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DEFORMATION FEATURES
IN THE CELL WHEN THE CORONAVIRUS ENTERS IT

A mathematical model has been proposed to describe the deformation behavior of a cell, when
a coronavirus enters it. The model is continuum-based, and the theory of elasticity is used in
calculations. It was found that the deformation process accompanying the penetration of coro-
navirus consists of two stages. At the first stage, the deformations of cytoplasmic membrane
are elastic. At the second stage, the structure of a cytoplasmic membrane is destroyed. The
dependence of the energy of the “coronavirus–cell” system on the size of the contact zone that
separates the coronavirus and the cell was obtained. The existence of an energy barrier that
separates both stages of the deformation process was proved. As a result, the penetration of
the coronavirus terminates at the end of the first stage. However, the energy barrier can be
overcome due to thermal fluctuations.
K e yw o r d s: coronavirus, cell, deformation, penetration.

1. Introduction

It is known (see, e.g., work [1]) that, in general, the
process of coronavirus interaction with a cell is re-
duced to the transfer of viral RNA into the cell and
the subsequent reproduction of the virus in the cell,
which results in the cell death. It is generally agreed
that RNA is transferred via the penetration of the
virus into the cell. This process can be conventionally
divided into two stages. At the first stage, the coro-
navirus is adsorbed on the surface of the cytoplasmic
membrane and forms bonds with it (Fig. 1, 𝑏). At the
second stage, the cytoplasmic membrane retracts the
coronavirus and wraps it (Fig. 1, 𝑐). As a result, there
arises a membrane bubble inside the cell (Fig. 1, 𝑑). In
essence, this is a coronavirus wrapped in a piece of
the cytoplasmic membrane.

To the authors’ knowledge, currently there is no
mathematical model that would describe the pene-
tration of coronavirus into the cell. In the presented
work, we propose one of the possible models for this
process.

2. Continuum Model
of the “Coronavirus–Cell” System

The deformation behavior of the “coronavirus–cell”
system will be studied in the continuum approxima-
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tion. In this approximation, the coronavirus can be
considered as a ball, and the cell as a sphere com-
posed of a shell (the cytoplasmic membrane) filled
with fluid (cytoplasm). This approximation is illus-
trated in Figs. 1 and 2.

The shell material is considered to be an elastic
medium.

The virus is known to be a molecular complex of
densely packed chain molecules. Therefore, its stiff-
ness substantially exceeds the stiffness of the cell.
This circumstance will be taken into account by as-
suming that the ball–this is the coronavirus in our
model–consists of an absolutely hard material. Accor-
dingly, when invading into the cell, the indicated ball
is not deformed.

Let 𝑅 denote the radius of the ball (coronavi-
rus), 𝑅1 the radius of the sphere (cell), and ℎ the
thickness of the shell (cytoplasmic membrane). Ac-
cording to work [2], we put ℎ = (4÷6)×10−9 m. The
value 𝑅 = 6 × 10−8 m was borrowed from work
[3]. In our calculations, we took the average value
ℎ = 5 × 10−9 m. Since 𝑅1 > 10−6 m, the follow-
ing inequalities take place:
𝑅

𝑅1
≪ 1, (1)

ℎ

𝑅
≪ 1, (2)

ℎ

𝑅1
≪ 1. (3)
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Fig. 1. Hypothetical mechanism of coronavirus penetration
into the cell: (𝑎) non-interacting coronavirus (1 ) and cell (cy-
toplasmic membrane (2 ) and cytoplasm (3 )); (𝑏) adsorption of
coronavirus on the cytoplasmic membrane surface; (𝑐) wrap-
ping of coronavirus with the cytoplasmic membrane material;
and (𝑑) formation of a membrane bubble (4 )

Fig. 2. Schematic diagram of the contact zone between the
coronavirus and the cell: coronavirus (1 ), cytoplasmic mem-
brane (2 ), and cytoplasm (3 )

It is known that the theory of continuous media
is based on the concept of mathematically infinites-
imally small volume, which must possess, by defini-
tion, an infinitesimally small size. This concept is ev-
idently an idealization: in reality, the mathematically
infinitesimally small volume is associated with the so-

called physically infinitesimally small volume, which
has a finite size.

