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COUPLED NONLINEAR DYNAMICS
IN THE THREE-MODE INTEGRABLE
SYSTEM ON A REGULAR CHAIN

The article suggests the nonlinear lattice system of three dynamical subsystems coupled both in
their potential and kinetic parts. Due to its essentially multicomponent structure the system
is capable to model nonlinear dynamical excitations on regular quasi-one-dimensional lattices
of various physical origins. The system admits a clear Hamiltonian formulation with the stan-
dard Poisson structure. The alternative Lagrangian formulation of system’s dynamics is also
presented. The set of dynamical equations is integrable in the Lax sense, inasmuch as it pos-
sesses a zero-curvature representation. Though the relevant auxiliary linear problem involves
a spectral third-order operator, we have managed to develop an appropriate two-fold Darboux–
Bäcklund dressing technique allowing one to generate the nontrivial crop solution embracing
all three coupled subsystems in a rather unusual way.
K e yw o r d s: nonlinear theories and models, anharmonic lattice modes, integrable systems,
Lagrangian and Hamiltonian dynamics, Darboux–Bäcklund dressing method, symmetry and
conservation laws, nonlinear wave packet.

1. Introduction
More than sixty five years ago, the famous work done
by E. Fermi, J. Pasta, S. Ulam and M. Tsingou [1]
had established that “A one-dimensional dynamical
system of 64 particles with forces between neighbors
containing nonlinear terms...” demonstrates “...very
little, if any, tendency toward equipartition of energy
among the degrees of freedom”. This unexpected re-
sult (known as the Fermi–Pasta–Ulam paradox [2]
but rightly should be referred to as the Fermi–
Pasta–Ulam–Tsingou paradox) inspired an avalanche
of investigations concerning dynamical and stochas-
tic aspects of various physically motivated semidis-
crete (i.e. continuous in time and discrete in spa-
tial coordinate) systems characterized by the pro-
nounced nonlinear interactions between their struc-
tural elements.

The most significant among such researches were
the development of a one-dimensional lattice system
with the exponential nonlinearity by M. Toda [3, 4]
and the subsequent discovery of its complete integra-
bility by S.V. Manakov [5] and H. Flaschka [6]. The
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correct choice of boundary conditions preserving the
integrability of finite systems possessing integrable
infinite counterparts has been [7] and permanently
remains [8] the task of a considerable interest. The
same words can be said about the problem of non-
trivial interactions between the nonlinear wave pack-
ets of several distinct types [9] inevitably realizable
in semidiscrete nonlinear integrable systems.

From the practical point of view, the low-dimen-
sional semidiscrete integrable systems serve as the
good approximations in modeling the propagation
of soliton-like excitations through the imperfect lat-
tices [10, 11], as well as in an adequate description
of the Peierls–Nabarro potential relief stumbling the
motion of narrow-size solitons in real regular lattices
[12, 13]. Here, it is necessary to stress that the non-
integrable Davydov–Kyslukha model of solitary ex-
citons in one-dimensional molecular chains [14–16]
has been the main driving force in our efforts [17–
19] to search for its appropriate integrable twin. Mo-
reover, the concept of the Davydov–Kyslukha model
is still remained the core of investigations dealing
with the launching of solitons in protein 𝛼-helix
spines [20]. Among other non-integrable semidiscrete
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nonlinear models waiting for their proper integrable
analogs are the one-dimensional model of nonlinear
compression pulses in granular media [21–23] and the
model of nonlocal solitons in a nonlinear chain of
atoms [24].

In view of numerous challenging problems briefly
listed above, we decided to unravel some dynamical
intricacies of the three-mode integrable system on a
regular chain appearing as a new prospective reduc-
tion of the earlier suggested general integrable sys-
tem associated with a third-order auxiliary spectral
problem [25,26]. The present article reports the most
interesting results of this investigation.

2. Nonlinear Evolution Equations
for the First Prototype Integrable System

In the light of our early articles [25, 26], the general
form of a semidiscrete nonlinear system relevant to
our present task is given by the set of nonlinear evo-
lution equations

�̇�11(𝑛) = 𝐹12(𝑛)𝐺21(𝑛− 1)−𝐹12(𝑛+1)𝐺21(𝑛), (2.1)

�̇�13(𝑛) = 𝐹12(𝑛)𝐺23(𝑛− 1)−𝐹12(𝑛+1)𝐺23(𝑛), (2.2)

�̇�31(𝑛) = 𝐹32(𝑛)𝐺21(𝑛− 1)−𝐹32(𝑛+1)𝐺21(𝑛), (2.3)

�̇�33(𝑛) = 𝐹32(𝑛)𝐺23(𝑛− 1)−𝐹32(𝑛+1)𝐺23(𝑛), (2.4)

�̇�12(𝑛) = 𝑝11(𝑛)𝐹12(𝑛) + 𝑝13(𝑛)𝐹32(𝑛), (2.5)

�̇�21(𝑛) = −𝐺21(𝑛)𝑝11(𝑛)−𝐺23(𝑛)𝑝31(𝑛), (2.6)

�̇�23(𝑛) = −𝐺21(𝑛)𝑝13(𝑛)−𝐺23(𝑛)𝑝33(𝑛), (2.7)

�̇�32(𝑛) = 𝑝31(𝑛)𝐹12(𝑛) + 𝑝33(𝑛)𝐹32(𝑛). (2.8)

Here, the prototype field variables 𝑝11(𝑛), 𝑝13(𝑛),
𝑝31(𝑛), 𝑝33(𝑛) and 𝐹12(𝑛), 𝐺21(𝑛), 𝐺23(𝑛), 𝐹32(𝑛) are
functions of the discrete spatial coordinate 𝑛 (span-
ning the integers from minus to plus infinity) and the
continuous time 𝜏 . The over-dot stands for the deriva-
tive with respect to time. System (2.1)–(2.8) serves as
a prototype system for the variety of appropriately re-
duced dynamical systems, inasmuch only six its field
variables are proved to be truly independent.

