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THEORETICAL INVESTIGATION OF THE
SUPERCONDUCTING AND THERMODYNAMIC
PROPERTIES OF TWO-BAND MODEL
HIGH-TEMPERATURE IRON-BASED
SUPERCONDUCTOR Ba1−𝑥Na𝑥Fe2As2

This work presents the theoretical investigation of the superconducting and thermo-
dynamic properties of the two-band model high-temperature iron-based superconductor
Ba1−𝑥Na𝑥Fe2As2. By developing a model Hamiltonian and by employing the well-known
double-time temperature-dependent Green’s function formalism, we have computed the super-
conducting order parameters for the electron and hole intra- and inter-band transitions, su-
perconducting transition temperature, densities of states, and condensation energies. Further-
more, the electronic specific heat and the entropy for electron and hole intra-band transitions
have been determined. By using appropriate experimental data and some credible approxima-
tions of the parameters in the computed expressions, we have found the phase diagrams of
superconducting order parameters versus the temperature, superconducting critical temper-
ature versus the inter-band interaction potential, temperature dependences of the electronic
specific heat and entropy for electron and hole intra-band transitions, and densities of states
for the electron and hole intra-band transitions as functions of the excitation energy at different
values of the temperature. Finally, the phase diagrams of the condensation energy versus the
temperature, inter-band pairing potential at T = 0 K versus the condensation energy, and con-
densation energy versus the superconducting transition temperature (TC) have been drawn. In
some of the phase diagrams, the comparison between theoretical and experimental values has
been made. The results are in a good agreement with previous findings.
K e yw o r d s: order parameters, specific heat, density of states, condensation energy,
Ba1−𝑥Na𝑥Fe2As2.

1. Introduction

The iron-based superconductors are the newly dis-
covered category of superconductors which are be-
coming promising candidates for the future applica-
tions of high-temperature superconductors. The first
iron-based superconductor was discovered in 2006 by
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the research group which found the superconductiv-
ity with a transition temperature of about 6 K in
LaFePO [1]. This discovery had marked the begin-
ning of a new era in the search for high-temperature
iron-based superconductors. Furthermore, the recent
discovery of the superconductivity in LaFeAs(O, F)
after the replacing phosphorus with arsenic and the
doping of the structure by substituting some oxygen
atoms with fluorine showed the increase in the tran-
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sition temperature up to 26 K [2]. This high 𝑇C has
significantly enhanced research activities in the field
of IBSCs, particularly when it was found that 𝑇C

could be increased up to 43 K by applying pressure
[3]. In IBSCs such as RFeAsO1−𝑥F (where, R=La,
Sm, Ce, Nd, Pr, Gd), with considerably high criti-
cal temperature of up to 56 K, the superconductivity
occurs in the FeAs layers and the LaO layers are sup-
posed to be charged reservoirs when doped with F
ions. In addition, multiband iron-based superconduc-
tors were discovered, and the superconductivity in the
122-family with 𝑇C = 38 K in hole-doped supercon-
ductor Ba0.6K0.4Fe2As2 was observed [4].

As is well known, IBSCs have high superconducting
transition temperature, large upper critical magnetic
field, high critical current density, and relatively low
anisotropy which are the fundamental requirements
for large current and (or) high magnetic field ap-
plications of superconductors. An important feature
of the iron-based pnictides is their multiband elec-
tronic structures with both electron and hole bands
at the Fermi level [5]. These have key features of
such inter-band pairing mechanisms that can gener-
ate or enhance superconducting pairing irrespective
of whether it is attractive or repulsive [6]. The pair-
ing mechanism in the iron-based pnictides is exten-
sively considered to be mediated by spin fluctuations
[7]. Amongst the high-temperature iron-based pnic-
tides, the 122-family compounds such as the (AE,
K) Fe2As2 (where, AE = Ba, Sr) have been con-
sidered as promising superconducting materials for
upcoming applications, since a high critical current
density is believed to exist in the superconducting
wires and tapes [8]. Ba0.6Na0.4Fe2As2 optimally Na-
doped with a concentration of 𝑥 = 0.4 has a su-
perconducting transition temperature of about 34 K
[9]. The hole doping does remove charge carriers to
the system or FeAs layer, and the dopant changes the
electronic structure. The Fermi surface of hole-doped
Ba1−𝑥Na𝑥Fe2As2 is, to a large extent, the same as
the Fermi surface found for the K-doped compounds
suggesting a similar impact on the substitution of Ba
by either K or Na on the electronic band dispersion
at the Fermi level [9].