The smallest characteristic size in our case is the
quantity ℎ. Therefore, it is reasonable to take it as
the size of the physically infinitesimally small vol-
ume. This means that the continuum approximation
for this system is the zeroth approximation in the
small parameters ℎ/𝑅 and ℎ/𝑅1, and ℎ plays the role
of a measurement unit. Accordingly, the cytoplasmic
membrane is considered in this approximation as a
surface.

3. Geometric Parameters
of the Continuum-Based Model

Figure 2 reproduces the magnified fragment of
Fig. 1, 𝑏, which illustrates the initial stage of coro-
navirus penetration into the cell.

The characteristic geometric parameters of this
stage are the penetration depth 𝐴𝐴2 denoted as 𝐻,
and the contact-zone radius 𝐺𝐵 = 𝐵𝑋 denoted as
𝑎. Introducing the notations 𝐴1𝐵 = 𝑏1 and 𝐴𝐵 = 𝑏,
we can write

𝐻 = 𝑏1 + 𝑏. (4)

By analyzing the triangles 𝑂𝐺𝐵 and 𝑂1𝐺𝐵, we ob-
tain

𝑎2 = 𝑅2 − (𝑅− 𝑏)2. (5)

The notations for the angles are ∠𝐺𝑂𝐵 = 𝛽 and
∠𝐺𝑂1𝐵 = 𝛽1.

Let us draw two tangents through the point 𝐺:
𝐺𝑁1 to the circle centered at 𝑂1 and 𝐺𝑁 to the circle
centered at 𝑂. As one can see from Fig. 2, the angle
∠𝑁1𝐺𝑁 , which will be denoted as 𝛾, is the sum

𝛾 = ∠𝑁1𝐺𝐵 + ∠𝐵𝐺𝑁. (6)

From the similarity of the triangles 𝑁1𝐺𝐵 i 𝑁1𝐺𝑂1,
it follows that ∠𝑁1𝐺𝐵 = 𝛽1. Moreover, the simi-
larity of the triangles 𝑂𝐺𝑁 and 𝐵𝐺𝑁 implies that
∠𝐵𝐺𝑁 = 𝛽. Accordingly, expression (6) can be
rewritten in the form

𝛾 = 𝛽 + 𝛽1. (7)

The angles 𝛽 and 𝛽1 are related to the radius of
the contact zone 𝑎 via the equalities

sin𝛽 =
𝑎

𝑅
, (8)
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sin𝛽1 =
𝑎

𝑅1
. (9)

As one can see from Fig. 2, the contact zone 𝐺𝐴𝑋 is a
spherical segment. Accordingly, its area is determined
by the expression

𝑆 = 2𝜋𝑅𝑏. (10)

From the smallness of the parameter 𝑅/𝑅1 and for-
mulas (8) and (9), it follows that

𝛽1 ≪ 𝛽. (11)

Thus, in the zeroth approximation in the parameter
𝑅/𝑅1, we obtain the approximate equality

𝛾 ≈ 𝛽. (12)

It transforms the spherical surface 𝐹𝐺𝐴1𝑋𝑌 into the
plane 𝐹1𝐺𝐵𝑋𝑌1. Accordingly, in the zeroth approx-
imation in the parameter 𝑅/𝑅1, we have

𝛽1 = 0, (13)

and equality (4) looks like

𝐻 ≈ 𝑏. (14)

4. Mechanism of Cytoplasmic Membrane
Destruction at the Coronavirus Penetration
Into the Cell

As one can see from Fig. 2, the cell membrane under-
goes a bending deformation when contacting with the
coronavirus. One can also see that the deformation is
maximum at the contact zone boundary. The angle 𝛾
can serve as a measure of the bending deformation at
this boundary.