System (2.1)–(2.8) permits the zero-curvature rep-
resentation

�̇�(𝑛|𝑧) = 𝐴(𝑛+ 1|𝑧)𝐿(𝑛|𝑧)− 𝐿(𝑛|𝑧)𝐴(𝑛|𝑧) (2.9)

with the spectral 𝐿(𝑛|𝑧) and evolution 𝐴(𝑛|𝑧) opera-
tors specified by the matrices

𝐿(𝑛|𝑧) =

=

⎛⎜⎝𝑝11(𝑛) + 𝜆(𝑧) 𝐹12(𝑛) 𝑝13(𝑛)

𝐺21(𝑛) 0 𝐺23(𝑛)

𝑝31(𝑛) 𝐹32(𝑛) 𝑝33(𝑛) + 𝜆(𝑧)

⎞⎟⎠, (2.10)

𝐴(𝑛|𝑧) =

=

⎛⎜⎝ 0 −𝐹12(𝑛) 0

−𝐺21(𝑛− 1) 𝜆(𝑧) −𝐺23(𝑛− 1)

0 −𝐹32(𝑛) 0

⎞⎟⎠. (2.11)

Therefore, it acquires the status of a system inte-
grable in the Lax sense [27, 28]. Here, both the func-
tional spectral parameter 𝜆(𝑧) and the rationalized
spectral parameter 𝑧 are assumed being time- and
coordinate-independent. Due to the simplest admis-
sible choice (2.11) of the evolution operator 𝐴(𝑛|𝑧),
system (2.1)–(2.8) should be referred to as the first
prototype nonlinear integrable system in an infinite
hierarchy generatible by the adopted spectral opera-
tor (2.10).

3. Generation of Local Conservation Laws

It is well known that any nonlinear integrable sys-
tem on an infinite regular chain possesses the infinite
number of local conservation laws. The most straight-
forward way to isolate some of them is based upon the
universal local conservation law

𝑑

𝑑𝜏
ln[det𝐿(𝑛|𝑧)] = Sp𝐴(𝑛+ 1|𝑧)− Sp𝐴(𝑛|𝑧) (3.1)

appearing as a simple contraction of system’s zero-
curvature representation (2.9).

Inasmuch as the determinant det𝐿(𝑛|𝑧) of the
spectral matrix 𝐿(𝑛|𝑧) depends on two distinct pow-
ers of the spectral parameter 𝜆(𝑧), and the expression
Sp𝐴(𝑛+1|𝑧)−Sp𝐴(𝑛|𝑧) is equal to zero, the universal
local conservation law (3.1) produces two unicellular
conservation laws imposing two natural constraints
onto the set of prototype field variables. The explicit
record of natural constraints depends on a particu-
lar choice of boundary conditions for the prototype
field variables and on an expected physical sense of re-
duced field variables. Assuming the underlying lattice
being spatially uniform and pinned to the immovable
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frame of reference, we take the natural constraints in
the following form:

𝐹12(𝑛)𝐺21(𝑛) + 𝐹32(𝑛)𝐺23(𝑛) = −1, (3.2)

𝑝11(𝑛)𝐹32(𝑛)𝐺23(𝑛)− 𝑝31(𝑛)𝐹12(𝑛)𝐺23(𝑛)+

+ 𝑝33(𝑛)𝐹12(𝑛)𝐺21(𝑛)− 𝑝13(𝑛)𝐹32(𝑛)𝐺21(𝑛) = 0.

(3.3)

These constraints (3.2) and (3.3) are consis-
tent with the following boundary conditions for
the prototype fields: lim𝑛→−∞ 𝐹12(𝑛) → 𝐹12,
lim𝑛→−∞ 𝐺21(𝑛) → 𝐺21, lim𝑛→−∞ 𝐺23(𝑛) → 𝐺23,
lim𝑛→−∞ 𝐹32(𝑛) → 𝐹32, lim𝑛→−∞ 𝑝11(𝑛) → 0,
lim𝑛→−∞ 𝑝13(𝑛) → 0, lim𝑛→−∞ 𝑝33(𝑛) → 0,
lim𝑛→−∞ 𝑝31(𝑛) → 0. As a consequence, the limiting
eigenvalue problem

𝐿(𝑧)𝑋(𝑧) = 𝑋(𝑧)𝜁(𝑧) (3.4)

(with 𝐿(𝑧) = lim𝑛→−∞ 𝐿(𝑛|𝑧)) prescribes the func-
tional relationship 𝜆(𝑧) = 𝑧+1/𝑧 (establishing a par-
ticular realization of the Zhukovskiy transformation
[29, 30]) in view of very simple resulting expressions

𝜁1(𝑧) = 𝑧, (3.5)

𝜁2(𝑧) = 𝜆(𝑧) ≡ 𝑧 + 1/𝑧, (3.6)

𝜁3(𝑧) = 1/𝑧 (3.7)

for the eigenvalues 𝜁𝑗(𝑧).
The capability of the universal local conservation

law (3.1) in generating system’s local conservation
laws is seen to be restricted only by two specimens.

In contrast, there exists the generalized procedure
[18, 19, 31, 32] permitting to develop an infinite set of
local conservation laws recursively without references
to auxiliary spectral data. By definition, any local
conservation law associated with some semidiscrete
system given on an infinite quasi-one-dimensional lat-
tice can be written in the form

�̇�(𝑛) = 𝐽(𝑛|𝑛− 1)− 𝐽(𝑛+ 1|𝑛), (3.8)

where the quantities 𝜌(𝑛) and 𝐽(𝑛+1/2|𝑛− 1/2) are
referred to as the local density and the local current,
respectively. Bearing in mind this general definition
(3.8), we must find the recursive presentation (i.e.
presentation in powers of 𝑧 or 1/𝑧) for the auxiliary

quantities Γ𝑗𝑘(𝑛|𝑧) governed by the following set of
spatial Riccati equations:

Γ𝑗𝑘(𝑛+ 1|𝑧)
3∑︁

𝑖=1

𝐿𝑘𝑖(𝑛|𝑧)Γ𝑖𝑘(𝑛|𝑧) =

=

3∑︁
𝑖=1

𝐿𝑗𝑖(𝑛|𝑧)Γ𝑖𝑘(𝑛|𝑧) (3.9)

with the restrictions

Γ𝑗𝑖(𝑛|𝑧)Γ𝑖𝑘(𝑛|𝑧) = Γ𝑗𝑘(𝑛|𝑧) (3.10)

being taken into account. The obtained series should
be substituted into the collection of three (𝑗 = 1, 2, 3)
generating equations