The multiple gap structures in the 122 system have
clear evidences and are provided by specific heat
and angle-resolved photoemission spectroscopy mea-
surements [10, 11]. Numerous intra-bands and inter-
band interaction terms exist in the multiband model

of iron-based superconductivity. The inter-band pair-
ing is important in multiband models [12]. The op-
timally hole-doped Ba1−𝑥Na𝑥Fe2As2 with 𝑥 = 0.35
iron-based pnictides of the Fermi surface comprises
of multiple Fermi surface sheets. ARPES studies in
the 122- family revealed the presence of hole-like and
electron-like Fermi surfaces at the center of the Bril-
louin zone and at the corner, respectively, and the
cylindrical shape of the electron-like Fermi surfaces
at the zone corner are usually attributed to the elec-
tronic structure in high-𝑇C 122-family superconduc-
tors. All the 5Fe (3d) orbitals pass via the Fermi sur-
faces in the 122-family of the IBSCs. The first princi-
pal computations have demonstrated that the energy
bands near the Fermi surface are attributed mainly to
the Fe (3d) orbitals [13], and the states with energy
at the Fermi level are formed by the 3d electrons of
Fe, and the superconductivity is mainly due to these
3d states, as is shown by the density functional calcu-
lations [14].

The hole-doped two-band Ba1−𝑥Na𝑥Fe2As2 (with
𝑥 = 0.35) IBSC has two superconducting order pa-
rameters for electron and hole intra-band transitions
for electron and hole bands, respectively. Both van-
ish at the same superconducting transition tempera-
ture (𝑇C) of Ba1−𝑥Na𝑥Fe2As2. The electron and hole
intra-bands have their own coupling pairing poten-
tials of electron and hole intra-band transitions, re-
spectively, and the inter-band pairing interaction po-
tentials. The existence of inter-band pairing interac-
tion potential improves the pairing of the electrons
and leads to the vanishing of electron and hole intra-
band transitions at the same superconducting tran-
sition temperature, even though they are different
at zero temperature [15]. At the zero temperature,
the experimental values of superconducting energy
gaps for Ba1−𝑥Na𝑥Fe2As2 on the electron Fermi sur-
face and on the hole Fermi surface are 8.5 meV and
3.6 meV, respectively [16].

2. Materials and Methods

The mathematical formulation of the Hamiltonian of
the system in the two-band model high-temperature
IBSC Ba1−𝑥Na𝑥Fe2As2 which consists of the elec-
tron and hole intra-band and inter-band terms is ex-
pressed as [17–19],

�̂� = �̂�𝑒 + �̂�ℎ + �̂�𝑒ℎ, (1)
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where

�̂�𝑒 =
∑︁
𝑘𝜎

𝜀𝑒(𝑘)𝐶
+
𝑘𝜎𝐶𝑘𝜎 −

−
∑︁
𝑘,𝑘′

𝑈𝑒(𝑘, 𝑘
′)𝐶𝑘↑𝐶

+
−𝑘↓𝐶−𝑘′↓𝐶𝑘′↑, (2)

�̂�ℎ =
∑︁
𝑘𝜎

𝜀ℎ(𝑘)𝑑
+
𝑘𝜎𝑑𝑘𝜎 −

−
∑︁
𝑘,𝑘′

𝑈ℎ(𝑘, 𝑘
′)𝑑+𝑘↑𝑑

+
−𝑘↓𝑑−𝑘′↓𝑑𝑘′↑, (3)