At the bending, the upper half of the membrane
cross-section is known to be under the action of ten-
sile stresses. The latter are maximum at the bound-
ary. Their magnitude increases with the growth of
𝛾. It is evident that at a certain value 𝛾1, which, ac-
cording to formulas (8) and (12), corresponds to the
radius of the contact zone 𝑎1 = 𝑅 sin 𝛾1, the tensile
stresses become strong enough to form a crack.

As a rule (see, e.g., work [4]), two stages are dis-
tinguished in the development of a crack. At the first
stage, the size of the crack is smaller than a certain
critical value, and some energy is required for the
crack to grow. At the second stage, the size of the
crack is larger than the critical one, and the crack

Fig. 3. Schematic diagram of the cytoplasmic membrane de-
struction: at 𝛾 = 𝛾1 (𝑎), at 𝛾 > 𝛾1 (𝑏) (coronavirus (1 ) and
cytoplasmic membrane sections (2, 3, 4 ))

grows independently. In our case where the crack is
a closed conical surface, the size of the crack is its
width, i.e. the distance from the membrane surface
to the lower crack edge. Since the tensile stresses
are concentrated in the upper half of the membrane
cross-section, the critical crack size must be smaller
than ℎ/2.

After the second stage of development, the crack
separates sections 2 and 3 (Fig. 3, 𝑎) of the cyto-
plasmic membrane. As the coronavirus moves deeper
into the cell and, accordingly, the angle 𝛾 increases
further, there appears a new crack, which separates
sections 3 and 4 (Fig. 3, 𝑏). The latter crack re-
quires much lower energy for its formation than the
crack shown in Fig. 3, 𝑎. Indeed, as one can see from
Fig. 3, 𝑏, on its right edge, section 3 is contiguous
with the first crack, which makes weaker the material
in its vicinity.

The process of crack formation continues as the
coronavirus penetrates into the cell. Therefore, when
the coronavirus reaches the middle of the cell, its sur-
face turns out covered with a destroyed cytoplasmic
membrane.

According to the described mechanism of destruc-
tion, let us divide the process of cell deformation into
two stages, by assuming that the first one is realized
at 𝑎 < 𝑎1, and the second one at 𝑎 > 𝑎1. We will
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also assume that the first and second stages corre-
spond to the situations illustrated in Fig. 1, 𝑏 and 𝑐,
respectively.

5. Energy of the “Coronavirus–Cell” System

Let us express the potential energy 𝑈 of the “corona-
virus–cell” system as the sum
𝑈 = 𝑈 ′ + 𝑈 ′′, (15)

where 𝑈 ′ is the energy of cell deformations induced
by the coronavirus, and 𝑈 ′′ the energy of the bonds
formed by the coronavirus with the cell surface.
The energy 𝑈 will be reckoned from the energy
value corresponding to the non-interacting coronavi-
rus and cell.

Let us calculate the energy of the system, if there
is no crack in the membrane. The corresponding cell
energy will be denoted as 𝑈1, and its components as
𝑈 ′
1 and 𝑈 ′′

1 .
When calculating 𝑈 ′, the cylindrical coordinate

frame (𝑟, 𝜑, 𝑧) is used. The line 𝑂𝑂1 is taken as the
𝑧-axis, and the point 𝐵 is the coordinate origin. The
𝑧-axis is directed downward.