𝑑

𝑑𝜏
ln𝑀𝑗𝑗(𝑛|𝑧) = 𝐵𝑗𝑗(𝑛+ 1|𝑧)−𝐵𝑗𝑗(𝑛|𝑧). (3.11)

Here, the composite functions

𝑀𝑗𝑗(𝑛|𝑧) =
3∑︁

𝑖=1

𝐿𝑗𝑖(𝑛|𝑧)Γ𝑖𝑗(𝑛|𝑧) (3.12)

and

𝐵𝑗𝑗(𝑛|𝑧) =
3∑︁

𝑖=1

𝐴𝑗𝑖(𝑛|𝑧)Γ𝑖𝑗(𝑛|𝑧) (3.13)

serve to generate the hierarchy of local densities and
the hierarchy of local currents, respectively. In so do-
ing, the quantities 𝐿𝑗𝑘(𝑛|𝑧) and 𝐴𝑗𝑘(𝑛|𝑧) denote the
matrix elements of the spectral 𝐿(𝑛|𝑧) and evolution
𝐴(𝑛|𝑧) operators, respectively. Collecting terms with
the same powers of the spectral parameter in each
of three (𝑗 = 1, 2, 3) generating series (3.11), it is
possible to recover any required number of local con-
servation laws from their infinite series.

The most productive is the second (𝑗 = 2) of the
generating series (3.11). To develop the second gen-
erating series, it is sufficient to consider two auxiliary
functions Γ12(𝑛|𝑧) and Γ32(𝑛|𝑧), since Γ𝑗𝑗(𝑛|𝑧) ≡ 1
in view of properties (3.10). Due to the evident sym-
metry 𝜆(𝑧) = 𝜆(1/𝑧) of the functional spectral pa-
rameter 𝜆(𝑧), we restrict ourselves only to serial ex-
pansions at the center |𝑧| → 0 of a rationalized com-
plex spectral plane and seek the auxiliary functions
Γ12(𝑛|𝑧) and Γ32(𝑛|𝑧) in the following way:

Γ12(𝑛|𝑧) = 𝑧

∞∑︁
𝑗=0

𝛾12(𝑛|𝑚)𝑧𝑚, (3.14)
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Γ32(𝑛|𝑧) = 𝑧

∞∑︁
𝑗=0

𝛾32(𝑛|𝑚)𝑧𝑚. (3.15)

Then, for the generating function ln𝑀22(𝑛|𝑧) written
up to the second power in the spectral parameter 𝑧,
we obtain

ln𝑀22(𝑛|𝑧) = ln 𝑧 − [𝑝11(𝑛) + 𝑝33(𝑛)]𝑧+

− [𝐺21(𝑛)𝐹12(𝑛+ 1) +𝐺23(𝑛)𝐹32(𝑛+ 1) + 1]𝑧2 +

+ [𝑝211(𝑛)/2 + 𝑝211(𝑛)/2 + 𝑝13(𝑛)𝑝31(𝑛)]𝑧
2. (3.16)

By virtue of the second generating equation (i.e.
Eq. (3.11) taken at 𝑗 = 2), the quantities

𝑝(𝑛) = 𝑝11(𝑛) + 𝑝33(𝑛) (3.17)

and

ℎ(𝑛) = 𝑝211(𝑛)/2 + 𝑝211(𝑛)/2 + 𝑝13(𝑛)𝑝31(𝑛)− 1−

−𝐺21(𝑛)𝐹12(𝑛+ 1)−𝐺23(𝑛)𝐹32(𝑛+ 1) (3.18)

acquire the status of local densities.
The comprehensive analysis shows that the former

(3.17) of these local densities should be identified with
the density of system’s momentum, whereas the latter
one (3.18) – with the density of system’s energy.

4. Lagrangian and Hamiltonian
Formulations of the Reduced Three-Mode
Nonlinear Integrable System

As we have already mentioned in Section 2, the nat-
ural constraints (3.2) and (3.3) are empowered to
reduce eight prototype field variables to six actual
ones. In so doing, the dynamics of the reduced sys-
tem will be governed by three nonlinear Lagrange
equations or, alternatively, by six nonlinear Hamil-
ton equations. The key idea to introduce appropriate
dynamical variables is to invent parametrization for-
mulas converting both of the natural constraints (3.2)
and (3.3) into identities. A particular realization of
such parametrizations is not unique [25,26]. Here, we
consider the following one:
√
2 𝐹12(𝑛) = +exp[+𝑞−(𝑛)]

√︀
1 + i𝑠(𝑛), (4.1)

√
2 𝐺21(𝑛) = − exp[−𝑞−(𝑛)]

√︀
1 + i𝑠(𝑛), (4.2)

√
2 𝐺23(𝑛) = − exp[−𝑞+(𝑛)]

√︀
1− i𝑠(𝑛), (4.3)

√
2 𝐹32(𝑛) = +exp[+𝑞+(𝑛)]

√︀
1− i𝑠(𝑛), (4.4)

𝑝11(𝑛) =
1

4
[ 𝑞−(𝑛)− 𝑞+(𝑛)][1 + 𝑠2(𝑛)] +

+
1

2
𝑞−(𝑛)[1 + i𝑠(𝑛)], (4.5)

𝑝13(𝑛) =
exp[ 𝑞−(𝑛)− 𝑞+(𝑛)]

4
√︀

1 + 𝑠2(𝑛)
×

×
{︁
𝑞+(𝑛)[1 + 𝑠2(𝑛)][1 + i𝑠(𝑛)] +

+ 𝑞−(𝑛)[1 + 𝑠2(𝑛)][1− i𝑠(𝑛)] + 2i𝑠(𝑛)
}︁
, (4.6)

𝑝31(𝑛) =
exp[ 𝑞+(𝑛)− 𝑞−(𝑛)]

4
√︀

1 + 𝑠2(𝑛)
×

×
{︁
𝑞−(𝑛)[1 + 𝑠2(𝑛)][1− i𝑠(𝑛)] +

+ 𝑞+(𝑛)[1 + 𝑠2(𝑛)][1 + i𝑠(𝑛)]− 2i𝑠(𝑛)
}︁
, (4.7)

𝑝33(𝑛)=
1

4
[𝑞+(𝑛)−𝑞−(𝑛)][1+𝑠2(𝑛)]+

1

2
𝑞+(𝑛)[1−i𝑠(𝑛)].

