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RELATIONSHIP BETWEEN
THE PARAMETERS OF THE SECOND VIRIAL
COEFFICIENT OF NON-ABELIAN ANYONS
ANDTHE TWO-PARAMETRIC FRACTIONAL STATISTICS

A relationship between the parameters of the second virial coefficient for the system of non-
Abelian anyons and two-parametric modifications of the Haldane–Wu and Polychronakos
fractional statistics has been demonstrated. Parameters that can approximately describe non-
Abelian anyons using the indicated statistics types are calculated. The limit at which the non-
additivity/incompleteness parameter 𝑞 tends to unity is considered.

K e yw o r d s: virial coefficient, non-Abelian anyons, non-additive/incomplete two-parametric
statistics, Haldane–Wu fractional statistics, Polychronakos fractional statistics.

1. Introduction

In 1977, Leinaas and Myrheim proved that the con-
ventional classification of particles into bosons and
fermions is not applicable in the two-dimensional
space [1]. Frank Wilczek has proposed to call such
particles as anyons, because, during the permuta-
tion of two particles, the phase of the wave function
can change by an arbitrary factor, not only 0 or 𝜋
[2]. Mathematically, such a statistics corresponds to
the braid group rather than the permutation one.

Anyons are used when describing the fractional
quantum Hall effect observed in two-dimensional elec-
tron systems at low temperatures and in strong mag-
netic fields [3–6]. On the basis of anyons, a topo-
logical quantum computer was proposed to be con-
structed. Because of its topological nature, it has to
be much more tolerant to the interference and errors,
than the “ordinary” quantum computer [7, 8]. Note
that there is some experimental evidence for the ex-
istence of excitations corresponding to anyons [9–11].

Particular attention should be paid to the follow-
ing example. As far back as in 2016, a collabora-
tion of physicists proposed the theoretical descrip-
tion of an anyon collider [24]. Already in April 2020,
a group of French scientists experimentally proved
the existence of such particles [25]. The relevant
study demonstrated the fractional Abelian statistics
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in the quantum Hall effect mode at the filling fac-
tor 𝜈 = 1/3. It was done by measuring the corre-
lation current characteristics that emerge as a re-
sult of collisions between the anyons at the beam
splitting.

But anyons are not the most exotic kind of par-
ticles. In 1991, Gregory Moore and Nicholas Read
proposed a new type of particle called nonabelions
[12]. The non-Abelian statistics means that if we have
some identical particles, then the permutations in var-
ious pairs do not necessarily commute with one an-
other. This event can occur, when the permutation of
two particles changes not only the phase factor, but
also the wave function of the state in general. In prin-
ciple, such situations are quite realizable in the braid
group [13]: from the viewpoint of physics, it is only
necessary that the ground state of the quasiparticle
system has to be degenerate, rather than single.

There is the evidence of that just such an exotic sit-
uation is realized in a quite specific system – an elec-
tron liquid in the fractional quantum Hall effect mode
with a filling factor of 5/2. In 2005, it was shown
experimentally that elementary excitations have the
fractional charge 𝑒/4 at this filling factor value [14],
as well as the charge 𝑒/2 [15].

Interest in such interferometric experiments [16]
has grown in recent years, which is associated with
a possibility to construct a quantum computer that
would operate by manipulating non-Abelian quasi-
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particles. The work of a quantum computer can be
described by a unitary transformation, whereas, in
the topological quantum computer, it consists of ma-
trices describing the “braiding” of quasiparticles.

In this paper, a relationship between the parame-
ters of the second virial coefficient of the system of
non-Abelian anyons and various types of fractional
statistics is found. The obtained results can be used
for the efficient development of thermodynamics for
non-Abelian anyons that would be consistent with
other, mathematically simpler statistics.