�̂�𝑒ℎ = −
∑︁
𝑘.𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)×

×
[︁
𝐶+

𝑘↑𝐶
+
−𝑘↓𝑑−𝑘′↓𝑑𝑘′↑ + 𝑑+𝑘↑𝑑

+
−𝑘↓𝐶−𝑘′↓𝐶𝑘′↑

]︁
. (4)

Now, using (2)–(4) in (1), we obtain

�̂� =
∑︁
𝑘,𝜎

𝜀𝑒(𝑘)𝐶
+
𝑘𝜎𝐶𝑘𝜎 +

∑︁
𝑘,𝜎

𝜀ℎ(𝑘)𝑑
+=
𝑘𝜎 𝑑𝑘𝜎 −

−
∑︁
𝑘,𝑘′

𝑈𝑒(𝑘, 𝑘
′)(𝐶+

𝑘↑𝐶
+
−𝑘↓⟨𝐶−𝑘′↓, 𝐶𝑘′↑⟩+

+ ⟨𝐶+
𝑘↑, 𝐶

+
−𝑘↓⟩𝐶−𝑘′↓𝐶𝑘′↑⟩)−

−
∑︁
𝑘,𝑘′

𝑈ℎ(𝑘, 𝑘
′)(𝑑+𝑘↑𝑑

+
−𝑘↓⟨𝑑−𝑘′↓𝑑𝑘′↑⟩+

+ ⟨𝑑+𝑘↑𝑑
+
−𝑘↓⟩𝑑−𝑘′↓𝑑𝑘↑)−

∑︁
𝑘,𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)×

× (𝐶+
𝑘↑𝐶

+
−𝑘↓⟨𝑑−𝑘′↓𝑑𝑘′↑⟩+ ⟨𝐶+

𝐾↑𝐶
+
−𝑘↓⟩𝑑−𝑘′↑𝑑𝑘′↑)−

−
∑︁
𝑘,𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)(𝑑+𝑘↑𝑑

+
−𝑘↓⟨𝐶−𝑘′↓𝐶𝑘′↑⟩+

+ ⟨𝑑+𝑘↑𝑑
+
−𝑘↓⟩𝐶−𝑘′↓𝐶𝑘′↑). (5)

For

Δ𝑒 =
∑︁
𝑘,𝑘′

𝑈𝑒(𝑘, 𝑘
′)⟨𝐶−𝑘′↓𝐶𝑘′↑⟩ =

=
∑︁
𝑘,𝑘′

𝑈𝑒(𝑘, 𝑘
′)⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩, (6)

Δℎ =
∑︁
𝑘,𝑘′

𝑈ℎ(𝑘, 𝑘
′)⟨𝑑−𝑘′↓𝑑𝑘′↑⟩ =

=
∑︁
𝑘,𝑘′

𝑈ℎ(𝑘, 𝑘
′)⟨𝑑+𝑘↑, 𝑑

+
−𝑘↓⟩. (7)

and

Δ𝑒ℎ =
∑︁
𝑘,𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)⟨𝐶−𝑘′↓𝐶𝑘′↑⟩ =

=
∑︁
𝑘,𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)⟨𝑑,−𝑘′↑𝑑𝑘′↑⟩,

Δ𝑒ℎ =
∑︁
𝑘,𝑘′

𝑈𝑒(𝑘, 𝑘
′)⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩ =

=
∑︁
𝑘,𝑘′

𝑈𝑒ℎ(𝑘, 𝑘
′)⟨𝑑+𝑘↑, 𝑑

+
−𝑘↓⟩, (8)