(4.8)

Though these parametrization formulas (4.1)–(4.8)
are distinguished by a rather uncommon struc-
ture, they admit the complex conjugate symmetries
𝑞−(𝑛) = 𝑞*+(𝑛) and 𝑞+(𝑛) = 𝑞*−(𝑛) between the field
variables 𝑞−(𝑛) and 𝑞+(𝑛) supplemented by the real-
ity 𝑠(𝑛) = 𝑠*(𝑛) of field variable 𝑠(𝑛).

By dint of the adopted parametrizations, the pro-
totype nonlinear evolution equations (2.1)–(2.8) pro-
vide the dynamics of an actual nonlinear dynamical
system to be governed by the set of Lagrange equa-
tions

𝑑

𝑑𝜏
[𝜕ℒ/𝜕𝑞+(𝑛)] = 𝜕ℒ/𝜕𝑞+(𝑛), (4.9)

𝑑

𝑑𝜏
[𝜕ℒ/𝜕�̇�(𝑛)] = 𝜕ℒ/𝜕𝑠(𝑛), (4.10)

𝑑

𝑑𝜏
[𝜕ℒ/𝜕𝑞−(𝑛)] = 𝜕ℒ/𝜕𝑞−(𝑛) (4.11)

with the Lagrange function given by the expression

ℒ =
1

4

∞∑︁
𝑚=−∞

[1− i𝑠(𝑚)]𝑞2+(𝑚)+

+
1

4

∞∑︁
𝑚=−∞

[1 + i𝑠(𝑚)]𝑞2−(𝑚) +

+
1

8

∞∑︁
𝑚=−∞

[1 + 𝑠2(𝑚)][𝑞+(𝑚)− 𝑞−(𝑚)]2 +
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+
1

4

∞∑︁
𝑚=−∞

�̇�2(𝑚)

1 + 𝑠2(𝑚)
−

− 1

2

∞∑︁
𝑚=−∞

exp
[︀
+𝑞+(𝑚+ 1)− 𝑞+(𝑚)

]︀
×

×
√︀

[1− i𝑠(𝑚+ 1)][1− i𝑠(𝑚)]−

− 1

2

∞∑︁
𝑚=−∞

exp
[︀
+𝑞−(𝑚+ 1)− 𝑞−(𝑚)

]︀
×

×
√︀
[1 + i𝑠(𝑚+ 1)][1 + i𝑠(𝑚)] +

∞∑︁
𝑚=−∞

1. (4.12)

On the other hand, the relevant Hamiltonian for-
mulation of the reduced nonlinear system in question
is based on the set of Hamilton equations

𝑞+(𝑛) = 𝜕ℋ/𝜕𝑝+(𝑛), (4.13)

�̇�(𝑛) = 𝜕ℋ/𝜕𝑟(𝑛), (4.14)

𝑞−(𝑛) = 𝜕ℋ/𝜕𝑝−(𝑛), (4.15)

�̇�+(𝑛) = −𝜕ℋ/𝜕𝑞+(𝑛), (4.16)

�̇�(𝑛) = −𝜕ℋ/𝜕𝑠(𝑛), (4.17)

�̇�−(𝑛) = −𝜕ℋ/𝜕𝑞−(𝑛) (4.18)

with the Hamilton function given by the expression

ℋ =
1

2

∞∑︁
𝑚=−∞

𝑝2+(𝑚)

1− i𝑠(𝑚)
+

1

2

∞∑︁
𝑚=−∞

𝑝2−(𝑚)

1 + i𝑠(𝑚)
+

+
1

4

∞∑︁
𝑚=−∞

[𝑝+(𝑚) + 𝑝−(𝑚)]2 +

+

∞∑︁
𝑚=−∞

[1 + 𝑠2(𝑚)]𝑟2(𝑚)+

+
1

2

∞∑︁
𝑚=−∞

exp
[︀
𝑞+(𝑚+ 1)− 𝑞+(𝑚)

]︀
×

×
√︀
[1− i𝑠(𝑚+ 1)][1− i𝑠(𝑚)] +

+
1

2

∞∑︁
𝑚=−∞

exp
[︀
𝑞−(𝑚+ 1)− 𝑞−(𝑚)

]︀
×

×
√︀

[1 + i𝑠(𝑚+ 1)][1 + i𝑠(𝑚)]−
∞∑︁

𝑚=−∞
1. (4.19)

The standard Hamiltonian form (4.13)–(4.18) of
above dynamical equations points out on the stan-
dardness of related fundamental Poisson brackets.

In either of its incarnations (4.9)–(4.12) or (4.13)–
(4.19), the reduced nonlinear dynamical system com-
prises three dynamical subsystems coupled both in
their kinetic and potential parts, and it can be refer-
red to as the integrable three-subsystem nonlinear lat-
tice model with the combined inter-mode couplings.

Thus, in the Hamiltonian formulation (4.13)–
(4.19), the two constituent subsystems are described
by the field variables 𝑝+(𝑛), 𝑞+(𝑛) and 𝑝−(𝑛),
𝑞−(𝑛). These subsystems can be treated as the sub-
systems of nonlinear vibrations related to the two
complementary sorts of structural elements of a quasi-
one-dimensional lattice. The subsystems of nonlin-
ear vibrations are seen to be the subsystems of the
complex-valued Toda-like type. In accordance with
the Hamiltonian representation, the field variables
𝑝+(𝑛) and 𝑝−(𝑛) should be considered as the mo-
mentum functions conjugate to the coordinate field
variables 𝑞+(𝑛) and 𝑞−(𝑛), respectively. As for the
field variables 𝑟(𝑛) and 𝑠(𝑛), they specify the inter-
mediate subsystem and have the meaning of its mo-
mentum and coordinate fields, respectively. The field
variables of this intermediate subsystem is seen to
be essentially mixed with the field variables of both
Toda-like subsystems serving as some gluing subsys-
tem between them. Following the terminology of solid
state physics [35], the discrete spatial coordinate 𝑛
serves to mark the ordinal position of a unit cell in a
regular quasi-one-dimensional lattice.