2. Non-Abelian Anyons

Non-Abelian anyons that are studied in this work are
non-Abelian Chern–Simons (NACS) particles. These
are point-like particles interacting by means of the
non-Abelian topological Aaronov–Bohm effect. They
carry non-Abelian charges and non-Abelian mag-
netic fluxes. As a result, they acquire fractional spins
and obey the braid statistics, similarly to Abelian
anyons [17].

The thermodynamic properties of the lowest Lan-
dau level were studied for non-Abelian anyons in a
strong magnetic field, and it was shown that the
corresponding virial coefficients do not depend on
the statistical parameters [18]. As compared with the
Abelian case, the thermodynamics of a system of free
non-Abelian anyons is much more difficult to study,
because all available results were obtained for the
boundary conditions corresponding to the hard-core
model [19]. At the same time, in the case of non-
Abelian anyons with a soft core, there are no exact
results even for the second virial coefficient. Accor-
dingly, we can only approximately calculate the ther-
modynamics of a system of non-Abelian anyons. In
work [17], a relationship between the second virial
coefficient for non-Abelian anyons and various hard-
core parameters was demonstrated. In this work, we
consider the hard-core case.

The Hamiltonian of free NACS particles looks
like [17]

𝐻𝑁 = −
𝑁∑︁

𝛼=1

1

𝜇𝛼
(∇𝑧𝛼∇𝑧𝛼 +∇𝑧𝛼∇𝑧𝛼),

∇𝑧𝛼 =
𝜕

𝜕𝑧𝛼
+

1

2𝜋𝜅

𝑁∑︁
𝛽 ̸=𝛼

�̂�𝑎
𝛼�̂�

𝑎
𝛽

1

𝑧𝛼 − 𝑧𝛽
,

∇𝑧𝛼 =
𝜕

𝜕𝑧𝛼
,

(2.1)

where the subscript 𝛼 = 1, ..., 𝑁 enumerates the par-
ticles, whereas 𝑧𝛼 = 𝑥𝛼 + 𝑖𝑦𝛼 and 𝑧𝛼 = 𝑥𝛼 − 𝑖𝑦𝛼 are
their spatial coordinates. The parameter of the the-
ory 𝜅 is such that 4𝜋𝜅 is an integer number. The op-
erators �̂�𝑎 are the so-called isovectors in the isospin
𝑙 representation; by their nature, they are angular
momentum operators. The 𝑙-values are quantized and
vary within the set of all integer and semiinteger num-
bers, with 𝑙 = 1/2 being the minimum possible non-
trivial value (the value 𝑙 = 0 corresponds to a sys-
tem of free bosons) [17]. Then, in whole, the virial
coefficients depend on the magnitude of the isospin
𝑙 quantum number and the parameter 𝜅.

The statistical mechanics of NACS particles can be
studied by introducing the grand partition function Ξ
determined in terms of the Hamiltonian 𝐻𝑁 for 𝑁 -
particle partition functions 𝑍𝑁 and the fugacity 𝑧:

Ξ =

∞∑︁
𝑁=0

𝑧𝑁𝑍𝑁 =

∞∑︁
𝑁=0

𝑧𝑁Tr𝑒−𝛽𝐻𝑁 . (2.2)

Note the validity of the following cluster expansion:

Ξ = exp

{︃
𝐴

∞∑︁
𝑛=0

ℬ𝑛𝑧
𝑛

}︃
, (2.3)

where 𝐴 is the gas area (of course, this is an equivalent
of the volume 𝑉 in the three-dimensional problem),
and ℬ𝑛 are cluster integrals of the 𝑛-th order. In par-
ticular,

ℬ1 =
1

𝐴
𝑍1, ℬ2 =

1

𝐴

{︂
𝑍2 −

𝑍2
1

2

}︂
. (2.4)

The virial expansion of the equation of state in the
powers of the density 𝜌 = 𝑁/𝐴 brings about

𝑝 = 𝜌𝑇
[︀
1 + 𝑏2(𝜌𝜆

2
𝑇 ) + 𝑏3(𝜌𝜆

2
𝑇 )