we get

�̂� =
∑︁
𝑘,𝜎

𝜀𝑒(𝑘)𝐶
+
𝑘𝜎𝐶𝑘𝜎 +

∑︁
𝑘,𝜎

𝜀ℎ(𝑘)𝑑
+
𝑘𝜎𝑑𝑘𝜎 −

−Δ𝑒

∑︁
𝑘,𝑘′

(𝐶+
𝑘↑𝐶

+
−𝑘↑ + 𝐶−𝑘′↓𝐶𝑘′↑)−

−Δℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝑑−𝑘′↓𝑑𝑘↑)−

−Δℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝑑−𝑘↓𝑑𝑘′↑)−

−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(𝐶+
𝑘↑𝐶

+
−𝑘↓ + 𝑑−𝑘′↓𝑑𝑘′↑)−

−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝐶−𝑘′↓𝐶𝑘′↑), (9)

where, the first two terms are the energy of conduc-
tion electrons and holes, respectively, the next two
terms involve the superconductivity due to the intra-
paring at the electron and hole Fermi surfaces, respec-
tively. The last two terms represent the superconduc-
tivity due to the inter-band transitions between the
two bands. 𝐶+

𝑘↑(𝐶−𝑘↓) and 𝑑+𝑘↑(𝑑−𝑘↓) are the creation
(annihilation) operators in the electron and the hole
bands, respectively.

2.1. Electron and hole
intra-band and inter-band
dependences on the temperature

By using the double-time temperature-dependent
Green’s function formalism, the equation of mo-
tion for the superconducting correlation function
⟨⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩⟩ in the electron intra-band is expressed

as [20]

𝜔⟨⟨𝐶+
𝑘↑, 𝐶

+
−𝑘↓⟩⟩ = ⟨⟨[𝐶+

𝑘↑, 𝐶
+
−𝑘↓] + ⟨⟨[𝐶+

𝑘↑, �̂�], 𝐶+
−𝑘↓⟩⟩,

𝜔⟨⟨𝐶+
𝑘↑, 𝐶

+
−𝑘↓⟩⟩ = ⟨⟨[𝐶+

𝑘↑, �̂�𝑒 + �̂�ℎ + �̂�𝑒ℎ], 𝐶
+
−𝑘↓⟩⟩.

(10)
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Now, performing the commutation relation for[︁
𝐶+

𝑘↑, �̂�𝑒

]︁
, we get[︁

𝐶+
𝑘↑, �̂�𝑒

]︁
=
[︁
𝐶+

𝑘↑,

∑︁
𝑘,𝜎

𝜀𝑒(𝑘)𝐶
+
𝑘𝜎𝐶𝑘𝜎 −

−Δ𝑒

∑︁
𝑘,𝑘′

(𝐶+
𝑘↑𝐶

+
−𝑘↓ + 𝐶−𝑘′↓𝐶𝑘′↑⟩

]︁
.

Using the commutation and anticommutation rules,
we obtain[︁
𝐶+

𝑘↑, �̂�𝑒

]︁
= −𝜀𝑒𝐶

+
𝑘↑ +Δ𝑒𝐶−𝑘′↓. (11)

Similarly, the commutation relation for
[︁
𝐶+

𝑘↑, �̂�ℎ

]︁
yields[︁
𝐶+

𝑘↑, �̂�ℎ

]︁
=
[︁
𝐶+

𝑘↑,

∑︁
𝑘,𝜎

𝜀ℎ(𝑘)𝑑
+
𝑘𝜎𝑑𝑘𝜎 −

−Δℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝑑−𝑘′↓𝑑𝑘′↑⟩

]︁
.