Evidently, the subdivision into three coupled sub-
systems can be properly reformulated also in the
case of system’s Lagrange representation (4.9)–(4.12),
inasmuch as the Hamiltonian and Lagrangian descrip-
tions are always related via the Legendre transforma-
tion [36].

5. Fundamentals of System’s Integration
by the Darboux–Bäcklund Dressing Scheme

Among the numerous general methods of searching
for the nontrivial solutions of integrable nonlinear
systems, the Darboux–Bäcklund dressing approach
seems to be the most simple and universal one. The
advantages of the Darboux–Bäcklund dressing tech-
nique are especially valuable for any system associ-
ated with an auxiliary spectral problem of the third
or more higher order. According to the Caudrey clas-
sification [33] (see also [25, 26]), our general nonlin-
ear system (2.1)–(2.8) is associated with the auxiliary
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spectral problem of the third order, inasmuch as the
relevant limiting eigenvalue problem (3.4) possesses
three distinct eigenvalues (3.5)–(3.7).

In this section, we formulate the key ideas allowing
to grasp the essence of the Darboux–Bäcklund dress-
ing scheme applicable to the integration of both the
prototype nonlinear system (2.1)–(2.8) in general and
the reduced nonlinear three-mode system (given by
formulas (4.9)–(4.12) or (4.13)–(4.19)) in particular.

To proceed with this task, let us start with the
general definition of Darboux transformation [34]:
𝑐𝑋(𝑛|𝑧) = 𝑐𝑠𝐷(𝑛|𝑧)𝑠𝑋(𝑛|𝑧). (5.1)

The Darboux transformation (5.1) connects the
seed (a priori known) 𝑠𝑋(𝑛|𝑧) and crop (required)
𝑐𝑋(𝑛|𝑧) solutions of the auxiliary linear problem

𝑋(𝑛+ 1|𝑧) = 𝐿(𝑛|𝑧)𝑋(𝑛|𝑧), (5.2)

�̇�(𝑛|𝑧) = 𝐴(𝑛|𝑧)𝑋(𝑛|𝑧) (5.3)

via the Darboux matrix 𝑐𝑠𝐷(𝑛|𝑧) which should be
properly chosen in accordance with the particular
realizations (2.10) and (2.11) of auxiliary spectral
𝐿(𝑛|𝑧) and evolution 𝐴(𝑛|𝑧) operators. To be appro-
priate, the Darboux matrix 𝑐𝑠𝐷(𝑛|𝑧) must obey the
set of matrix equations
𝑐𝑠𝐷(𝑛+ 1|𝑧)𝑠𝐿(𝑛|𝑧) = 𝑐𝐿(𝑛|𝑧)𝑐𝑠𝐷(𝑛|𝑧), (5.4)

𝑐𝑠�̇�(𝑛|𝑧) = 𝑐𝐴(𝑛|𝑧)𝑐𝑠𝐷(𝑛|𝑧)− 𝑐𝑠𝐷(𝑛|𝑧)𝑠𝐴(𝑛|𝑧) (5.5)

the first of which, (5.4), implements the implicit
Bäcklund transformation between the seed 𝑠𝑝11(𝑛),
𝑠𝑝13(𝑛), 𝑠𝑝31(𝑛), 𝑠𝑝33(𝑛), 𝑠𝐹12(𝑛), 𝑠𝐺21(𝑛), 𝑠𝐺23(𝑛),
𝑠𝐹32(𝑛), and crop 𝑐𝑝11(𝑛), 𝑐𝑝13(𝑛), 𝑐𝑝31(𝑛), 𝑐𝑝33(𝑛),
𝑐𝐹12(𝑛), 𝑐𝐺21(𝑛), 𝑐𝐺23(𝑛), 𝑐𝐹32(𝑛) solutions for the
prototype (and, consequently, for the actual dynam-
ical) fields. The second one (5.5) taken in its con-
tracted form
𝑑

𝑑𝜏
ln[det 𝑐𝑠𝐷(𝑛|𝑧)] = Sp 𝑐𝐴(𝑛|𝑧)− Sp 𝑠𝐴(𝑛|𝑧) (5.6)

allows us to uncover the crucial spectral properties
of the Darboux matrix sufficient to restore explic-
itly its components indispensable for the development
of the whole Darboux–Bäcklund dressing integration
scheme.

In our calculations, we have tested two diverse
forms of one-fold (𝑐 = 𝑠+1) ansätze for the Darboux
matrix expanded as the simplest truncated Taylor
series in the spectral parameter 𝜆(𝑧). Unfortunately,
both the ansatz with the leading powers reduplicating
those of the evolution matrix (2.11) and the extended
ansatz expanded akin to the spectral matrix (2.10)
are unable to generate nontrivial spatially finite so-
lutions (from the vacuum one) embracing all three
subsystems of the whole dynamical system (4.13)–
(4.19). However, the two-fold (𝑐 = 𝑠+ 2) ansatz

𝑐𝑠𝐷(𝑛|𝑧) =

⎛⎜⎝
𝑐𝑠𝐾11(𝑛)

𝑐𝑠𝐶12(𝑛)𝜆(𝑧) +
𝑐𝑠𝑇12(𝑛)

𝑐𝑠𝐾13(𝑛)

𝑐𝑠𝐸21(𝑛)𝜆(𝑧) +
𝑐𝑠𝑉21(𝑛) 𝜆2(𝑧) + 𝑐𝑠𝐷22(𝑛)𝜆(𝑧) +

𝑐𝑠𝑈22(𝑛)
𝑐𝑠𝐸23(𝑛)𝜆(𝑧) +

𝑐𝑠𝑉23(𝑛)
𝑐𝑠𝐾31(𝑛)

𝑐𝑠𝐶32(𝑛)𝜆(𝑧) +
𝑐𝑠𝑇32(𝑛)

𝑐𝑠𝐾33(𝑛)

⎞⎟⎠ (5.7)

turns out to be fruitful. It can be shown that this
ansatz (5.7) is consistent with the set of governing
matrix equations (5.4) and (5.5) for the Darboux ma-
trix 𝑐𝑠𝐷(𝑛|𝑧).