The approximation given by expression (13) means
the replacement of the surface 𝐺𝐴1𝑋 by a flat sec-
tion 𝐺𝐵𝑋. Now, 𝐺𝐵𝑋 is the section ofthe membrane
surface that, when being deformed owing to the co-
ronavirus adsorption, transforms into the 𝐺𝐴𝑋 sur-
face and undergoes bending deformations. This de-
formation will be characterized by the function 𝑊 (𝑟)
describing the vertical (along the 𝑧-axis) displace-
ment at the point of the flat section 𝐺𝐵𝐻 located
at the distance 𝑟 from point 𝐵. For example, the ver-
tical displacement for point 𝑆 located at the distance
𝑆𝐵 = 𝑟𝑆 from point 𝐵 is the segment 𝑆𝑀 = 𝑊 (𝑟).

Let us determine the profile of the function
𝑊 (𝑟). First, let us draw the line 𝑃𝑀 parallel to the
line 𝐵𝑆. As one can see from Fig. 2, the equalities
𝑆𝑀 = 𝐵𝑃 and 𝐵𝑃 = 𝑂𝑃 − 𝑂𝐵 hold true. For the
triangle 𝑀𝑂𝑃 , we have 𝑂𝑃 = 𝑅 cos𝜑, where 𝜑 de-
notes the angle ∠𝑃𝑂𝑀 . According to our notations,
𝑂𝐵 = 𝑅 − 𝑏. Taking the equations given above into
account, we obtain
𝑊 = 𝑅 cos𝜑− (𝑅− 𝑏). (16)

The expression sin𝜑 = 𝑟/𝑅 obtained from the trian-
gle 𝑂𝑀𝑃 allows formula (16) to be rewritten in the
form
𝑊 =

√︀
𝑅2 − 𝑟2 − (𝑅− 𝑏). (17)

Let the displacements 𝑊 be small and satisfy the
inequality

𝑊 ≪ 𝑅. (18)

Since 𝑊 ≪ 𝑏, formulas (5) and (10) take the form

𝑎2 = 2𝑅𝑏, (19)

𝑆 = 𝜋𝑎2, (20)

and the inequality

𝑎2 ≪ 2𝑅2. (21)

is satisfied.
The latter allows the square root in formula (17)

to be expanded in a power series in the small param-
eter 𝑟2/𝑅2 up to the first-order term. As a result, we
obtain

𝑊 = 𝑏− 𝑟2

2𝑅
. (22)

The displacements 𝑊 give rise to the appearance
of a bending moment acting in the cross-section with
the normal 𝑟. The flat section 𝐺𝐵𝑋, which undergoes
bending deformations, is, in essence, a plate. The the-
ory of plate bending (see, e.g., work [7]) gives the fol-
lowing formula for the bending moment intensity 𝑀𝑟:

𝑀𝑟 = −𝐷

(︂
𝑑2𝑊

𝑑𝑟2
+ 𝜈

1

𝑟

𝑑𝑊

𝑑𝑟

)︂
, (23)

where 𝐷 is the cylindrical stiffness of the plate, and
𝜈 is Poisson’s ratio. Substituting expression (22) into
formula (23), we obtain

𝑀𝑟 =
𝐷(1 + 𝜈)

𝑅
(𝑟 ≤ 𝑎). (24)

According to work [5], the transverse force intensity
𝑄𝑟 is determined by the formula

𝑄𝑟 =
𝑑𝑀𝑟

𝑑𝑟
. (25)

Substituting expression (24) into this formula, we ob-
tain that

𝑄𝑟 = 0 (26)

at 𝑟 < 𝑎. Therefore, at the point 𝑟 = 𝑎, where the
bending moment intensity 𝑀𝑟 jumps to zero, the
transverse force intensity 𝑄 must become infinitely
large according to Eq. (25).