2 + ...
]︀
, (2.5)

where

𝜆𝑇 =

√︂
2𝜋~2
𝑚𝑇

, (2.6)

is the de Broglie wavelength of the particle with the
mass 𝑚, and 𝑏𝑛 are dimensionless virial coefficients
of the 𝑛-th order. The second virial coefficient looks
like

𝑏2 = −ℬ2

ℬ2
1

= 𝐴

{︂
1

2
− 𝑍2

𝑍2
1

}︂
. (2.7)
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Let us take the expression for the second virial co-
efficient from work [17], in which the calculation pro-
cedure of 𝑏2 was shown in detail:

𝑏2(𝜅, 𝑙) = − 1

4(2𝑙 + 1)

[︃
1 +

1

(2𝑙 + 1)

2𝑙∑︁
𝑗=0

(2𝑗 + 1)×

×
{︁(︀
1 + (−1)𝑗+2𝑙

)︀
(𝛾2

𝑗 − 2𝛾𝑗)+

+
(︀
1− (−1)𝑗+2𝑙

)︀
[(𝛾𝑗 + 1) mod 2− 1]2

}︁]︃
. (2.8)

Here, 𝑙 is the isospin, and the parameters 𝛾𝑗 and 𝜔𝑗

satisfy the following relations:

𝛾𝑗 = 𝜔𝑗 mod 2,

𝜔𝑗 =
1

4𝜋𝜅
[𝑗(𝑗 + 1)− 2𝑙(𝑙 + 1)].

(2.9)

In Figure, the dependence of the second virial co-
efficient of non-Abelian anyons on the parameters 𝑘
and 𝑙 is illustrated. It should be noted that although
the indicated parameters vary within the set of in-
teger and semiinteger values, respectively, in order
to improve the visual perception, the points on the
graph belonging to specific values of the parameters
𝑘 and 𝑙 were connected.

3. Two-Parametric Fractional Statistics

From the expression for the occupation numbers, we
can determine cluster integrals, in terms of which
the virial coefficients are expressed. The distribution
function is related to the cluster integrals as follows:

𝑁

𝐴
=

1

𝐴

∑︁
𝑗

𝐺𝑗𝑛𝑗 =

∞∑︁
ℓ=1

ℓℬℓ𝑧
ℓ, (3.1)

where 𝐺𝑗 is the degeneracy of the 𝑗-th energy level
𝜀𝑗 , and 𝑧 is the fugacity.

Let us consider free particles in a two-dimensional
space and change in expression (3.1) from the summ-
mation over 𝑗 to the integration over the energy with
the density of states [26]

𝑔(𝜀) =
𝐴𝑚

2𝜋~2
(3.2)

Then we expand the obtained result in a power series
in 𝑧.

Let us analyze a few two-parametric statistical
models for anyons [20].

3.1. Polychronakos statistics

In the Polychronakos statistics, the average occupa-
tion numbers equal

𝑛P
𝑗 =

1

𝑧−1𝑋(𝜀𝑗) + 𝛾
, (3.3)

where 𝑋(𝜀𝑗) = 𝑒𝜀𝑗/𝑇 , and 𝛾 = −𝛾′ is a statistical
parameter.

3.1.1. Incomplete Polychronakos statistics

By modifying the ordinary Polychronakos statistics
so that 𝑋(𝜀𝑗) = 𝑒𝑞𝜀𝑗/𝑇 , where 𝑞 is the deformation
parameter, a two-parametric dependence can be ob-
tained. This modification is called the incomplete Po-
lychronakos statistics. In this case, the second virial
coefficient takes the form

𝑏IPS
2 = −𝛾

4
𝑞. (3.4)

3.1.2. Non-additive Polychronakos statistics

Let us modify the ordinary Polychronakos statistics
by means of the Tsallis 𝑞-exponent [21],

𝑒𝑥𝑞 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(𝑥), if 𝑞 = 1,

[1 + (1− 𝑞)𝑥]1/(1−𝑞), if 𝑞 ̸= 1 and
1 + (1− 𝑞)𝑥 > 0,

01/(1−𝑞), if 𝑞 ̸= 1 and
1 + (1− 𝑞)𝑥 ≤ 0.