Then, in view of the identity

Sp 𝑐𝐴(𝑛|𝑧)− Sp 𝑠𝐴(𝑛|𝑧) ≡ 0, (5.8)

the contracted equation (5.6) yields

det 𝑐𝑠𝐷(𝑛|𝑧) =

= [𝜆(𝑧)− 𝜆(𝑐𝑠𝑧+)][𝜆(𝑧)− 𝜆(𝑐𝑠𝑧−)]
𝑐𝑠𝑊 (𝑛), (5.9)

where the quantity 𝑐𝑠𝑊(𝑛) and the spectral data 𝑐𝑠𝑧+,
𝑐𝑠𝑧− are proved to be time-independent 𝑐𝑠�̇� (𝑛) = 0,
𝑐𝑠�̇�+ = 0, 𝑐𝑠�̇�− = 0. Evidently, det 𝑐𝑠𝐷(𝑛| 𝑐𝑠𝑧±) = 0,
and, hence, the Darboux transformation (5.1) yields
det 𝑐𝑋(𝑛|,𝑐𝑠 𝑧±) = 0 implying that
3∑︁

𝑘=1

𝑐𝑋𝑗𝑘(𝑛|𝑐𝑠𝑧±) 𝑐𝑠𝜀𝑘(
𝑐𝑠𝑧±) = 0 (5.10)

or, in more details,
3∑︁

𝑖=1

3∑︁
𝑘=1

𝑐𝑠𝐷𝑗𝑖(𝑛|𝑐𝑠𝑧±) 𝑠𝑋𝑖𝑘(𝑛|𝑐𝑠𝑧±) 𝑐𝑠𝜀𝑘(𝑐𝑠𝑧±) = 0.

(5.11)
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Here, the functions 𝑐𝑠𝐷𝑗𝑖(𝑛|𝑧) and 𝑠𝑋𝑖𝑘(𝑛|𝑧) stand
for the elements of respective matrices 𝑐𝑠𝐷(𝑛|𝑧) and
𝑠𝑋(𝑛|𝑧), while the time- and space-independent pa-
rameters 𝑐𝑠𝜀𝑘(

𝑐𝑠𝑧±) serve as the spectral data. The
invariability of the spectral parameters 𝑐𝑠𝜀𝑘(

𝑐𝑠𝑧±) in
time and space has a status of a rigorously proved
theorem.

Insofar as some elements of the Darboux matrix
𝑐𝑠𝐷(𝑛|𝑧) are always a priori known, the obtained
formula (5.11) should be treated as the set of six
nonuniform linear equations to restore unknown el-
ements of the Darboux matrix. In so doing, the seed
solution 𝑠𝑋(𝑛|𝑧) to the auxiliary linear problem (5.2)
and (5.3) must be found beforehand. Once the neces-
sary elements of the Darboux matrix have been re-
stored, the proper equations taken among the im-
plicit Bäcklund transformation (5.4) allow us to ob-
tain explicit expressions for the prototype field func-
tions and, hence, to find out the respective solution
to the nonlinear dynamical system under study (4.9)–
(4.12) (see also (4.13)–(4.19)).

N.B. The integration of an integrable nonlinear dy-
namical system in the framework of the Darboux–
Bäcklund transformation approach should be treated
as a sort of inverse problem, inasmuch as its key idea

consists in inverting the auxiliary spectral data of
a purely linear problem into the solution of associ-
ated nonlinear dynamical equations. In this sense, the
Darboux–Bäcklund dressing technique is affined with
the method of inverse-scattering transform [6, 25, 26,
28, 33].

6. Explicit Solution
Generated by the Two-Fold
Darboux–Bäcklund Transformation

The parametrization formulas (4.1)–(4.8) for the pro-
totype field variables prompt us to restrict calcula-
tions concerning the solution to the reduced nonlin-
ear system (4.9)–(4.12) only by the expressions for
the coordinate field functions 𝑞+(𝑛), 𝑠(𝑛), 𝑞−(𝑛). To
put it differently, we must concentrate entirely on the
calculations of prototype functions 𝐹12(𝑛), 𝐺21(𝑛),
𝐺23(𝑛), 𝐹32(𝑛).

Following the two-fold Darboux–Bäklund integra-
tion scheme presented in the previous sections, we
have dressed the prototype seed solution 𝑠𝑝11(𝑛) = 0,
𝑠𝑝13(𝑛) = 0, 𝑠𝑝31(𝑛) = 0, 𝑠𝑝33(𝑛) = 0, 𝑠𝐹12(𝑛) =
= 0𝐹12, 𝑠𝐺21(𝑛) =

0𝐺21, 𝑠𝐺23(𝑛) =
0𝐺23, 𝑠𝐹32(𝑛) =

= 0𝐹32 to find the prototype crop functions 2𝐹12(𝑛),
2𝐺21(𝑛), 2𝐺23(𝑛)

2𝐹32(𝑛) in the form

2𝐹12(𝑛) =
0 𝐹12

0𝑅(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑅(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)
0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)

−

− i 0𝐺23

0𝑆(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑆(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)
0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)

, (6.1)

2𝐺21(𝑛) =
0 𝐺21

0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)
0𝑅(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑅(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)

, (6.2)

2𝐹32(𝑛) =
0 𝐹32

0𝑅(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑅(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)
0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)

+

+i 0𝐺21

0𝑆(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑆(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)
0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)

, (6.3)

2𝐺23(𝑛) =
0 𝐺23

0𝑅(𝑛− 1| 20𝑧+) 0𝑅(𝑛− 2| 20𝑧−)−0 𝑅(𝑛− 1| 20𝑧−) 0𝑅(𝑛− 2| 20𝑧+)
0𝑅(𝑛| 20𝑧+) 0𝑅(𝑛− 1| 20𝑧−)−0 𝑅(𝑛| 20𝑧−) 0𝑅(𝑛− 1| 20𝑧+)

. (6.4)

Here,
0𝑅(𝑛| 20𝑧±) = ( 20𝑧±)

𝑛 exp(𝜏/ 20𝑧±)
20𝜀1(

20𝑧±)+

+ (1/ 20𝑧±)
𝑛 exp(𝜏 20𝑧±)