As was mentioned above, in the continuum the-
ory, the size of a physically infinitesimally small vol-
ume is taken as the measurement unit and considered
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as an infinitesimally small quantity 𝑑𝑟. The infinite
value of 𝑄𝑟 at 𝑟 = 𝑎 is a consequence of this as-
sumption. Actually, the measurement unit is a finite
quantity, which is equal to ℎ in our case. This cir-
cumstance enables us to write down the approximate
equality

𝑄𝑟 ≈ 𝑀𝑟

ℎ
≈ 𝐷(1 + 𝜈)

𝑅ℎ
(𝑟 = 𝑎). (27)

Accordingly, the vertical force 𝐹 created by the shell
deformation is given by the formula

𝐹 = 𝑄𝑟2𝜋𝑎 = 2𝜋
𝐷(1 + 𝜈)

ℎ

𝑎

𝑅
. (28)

Using expression (19), the previous formula can be
rewritten in the form

𝐹 =
2𝜋𝐷(1 + 𝜈)

ℎ

(︂
2

𝑅

)︂1/2
𝑏1/2. (29)

Since 𝐹 = −𝑑𝑈 ′

𝑑𝑏 , we obtain the following expression
for the deformation energy:

𝑈 ′
1 =

2

3

(︂
2

𝑅

)︂1/2
2𝜋𝐷(1 + 𝜈)

ℎ
𝑏3/2. (30)

From the viewpoint of the continuum approach,
which is inherent in the accepted model, the for-
mation of bonds between the coronavirus and the
cell can be considered as a surface tension variation
𝛼 = 𝛼2 − 𝛼1, where 𝛼2 is the surface tension at the
section, where the cell contacts with the coronavirus,
and 𝛼1 the surface tension at the same section in the
absence of the coronavirus. Accordingly, we have the
following formula for the binding energy 𝑈 ′′

1 :

𝑈 ′′
1 = −𝛼𝑆. (31)

The sign “−” in this formula corresponds to the fact
that the formation of bonds leads to the energy re-
duction.

It is known [6] that the bonds arising between the
coronavirus and the membrane surface are the bonds
between the spike-like proteins S that form a corona
and the proteins in the cytoplasmic membrane. Ac-
cording to the results of works [6, 7], the energy of
such bonds is taken to equal 10–12 kcal/mol. Let 𝑙
be the distance between the membrane proteins that
form those bonds. For the quantity 𝛼, we have the
expression

𝛼 =
𝐸

𝑙2
. (32)

Fig. 4. Dependence of the energy 𝑈 of the “coronavirus–cell”
system on the contact zone radius

According to the results of work [8], 𝑙 = 70 Å. Substi-
tuting the indicated values for 𝐸 and 𝑙 into formula
(32), we obtain 𝛼 = 2× 10−3 N/m.

From Eqs. (15), (30), (31), and (20), we have the
following formula for the energy 𝑈 of the system:

𝑈1 =
2

3

(︂
2

𝑅

)︂1/2
2𝜋𝐷(1 + 𝜈)

ℎ
𝑏3/2 − 𝛼𝜋𝑎2. (33)

Substituting 𝑏 by 𝑎 according to relation (19), we ob-
tain
𝑈1 =

1

3

2𝜋𝐷(1 + 𝜈)

𝑅2ℎ
𝑎3 − 𝛼𝜋𝑎2. (34)

Let 𝐷 = 10−18 nm [9]. For 𝜈, let us take its max-
imum value, which is equal to 0.5 (see, e.g., work
[6]). The corresponding dependence 𝑈1(𝑎) is shown
in Fig. 4 (plot 1 ).

Now, let us calculate the energy of the system pro-
vided that there are cracks. In this case, the energy
will be denoted as 𝑈2, and its components as 𝑈 ′

2 and
𝑈 ′′
2 . The energy 𝑈 ′′

2 is the energy required to form a
crack with a critical size. As was already mentioned,
the crack contour is a circle with the radius 𝑎. Accor-
dingly, the formula for 𝑈 ′′

2 looks like

𝑈 ′
2 = 𝑞2𝜋𝑎, (35)

where 𝑞 is the linear energy density.
The energy associated with the formation of bonds

between the coronavirus and the cytoplasmic mem-
brane, 𝑈 ′′

2 , is identical to the energy 𝑈 ′′
1 . Therefore,

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 9 789



L.A. Bulavin, Yu.F. Zabashta, K.I. Hnatiuk

the energy of the system in this case can be written
in the form

𝑈2 = 𝑞2𝜋𝑎− 𝛼𝜋𝑎2. (36)