Depending on the non-additivity parameter 𝑞, the
last option can be rewritten as follows:

01/(1−𝑞) =

⎧⎨⎩0, if 𝑞 < 1,

∞, if 𝑞 > 1.

Dependence of the second virial coefficient of non-Abelian
anyons on the parameters 𝑙 and 𝑘
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Table 1. Calculated values of the parameters 𝑞 of the fractional
statistics for various anyonic 𝑘 and 𝑙. For every value of the parameter 𝑙,
the left column corresponds to 𝑞IPS = 𝑞IHWS, and the right one to 𝑞NAPS = 𝑞NAHWS

𝑘 𝑙 = 1/2 𝑙 = 1 𝑙 = 3/2 𝑙 = 2

1 1.0000 1.0000 89.000 45.478 136.000 68.986 1753.0 877.50
2 0.2500 0.4215 13.000 7.3807 31,000 16.443 397.00 199.50
3 0.3333 0.5000 9.8889 5.7973 12.667 7.2116 158.33 80.154
4 0.4375 0.5897 5.0000 3.2656 6.6250 4.1171 101.00 51.481
5 0.5200 0.6562 3.8800 2.6673 4.0000 2.7322 89.000 45.478

10 0.7300 0.8136 2.1200 1.6880 1.0000 1.0000 19.400 10.614
20 0.8575 0.9034 1.4800 1.3064 0.6250 0.7367 3.4000 2.4064
50 0.9412 0.9605 1.1728 1.1132 0.7600 0.8351 1.6720 1.4234

100 0.9703 0.9801 1.0832 1.0550 0.8650 0.9085 1.2880 1.1867
1000 0.9970 0.9980 1.0080 1.0054 0.9852 0.9901 1,0245 1.0163

Table 2. Parameters 𝛾 and 𝑔

are coupled with the isospin 𝑙

𝑙 𝛾IPS = 𝛾NAPS 𝑔IHWS = 𝑔NAHWS

1/2 1/2 3/8
1 1/3 5/12

3/2 1/4 7/16
2 1/5 9/20

A detailed description of the 𝑞-exponent was also
given in works [22, 23]. The definitions for 𝑞 ̸= 1
are often combined using the notation [𝑢]+ ≡
≡ max(0, 𝑢) [22].

In this case, if 𝑋(𝜀𝑗) = 𝑒
𝜀𝑗/𝑇
𝑞 , we obtain the

non-additive Polychronakos statistics. Then the sec-
ond virial coefficient can be obtained in the following
form:
𝑏NAPS
2 = −𝛾

4

2𝑞2

1 + 𝑞
. (3.5)

3.2. Haldane–Wu statistics

The average occupation numbers in this statistics are
as follows:
𝑛HW
𝑗 =

1

𝑤 (𝑧−1𝑋(𝜀𝑗)) + 𝑔
, (3.6)

where 𝑋(𝜀𝑗) = 𝑒𝜀𝑗/𝑇 , 𝑔 is the parameter of statis-
tical interaction, and the function 𝑤(𝑥) satisfies the
transcendental equation

𝑤𝑔(𝑥) [1 + 𝑤(𝑥)]
1−𝑔

= 𝑥. (3.7)

In the case 𝑔 = 0, the solution of this equation is
𝑤(𝑥) = 𝑥 − 1, i.e. the Bose distribution. If 𝑔 = 1,
we obtain 𝑤(𝑥) = 𝑥, i.e. the Fermi distribution. In
the limit of large argument values for the function
𝑤(𝑥), the expression for the occupation numbers can
be rewritten in the form