20𝜀3(
20𝑧±), (6.5)

0𝑆(𝑛| 20𝑧±) = 20𝜀2(
20𝑧±) (

20𝑧± + 1/ 20𝑧±)
𝑛. (6.6)

The symmetry relations 𝑞−(𝑛) = 𝑞*+(𝑛), 𝑠(𝑛) =
= 𝑠*(𝑛), 𝑞+(𝑛) = 𝑞*−(𝑛) between the field variables
are proved to support the symmetry relations be-
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tween the spectral data elucidated by the following
parametrization formulas:
20𝑧± = exp(±𝜇+ i𝑘), (6.7)
20𝜀1(

20𝑧±) = exp(±𝛼+ i𝛽), (6.8)
20𝜀2(

20𝑧±) = 𝑔 exp(±i𝛿), (6.9)
20𝜀3(

20𝑧±) = exp(∓𝛼− i𝛽), (6.10)

where 𝑘, 𝛼, 𝛽, 𝑔, and 𝛿 are arbitrary real parameters,
and 𝜇 is a real positive parameter. However, in order
to suppress systematic divergences of the crop field
functions at spatial and temporal infinities, we are
obligated to impose severe constraints,

𝑘 = 𝜎𝜋/2, (6.11)
𝜇 > ln(

√
2), (6.12)

onto the parameters 𝑘 and 𝜇, with the coefficient 𝜎
being defined by the equality

𝜎2 = 1. (6.13)

Peripeteia of calculations prompted us to introduce
the shorthand notations

Φ(𝑛) = 2𝜎 sinh(2𝜇𝑛− 𝜇+ 2𝛼)+

+2 sinh(𝜇) sin[𝜎𝜋𝑛−𝜎𝜋/2+2𝛽−2𝜏𝜎 cosh(𝜇)], (6.14)

Θ(𝑛) = 𝑔 exp(+𝜇𝑛− 𝜇+ 𝛼) [2 sinh(𝜇)]𝑛 ×

× sin[𝜎𝜋/2 + 𝛿 − 𝛽 + 𝜏𝜎 exp(−𝜇)] +

+ 𝑔 exp(−𝜇𝑛+ 𝜇− 𝛼)[2 sinh(𝜇)]𝑛 ×

× sin[𝜎𝜋𝑛− 𝜎𝜋/2 + 𝛿 + 𝛽 − 𝜏𝜎 exp(+𝜇)] (6.15)

for the typical functional combinations, as well as to
invoke the obvious parametrization formulas

0𝐹12

√
2 = +exp(+𝑞−)

√
1 + i𝑠, (6.16)

0𝐺21

√
2 = − exp(−𝑞−)

√
1 + i𝑠, (6.17)

0𝐺23

√
2 = − exp(−𝑞+)

√
1− i𝑠, (6.18)

0𝐹32

√
2 = +exp(+𝑞+)

√
1− i𝑠 (6.19)

for the prototype seed quantities 0𝐹12, 0𝐺21, 0𝐺23,
and 0𝐹32.

The result for the crop solution to the integrable
nonlinear lattice system of our interest (4.9)–(4.12)
obtainable in the framework of the two-fold Darboux–
Bäcklund dressing technique reads

𝑞+(𝑛) = 𝑞+ +
1

2
ln

[︂
Φ2(𝑛)

Φ2(𝑛− 1)

]︂
− i

2
arctan

[︂
exp(−𝑞+ − 𝑞−)Θ(𝑛)√

1 + 𝑠2 Φ(𝑛) + 𝑠 exp(−𝑞− − 𝑞+)Θ(𝑛)

]︂
+

+
1

4
ln

{︃[︂
1 + 𝑠

exp(−𝑞+ − 𝑞−)√
1 + 𝑠2

Θ(𝑛)

Φ(𝑛)

]︂2
+

exp(−2𝑞+ − 2𝑞−)

1 + 𝑠2
Θ2(𝑛)

Φ2(𝑛)

}︃
, (6.20)

𝑠(𝑛) = 𝑠+ exp(−𝑞+ − 𝑞−)
√︀
1 + 𝑠2

Θ(𝑛)

Φ(𝑛)
, (6.21)

𝑞−(𝑛) = 𝑞− +
1

2
ln

[︂
Φ2(𝑛)

Φ2(𝑛− 1)

]︂
+

i

2
arctan

[︂
exp(−𝑞+ − 𝑞−)Θ(𝑛)√

1 + 𝑠2Φ(𝑛) + 𝑠 exp(−𝑞− − 𝑞+)Θ(𝑛)

]︂
+

+
1

4
ln

{︃[︂
1 + 𝑠

exp(−𝑞+ − 𝑞−)√
1 + 𝑠2

Θ(𝑛)

Φ(𝑛)

]︂2
+

exp(−2𝑞+ − 2𝑞−)

1 + 𝑠2
Θ2(𝑛)

Φ2(𝑛)

}︃
. (6.22)

Here, the upper front indices in the field functions
2𝑞+(𝑛), 2𝑠(𝑛), and 2𝑞−(𝑛) have been omitted for a
stylistic reason.

Bearing in mind the obtained solutions (6.20)–
(6.22) for the coordinate field components and relying

upon the standard definitions

𝑝+(𝑛) = 𝜕ℒ/𝜕𝑞+(𝑛) =
1

2
[1− i𝑠(𝑛)] 𝑞+(𝑛)+

+
1

4

[︀
1 + 𝑠2(𝑛)

]︀
[𝑞+(𝑛)− 𝑞−(𝑛)], (6.23)
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𝑟(𝑛) = 𝜕ℒ/𝜕�̇�(𝑛) = 1

2

�̇�(𝑛)

1 + 𝑠2(𝑛)
, (6.24)

𝑝−(𝑛) = 𝜕ℒ/𝜕𝑞−(𝑛) =
1

2
[1 + i𝑠(𝑛)] 𝑞−(𝑛)+

+
1

4

[︀
1 + 𝑠2(𝑛)

]︀
[𝑞−(𝑛)− 𝑞+(𝑛)] (6.25)

of momentum field components, we can conclude that
all three constituent subsystems are characterized by
the essentially nonzero excitations of a rather sophis-
ticated mathematical structure.