It is known (see, e.g., work [4]) that the basis of the
membrane is composed of lipid molecules, which form
two adjacent layers. Each of those molecules consists
of a hydrophilic “head” and two attached hydrocarbon
chains, “tails”. The axes of the molecules are directed
perpendicularly to the membrane surface. The thick-
ness ℎ1 of either layer is equal to 2× 10−9 m.

Let the critical crack size be equal to ℎ1. The lipid
molecules mainly interact with one another via their
carbohydrate chains. Let 𝐸1 denote the binding en-
ergy between CH2 groups in two neighbor chains, 𝑙1
the distance between the neighbor bonds that bind
those chains, and 𝑙2 the distance between the axes of
the interacting chains. The total number of bonds per
unit area is 1/𝑙1𝑙2. Accordingly, the energy required
for a crack with the width ℎ1 to appear equals

𝑈 ′′
1 =

2𝜋𝑎ℎ1

𝑙1𝑙2
𝐸1. (37)

By comparing formulas (36) and (38), we obtain the
relation

𝑞 =
ℎ1

𝑙1𝑙2
𝐸1. (38)

Since the issue concerns hydrocarbon chains, the
known data for paraffins [10] will be used: 𝑙1 =
= 2.5× 10−10 m, 𝑙2 = 5 × 10−10 m, and 𝐸1 =
= 1.1× 10−21 J. According to formula (38), we ob-
tain 𝑞 = 1.8× 10−11 N. The dependence 𝑈2(𝑎) corre-
sponding to this 𝑞-value is shown in Fig.4 as plot 2.

6. Thermodynamic Aspect of Cell
Deformation during Coronavirus Penetration

According to the previous consideration, when the
coronavirus penetrates into the cell, two deformation
processes characterized by the dependences 𝑈1(𝑎) and
𝑈2(𝑎) may take place. According to thermodynamic
principles (see, e.g., work [11]), the conditions for
those processes to run spontaneously are the inequal-
ities
𝑑𝑈1

𝑑𝑎
< 0, (39)

𝑑𝑈2

𝑑𝑎
< 0. (40)

As one can see from Fig. 4, 𝑑𝑈2

𝑑𝑎 > 0 at 𝑎 < 0.8×
× 10−8 m. This result confirms our previous hypoth-
esis that the deformation should begin in the form of
the first process that is not accompanied by the crack
formation. This process runs spontaneously until the
parameter 𝑎 becomes equal to 2.4× 10−8 m.

Despite that the derivative 𝑑𝑈2

𝑑𝑎 becomes negative
at 𝑎 > 0.8×10−8 m, the second process does not begin
as far as 𝑎 < 2.4× 10−8 m, because of the inequality
𝑈2 > 𝑈1. Figure 4 demonstrates that 𝑑𝑈1

𝑑𝑎 > 0 at
𝑎 > 2.4× 10−8 m, which means that the first process
terminates at 𝑎 = 2.4× 10−8 m.

Therefore, we have the value 𝑎1 = 2.4 × 10−8 m
for the contact zone radius corresponding to the end
of the first stage. At such an 𝑎1-value, the cell shape
changes insignificantly. Beyond the contact zone, it
remains almost the same as the cell had before its
interaction with the coronavirus.

Since 𝑑𝑈2

𝑑𝑎 < 0 at 𝑎 > 2.4 × 10−8 m, the second
deformation process, which is associated with the for-
mation of cracks, can be realized in this interval. Ho-
wever, according to Fig. 4, for this process to start,
the system must overcome an energy barrier of about
4 × 10−19 J. This circumstance prohibits the virus
from penetrating into the cell, when the radius of the
critical zone reaches a value of 2.4× 10−8 m.