From this expression, we get[︁
𝐶+

𝑘↑, �̂�ℎ

]︁
= 0. (12)

Furthermore, the commutation relation for[︁
𝐶+

𝑘↑, �̂�𝑒ℎ

]︁
is given by[︁

𝐶+
𝑘↓, �̂�𝑒ℎ

]︁
=
[︁
𝐶+

𝑘↑,−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(𝐶+
𝑘↑𝐶

+
−𝑘↓+𝑑−𝑘′↓𝑑𝑘′↑)−

−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝐶−𝑘′↓𝐶𝑘′↑)

]︁
,[︁

𝐶+
𝑘↑, �̂�𝑒ℎ

]︁
= −Δ𝑒ℎ

∑︁
𝑘,𝑘′

(︁[︁
𝐶+

𝑘↑, 𝐶
+
𝑘↑

]︁
+

+
[︁
(𝐶+

𝑘↑, 𝑑−𝑘′↓𝑑𝑘′↑

]︁)︁
−

−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(︁[︁
𝐶+

𝑘↑, 𝑑
+
𝑘↑𝑑

+
−𝑘↓

]︁
+
[︁
𝐶+

𝑘↑, 𝐶−𝑘′↓𝐶𝑘′↑

]︁)︁
.

Hence we get[︁
𝐶+

𝑘↑, �̂�𝑒ℎ

]︁
= Δ𝑒ℎ𝐶−𝑘′↓. (13)

Using (11)–(13) in (10) the equation of motion for the
superconducting correlation function ⟨⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩⟩,

becomes,

𝜔⟨⟨𝐶+
𝑘↑, 𝐶

+
−𝑘↓⟩⟩ = −𝜀𝑒⟨⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩⟩+

+Δ𝑒⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩+Δ𝑒ℎ⟨⟨𝐶−𝑘′↓, 𝐶

+
−𝑘↓⟩⟩.

Thus, the expression for the equation of motion be-
comes

⟨⟨𝐶+
𝑘↑,𝐶

+
−𝑘↓⟩⟩ =

Δ𝑒 +Δ𝑒ℎ

𝜔 + 𝜀𝑒(𝑘)
⟨⟨𝐶−𝑘′↓, 𝐶

+
−𝑘↓⟩⟩. (14)

Similarly, the equation of motion for ⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩

is given by

𝜔⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ = ⟨[𝐶−𝑘′↓, 𝐶

+
−𝑘↓]⟩+

+ ⟨⟨[𝐶−𝑘′↓, �̂�], 𝐶+
−𝑘↓⟩⟩,

𝜔⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ = 1 + ⟨⟨[𝐶−𝑘′↓, �̂�𝑒] +

+ [𝐶−𝑘′↓, �̂�ℎ] + [𝐶−𝑘↓, �̂�𝑒ℎ], 𝐶
+
−𝑘↓⟩⟩.

(15)

Now, evaluating the commutation relations given
in (15), we get[︁
𝐶−𝑘′↓, �̂�𝑒

]︁
=
[︁
𝐶−𝑘′↓,

∑︁
𝑘𝜎

𝜀𝑒(𝑘)𝐶
+
𝑘𝜎𝐶𝑘𝜎 −

−Δ𝑒

∑︁
𝑘,𝑘′

(𝐶+
𝑘↑𝐶

+
−𝑘↓ + 𝐶−𝑘′↓𝐶𝑘′↑

]︁
,[︁

𝐶−𝑘′↓, �̂�𝑒

]︁
=
∑︁
𝑘𝜎

𝜀𝑒(𝑘)
[︁
𝐶−𝑘′↓, 𝐶

+
𝐾𝜎𝐶𝑘𝜎

]︁
−Δ𝑒 ×

×
∑︁
𝑘,𝑘′

[︁
𝐶−𝑘′↓, 𝐶

+
𝑘↑𝐶

+
−𝑘↓

]︁
−Δ𝑒

∑︁
𝑘,𝑘′

[︁
𝐶−𝑘′↓, 𝐶𝑘′↓𝐶

+
𝑘′↑

]︁
.