In order to understand the character of the ob-
tained solutions (6.20)–(6.22) for the coordinate field
components 𝑞+(𝑛), 𝑠(𝑛), 𝑞−(𝑛), let us analyze the
spatial and temporal behavior of their two determi-
native functions Φ2(𝑛)/Φ2(𝑛− 1) and Θ(𝑛)/Φ(𝑛). In
view of the earlier imposed conditions (6.11) and
(6.12), each of determinative functions is bounded
at both spatial infinities 𝑛 → ±∞. However, if the
parameter 𝛼 has been chosen improperly, expression
(6.14) for Φ(𝑛) as a function of time 𝜏 can change its
sign even at some admissible (i.e. integer) values of
the spatial coordinate 𝑛. In such spatial points, the
expression Θ(𝑛)/Φ(𝑛) as a function of time undergoes
infinite discontinuities. To exclude such an unphysical
scenario, it is sufficient to impose the strict condition

𝛼 = −𝜇𝑙 (6.26)

onto the parameter 𝛼, with the parameter 𝑙 being
taken as an arbitrary integer. Indeed, though quan-
tity (6.14) under the adjusting condition (6.26) pos-
sesses two vulnerable spatial points 𝑛 = 𝑙 and 𝑛 =
= 𝑙 + 1, it can never change its sign as a func-
tion of time 𝜏 at either of them. Hence, the expres-
sion 1/Φ(𝑛) as a function of time 𝜏 can demon-
strate the infinite splashes at two neighboring spa-
tial points points 𝑛 = 𝑙 and 𝑛 = 𝑙 + 1 arising pe-
riodically in time with the cyclic frequency equal
to 2 cosh(𝜇). The expression Θ(𝑛)/Φ(𝑛) in turn is
responsible for the modulated splashes. Modulating
cyclic frequencies are equal to exp(+𝜇) and exp(−𝜇).

Bearing in mind the above analysis and consider-
ing formulas (6.20)–(6.25), we conclude that both of
Toda-like subsystems can support the superposition
of the pulson and modulated pulson nonlinear exci-
tations of a rather complicated form. In contrast, the
form of modulated pulson nonlinear excitations re-
lated to the mediated system turns out to be sim-
pler. In so doing, the excitations related to the Toda-
like subsystems are located mainly in vicinities of

three neighboring spatial points 𝑛 = 𝑙, 𝑛 = 𝑙 + 1,
𝑛 = 𝑙 + 2, while the excitations related to the me-
diated system are located mainly in vicinities of two
neighboring spatial points 𝑛 = 𝑙, 𝑛 = 𝑙 + 1.

7. Conclusions

The aim of this work was to introduce the integrable
nonlinear lattice system comprising three dynami-
cal subsystems with the combined inter-mode cou-
plings as a conceivable model for the analytic investi-
gation of nonlinear excitations on regular quasi-one-
dimensional lattices of various physical origins. The
presently suggested system is emerged as a particular
reduction of a prototype nonlinear system associated
with the semidiscrete auxiliary linear problem of the
third order proposed in our previous works [25, 26].

The considered reduction is not unique, though it
is inspired by the so-called natural constraints in-
herent to the prototype nonlinear system. The sug-
gested reduced system permits both Lagrangian and
Hamiltonian representations in terms of three canoni-
cal subsystems. Two subsystems of the Toda-like type
are related by the symmetry of complex conjugation,
while a single intermediate subsystem serves as an ad-
ditional coupler between the Toda-like ones. Due to
the specific symmetries between the field variables,
the Hamiltonian function arises as an essentially real
quantity ℋ = ℋ*. In view of this fact, there exists a
principal opportunity to rearrange the complex sym-
metric Toda-like subsystems into two real-valued sub-
systems characterized by the translational and orien-
tational degrees of freedom separately. In such a re-
duction, the system could serve as a sort of a toy
model to describe the translational and orientational
subsystems of long macromolecules.

Relying upon the prototype auxiliary linear prob-
lem, we have developed the two-fold Darboux–Bäck-
lund dressing scheme in the most general terms suit-
able for the integration of any reduced nonlinear sys-
tem compatible with two natural constraints. In the
framework of this technique, we have found the ex-
plicit solution to the reduced semidiscrete nonlinear
integrable system of our main interest. The solution
embraces all three coupled nonlinear subsystems and
manifests a pronounced modulated pulson character.

The main local conserved densities related to the
prototype nonlinear system have been found explic-
itly in the framework of the generalized direct recur-
rent approach.
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О.О.Вахненко

ЗВ’ЯЗАНА НЕЛIНIЙНА ДИНАМIКА
ТРИМОДОВОЇ IНТЕҐРОВНОЇ СИСТЕМИ
НА РЕГУЛЯРНОМУ ЛАНЦЮЖКУ

Запропоновано нелiнiйну ґратчасту систему трьох динамi-
чних пiдсистем, зв’язаних як в потенцiальнiй, так i в кi-
нетичнiй частинах. Завдяки своїй суттєво багатокомпонен-
тнiй будовi система здатна моделювати нелiнiйнi динамi-
чнi збудження на квазiодновимiрних ґратках рiзноманiтної
фiзичної природи. Система має чiтке Гамiльтонове форму-
лювання зi стандартною Пуассоновою структурою. Пода-
но також i альтернативне Лаґранжове формулювання ди-

намiки системи. Динамiчнi рiвняння системи є iнтеґров-
ними в сенсi Лакса, оскiльки допускають представлення
нульової кривини. Складнiсть доречної допомiжної лiнiй-
ної задачi зi спектральним оператором третього порядку
не стала на завадi у побудовi технiки подвiйного одягання
Дарбу–Беклунда, прийнятної для зґенерування нетривiаль-
ного розв’язку, що охоплює усi три зв’язанi пiдсистеми до-
волi незвичним чином.

Ключовi слова: нелiнiйнi теорiї та моделi, ангармонiйнi ґра-
тковi моди, iнтеґровнi системи, Лаґранжова та Гамiльтоно-
ва динамiки, метод одягання Дарбу–Беклунда, симетрiя та
закони збереження, нелiнiйний хвильовий пакет.
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