The barrier can be overcome by the system owing
to thermal fluctuations. The energy needed to do this
is accumulated in the system during a certain time
interval, which determines the duration of the lag be-
fore the virus starts to destroy the membrane. After
the system has overcome the barrier, the second pro-
cess begins and runs spontaneously.

According to the considered mechanism of destruc-
tion, the material of the membrane has to be de-
stroyed, as a result of this process, at all 𝑎 > 2.4 ×
10−8 m. In this case, the material practically loses its
elastic properties and, accordingly, its ability to resist
a bending deformation. The increase of deformations
does not lead anymore to the growth of stresses. The
destroyed material behaves itself as a plastic medium
(see, e.g., work [12]). In effect, the material loses its
resistance to the formation of new bonds between the
coronavirus and the cell. The practically unimpeded
formation of such bonds is accompanied by substan-
tial membrane deformations and, accordingly, con-
siderable changes in the cell shape. Being wrapped in
the membrane material, the coronavirus penetrates
into the cell, as is shown in Figs. 1, 𝑐 and 𝑑. Now, the
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structure of the membrane becomes destroyed, which
favors the exit of RNA into cytoplasm.

7. Conclusions

Deformations that take place in the cell, when the co-
ronavirus penetrates into it, have the following char-
acteristic features:

1. the process of cell deformation associated with
the coronavirus penetration consists of two stages;

2. at the first stage,
∙ there arise bending, mainly, deformations in the

cytoplasmic membrane, which reach the maximum
magnitude at the boundary of the contact zone be-
tween the cell and the coronavirus;

∙ those deformations are elastic;
∙ the cell shape undergoes minor changes;
3. the first stage terminates, when the radius of the

contact zone becomes approximately equal to 2.4 ×
10−8 m; as a result,

∙ the material of the cytoplasmic membrane be-
comes destroyed at the contact zone boundary, which
leads to the appearance of an energy barrier of ap-
proximately 4 × 10−19 J, which prevents the further
penetration of the coronavirus into the cell;

∙ due to the barrier, the penetration process stops;
∙ the coronavirus accumulates the energy required

to overcome the barrier from the environment due to
thermal fluctuations;

∙ the rate of energy accumulation determines the
lag time;

4. the second stage begins after the coronavirus
has overcome the barrier; at this stage,

∙ the membrane destruction continues;
∙ membrane deformations are plastic;
∙ the cell shape changes substantially, so the coro-

navirus, being wrapped in the membrane material,
penetrates inside the cell.
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ОСОБЛИВОСТI ДЕФОРМАЦIЙ, ЯКI
ВИНИКАЮТЬ У КЛIТИНI ПРИ ПРОНИКНЕННI
В НЕЇ КОРОНАВIРУСУ

Пропонується математична модель, яка описує деформа-
цiйну поведiнку клiтини при проникненнi в неї коронавiру-
су. Модель є континуальною, при розрахунках використо-
вуються методи теорiї пружностi. Встановлено, що процес
деформування, який супроводжує проникнення коронавi-
русу, складається з двох стадiй: на першiй стадiї дефор-
мацiї цитоплазматичної мембрани є пружними, на другiй
стадiї вiдбувається руйнування її структури. Отримано за-
лежнiсть енергiї системи “коронавiрус–клiтина” вiд розмi-
ру контактної зони, яка розмежовує коронавiрус i клiти-
ну. Доведено iснування енергетичного бар’єра, що роздiляє
обидвi стадiї процесу деформування. Ця обставина приво-
дить до зупинки проникнення коронавiрусу наприкiнцi пер-
шої стадiї. Подолання енергетичного бар’єра, необхiдне для
подальшого проникнення, вiдбувається за рахунок тепло-
вих флуктуацiй.

Ключ о в i с л о в а: коронавiрус, клiтина, деформацiя, про-
никнення.
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