𝑛HW
𝑗 =

1

𝑤(𝑥) + 𝑔
=

1

𝑒(𝜀𝑗−𝜇)/𝑇 + (2𝑔 − 1)
. (3.8)

3.2.1. Incomplete Haldane–Wu statistics

For the incomplete Haldane–Wu statistics, in the as-
sumption that 𝑋(𝜀𝑗) = 𝑒𝑞𝜀𝑗/𝑇 , the second virial co-
efficient looks like

𝑏IHWS
2 =

2𝑔 − 1

4
𝑞. (3.9)

3.2.2. Non-additive Haldane–Wu statistics

In the non-additive Haldane–Wu statistics with
𝑋(𝜀𝑗) = 𝑒

𝜀𝑗/𝑇
𝑞 , the second virial coefficient depends

on the non-additive parameter as follows:

𝑏NAHWS
2 =

2𝑔 − 1

4

2𝑞2

(1 + 𝑞)
. (3.10)

4. Results

By equating the corresponding factors in the expres-
sions for the second viral coefficient of non-Abelian
anyons (2.8) and the model systems (3.4), (3.5), (3.9),
and (3.10), we can obtain a relationship for the pa-
rameters of a fractional statistics in the case where
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the given statistics makes it possible to describe non-
Abelian anyons.

The factor 𝛾/4 or (2𝑔−1)/4 is convenient to equate
to 1

4(2𝑙+1) , because this expression is the main term
in the expansion, i.e. the parameters 𝛾 and 𝑔 are cou-
pled with the isospin 𝑙. Accordingly, the parameters 𝑞
will be expressed in terms of the parameters 𝑙 and 𝜅.

The obtained results are summarized in Table 1. To
avoid cumbersomeness, some constant parameters are
given in Table 2.

Note that the calculation of 𝛾𝑗 = 𝜔𝑗 mod 2 is
not defined well for fractional and negative numbers.
Therefore, the following calculation method was used
in this work:

𝛾𝑗 = 𝜔𝑗 mod 2 =

= (⌊𝜔𝑗⌋ mod 2) + (𝜔𝑗 − ⌊𝜔𝑗⌋),

where the notation ⌊𝑥⌋ means the largest integer not
exceeding 𝑥.

Note also that if the values of the parameter 𝑘
are large, the second factor in the expression for the
second virial coefficient (2.8) has to approach unity,
like the parameter of statistics incompleteness (non-
additivity) 𝑞, which can be seen from Table 1.

As an example, let us consider the non-additive
Haldane–Wu statistics. At large 𝑘-values, the value
of 𝜔𝑗 is small, as well as the value of 𝛾𝑗 . Therefore,
the quantity 𝑞 can be represented as 𝑞 ≈ 1+Δ𝑞, and

2𝑞2

1 + 𝑞
=

2(1 + Δ𝑞)2

1 + (1 + Δ𝑞)
≃ 2(1 + 2Δ𝑞)

2 + Δ𝑞
=

=
2(1 + 2Δ𝑞)

2(1 + Δ𝑞
2 )

≃ 2(1 + 2Δ𝑞)
1

2

(︂
1− Δ𝑞

2

)︂
≃

≃ 1 + 2Δ𝑞 − Δ𝑞

2
→ 1.

Let us take into account that, in the limit of large
𝜅, the values of 𝜔𝑗 and 𝛾𝑗 are small. Therefore, in this
limit, the expression for Δ𝑞 in terms of the parame-
ters 𝜅 and 𝑙 can be simplified to the form

3

2
Δ𝑞 =

1

4𝜋𝜅(2𝑙 + 1)

2𝑙∑︁
𝑗=0

(2𝑗 + 1)×

× [2𝑙(𝑙 + 1)− 𝑗(𝑗 + 1)]
(︀
1 + (−1)𝑗+2𝑙

)︀
. (4.1)

5. Conclusions

In this work, the relationship between the parameters
of the second virial coefficient of non-Abelian anyons,
on the one hand, and the two-parametric incomplete
and non-additive modifications of the Haldane–Wu
and Polychronacos statistics is demonstrated. The
expressions connecting the parameters of those frac-
tional statistics with the parameters of non-Abelian
anyons on the basis of the second virial coefficient
are obtained. Numerical values of the parameters at
which non-Abelian anyons can be approximately de-
scribed with the use of the fractional statistics of the
indicated types are calculated.

