value of the Hubble
parameter. How might it be affected by the large-scale collec-
tive motion of galaxies? Look at Fig. 1. The best-fitting line
not crossing the origin for this data is a line with a non-zero
intercept and 𝑘 ≈ 0.69 because of an impact of errors in dis-
tance estimations. But I naturally approximate them with a
line passing through the origin in accordance with Hubble’s law
(1). If we add the radial component of the collective galaxy mo-
tio to (3)n, then it could play the role of an effective intercept,
especially for a strongly asymmetric sample.

Let us check this hypothesis using the example of the sim-
plest model of collective motion, in which all galaxies move as
a whole with a constant speed Δ𝑉 . For such bulk motion, we
have

𝑣𝑖 = 𝐻𝑟𝑖 +Δ𝑉 cos 𝜃𝑖, (20)

where 𝜃𝑖 is the angle between the apex of motion and the di-
rection to the 𝑖-th galaxy. The values of the angles were chosen
randomly, the values of Δ𝑉 = = 200 km · s−1, and 𝑎 = 0.2

were used.
Three components of the collective motion velocity vector

are usually determined when investigating a bulk motion. But,
in this toy model, we define only one component of it toward
the chosen direction. But even such a simple model helps one
to find out whether the collective motion of galaxies influences
the value of the Hubble constant obtained by processing the
data on their velocities.

One thousand mock samples were prepared with the same
errors (2) and (3) as in the previous case, but using (20) instead
of (1). For each of them, the values and errors of 𝐻 and Δ𝑉

were obtained within LSM. We are primarily interested in the
Hubble constant value. It remained at the level of 95–97% of
the original. It is seen that the complication of the model of
galaxy motion did not affect the effect.

Now, I introduce some anisotropy into the spatial distri-
bution of galaxies. To do this, I shifted the values of cos 𝜃 by
adding 0.01 to each value. If the obtained value of cos 𝜃 exceeds
1, I determine that cos 𝜃 = 1. This does not affect the obtained

value of the Hubble constant. Even after shifting these values
by 0.1, i.e., significantly, it remains the same. Thus, the collec-
tive motion of galaxies, neither by itself nor together with the
sample anisotropy, affects the effect under consideration.
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ВIДХИЛЕННЯ ВIД ВЕЛИЧИНИ
СТАЛОЇ ХАББЛА, ВИКЛИКАНЕ ПОМИЛКАМИ
В ОЦIНКАХ ВIДСТАНЕЙ ДО ГАЛАКТИК

Обговорюється вiдхилення величин параметра Хаббла та
сталої Хаббла, визначених за даними астрономiчних спо-
стережень у сучасному Всесвiтi. Воно спричинене статисти-
чною обробкою масиву даних про червонi зсуви галактик та

вiдповiднi вiдстанi до них, котрi отриманi за деякими ста-
тистичними спiввiдношеннями з обмеженою точнiстю. Це
призводить до ряду ефектiв, деякi з яких занижують, а
деякi завищують параметр Хаббла при використаннi будь-
яких методiв статистичної обробки, зокрема методу най-
менших квадратiв (МНК). Отримане значення занижується
при обробцi повної вибiрки, але якщо обробляються данi з
пiдвиборок, в яких вiдстанi до галактик обмеженi (особливо
обмеженi зверху), то величина сталої Хаббла значно зави-
щується через селекцiю даних. Зсув може значно перевищу-
вати величину похибки сталої Хаббла, обчисленої за фор-
мулами МНК. Цi ефекти продемонстровано як аналiтично,
так i у симуляцiях за методом Монте-Карло, де до вихi-
дного набору даних, що описується законом Хаббла, дода-
ються випадковi вiдхилення як у швидкостi галактик, так i
в оцiнцi вiдстаней до них. Характеристики таких вiдхилень
подiбнi до реально спостережуваних. Вiдхилення в оцiнках
вiдстаней можуть сягати 20%. Цi вiдхилення призводять до
того, що при обробцi однакових даних за МНК можна отри-
мати оцiнку сталої Хаббла вiд 96% її справжнього значення
при обробцi повної вибiрки до 110% при опрацюваннi пiд-
вибiрки з вiдстанями, обмеженими зверху. Вплив цих ефе-
ктiв може призвести до статистично значущого змiщення
сталої Хаббла, отриманої у реальних спостереженнях, та
до невiрної оцiнки точностi її визначення. Врахування мо-
жливого вiдхилення може значно зменшити суперечнiсть
мiж значеннями сталої Хаббла, отриманими для раннього
та сучасного Всесвiту, яка активно обговорювалася протя-
гом останнього року.

Ключ о в i с л о в а: космологiя, космологiчнi параметри,
варiацiя сталої Хаббла, статистичний метод.
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