Note that the two-parametric statistics can be used
to model non-Abelian anyons with a soft core. The
corresponding analytic expressions will be very cum-
bersome, and the relationships between the parame-
ters can be found only numerically.

This work was partially sponsored in the frame-
work of the project FF-83F (state registration
No. 0119U002203) of the Ministry of Education and
Science of Ukraine.

1. J.M. Leinaas, J. Myrheim. On the theory of identical par-
ticles. Nuovo Cimento 37B, 1 (1977).

2. F. Wilczek. Quantum mechanics of fractional-spin parti-
cles. Phys. Rev. Lett. 49, 957 (1982).

3. B.I. Halperin. Statistics of quasiparticles and the hierarchy
of fractional quantized Hall states. Phys. Rev. Lett. 52,
1583 (1984).

4. D. Arovas, J.R. Schrieffer, F. Wilczek. Fractional statis-
tics and the quantum Hall effect. Phys. Rev. Lett. 53, 722
(1984).

5. A.E.B. Nielsen. Anyon braiding in semianalytical fractional
quantum Hall lattice models. Phys. Rev. B 91, 041106
(2015).

6. E. Shech. Two approaches to fractional statistics in the
quantum Hall effect: Idealizations and the curious case of
the anyon. Found. Phys. 45, 1063 (2015).

7. A.Yu. Kitaev. Fault-tolerant quantum computation by
anyons. Ann. Phys. 303, 2 (2003).

8. V. Lahtinen, J.K. Pachos. A short introduction to topolog-
ical quantum computation. SciPost Phys. 3, 021 (2017).

9. F.E. Camino, W. Zhou, V.J. Goldman. Realization of a
Laughlin quasiparticle interferometer: Observation of frac-
tional statistics. Phys. Rev. B 72, 075342 (2005).

10. C. Weeks, G. Rosenberg, B. Seradjeh, M. Franz. Anyons in
a weakly interacting system. Nature Phys. 3, 797 (2007).

11. T. Keilmann, S. Lanzmich, I. McCulloch, M. Roncaglia.
Statistically induced phase transitions and anyons in 1D
optical lattices. Nature Commun. 2, 361 (2011).

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 7 599



B.Yu. Sobko

12. G. Moore, N. Read. Nonabelions in the fractional quantum
Hall effect. Nucl. Phys. B 360 362 (1991).

13. L. Jacak, P. Sitko, K. Wieczorek, A. Wójs. Quantum Hall
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Translated from Ukrainian by O.I. Voitenko

Б.Собко

ЗВ’ЯЗОК ПАРАМЕТРIВ ДРУГОГО
ВIРIАЛЬНОГО КОЕФIЦIЄНТА НЕАБЕЛЕВИХ
ЕНIОНIВ З ДВОПАРАМЕТРИЧНИМИ
ДРОБОВИМИ СТАТИСТИКАМИ

У цiй роботi показано зв’язок мiж параметрами друго-
го вiрiального коефiцiєнта для системи неабелевих енiо-
нiв та двопараметричними модифiкацiями дробових стати-
стик Голдейна–Ву та Полiхронакоса. Розраховано параме-
три, для яких неабелевi енiони можуть описуватись даними
типами статистик. Розглянуто границю, в якiй параметр
неадитивностi/неповноти 𝑞 прямує до одиницi.

Ключ о в i с л о в а: вiрiальний коефiцiєнт, неабелевi енiо-
ни, неадитивна/неповна двопараметрична статистика, дро-
бова статистика Голдейна–Ву, дробова статистика Полi-
хронакоса.
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