Hence, we get[︁
𝐶−𝑘′↓, �̂�𝑒

]︁
= 𝜀𝑒(𝑘)𝐶−𝑘′↓ +Δ𝑒𝐶

+
𝑘↑. (16)

Performing a similar commutation for
[︁
𝐶−𝑘↓, �̂�ℎ

]︁
, as

for the electron above, we obtain[︁
𝐶+

𝑘↑, �̂�ℎ

]︁
=
[︁
𝐶+

𝑘↑,
∑︁
𝑘,𝜎

𝜀ℎ(𝑘)𝑑
+
𝑘𝜎𝑑𝑘𝜎 −

−Δℎ

∑︁
𝑘,𝑘′

(𝑑+𝑘↑𝑑
+
−𝑘↓ + 𝑑−𝑘′↓𝑑𝑘′↑)

]︁
.

From which, we get[︁
𝐶−𝑘′↓, �̂�ℎ

]︁
= 0. (17)

Similarly, the commutation relation for
[︁
𝐶−𝑘′↓, �̂�𝑒ℎ

]︁
yields[︁
𝐶−𝑘′↓, �̂�𝑒ℎ

]︁
=
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=
[︁
𝐶−𝑘′↓,−Δ𝑒ℎ

∑︁
𝑘,𝑘′

(︁
𝐶+

𝑘↑𝐶
+
−𝑘↓, 𝑑−𝑘′↓𝑑𝑘′↓

)︁]︁
−

−
[︁
𝐶−𝑘′↓,Δ𝑒ℎ

∑︁
𝑘,𝑘′

(︁
𝑑+𝑘↑𝑑

+
−𝑘↓+𝐶−𝑘′↓𝐶𝑘′↑

)︁]︁
.

Thus, we get[︁
𝐶−𝑘′↓, �̂�𝑒ℎ

]︁
= Δ𝑒ℎ𝐶

+
𝑘↑. (18)

Now, using (16)–(18) in (15), the equation of mo-
tion for the superconducting correlation function
⟨⟨𝐶−𝑘′↓, 𝐶

+
−𝑘↓⟩⟩ becomes

𝜔⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ = 1 + ⟨⟨𝜀𝑒(𝑘)𝐶−𝑘′↓ +

+Δ𝑒𝐶
+
𝑘↑ +Δ𝑒ℎ𝐶

+
𝑘↑𝐶

+
−𝑘↓⟩⟩.

Hence, we get

⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ =

1

𝜔 − 𝜀𝑒(𝑘)
+

+
Δ𝑒 +Δ𝑒ℎ

𝜔 − 𝜀𝑒(𝑘)
⟨⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩⟩. (19)

Substituting (19) into (14) yields

⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ =

Δ𝑒 +Δ𝑒ℎ

𝜔 + 𝜀𝑒(𝑘)

(︂
1

𝜔 − 𝜀𝑒(𝑘)
+

+
Δ𝑒 +Δ𝑒ℎ

𝜔 − 𝜀𝑒(𝑘)
⟨⟨𝐶+

𝑘↑, 𝐶
+
−𝑘↓⟩⟩

)︂
.

Hence we get

⟨⟨𝐶−𝑘′↓, 𝐶
+
−𝑘↓⟩⟩ =

Δ𝑒 +Δ𝑒ℎ

𝜔2 − 𝜀2𝑒(𝑘)− (Δ𝑒 +Δ𝑒ℎ)
. (20)

The superconducting order parameter in an electron
band can be related to the Green’s function as

Δ𝑒 =
𝑈𝑒

2𝛽

∑︁
𝑘

⟨⟨𝐶+
𝑘↑, 𝐶

+
−𝑘↓⟩⟩, (21)

where 𝛽 = 1
𝑘B𝑇 , 𝑘B is the Boltzmann constant, and

𝑈𝑒 is the pairing potential in the electron band.
Now, we use the relation 𝜔 → 𝑖𝜔𝑛 and Matsubara’s

frequency [21] given by

𝜔𝑛 =
(2𝑛+ 1)𝜋

𝛽
. (22)

Using (20) and (22) in (21), we obtain

Δ𝑒 =
𝑈𝑒𝛽

2
×

×
∑︁
𝑘,𝑛

(︂
Δ𝑒 +Δ𝑒ℎ

((2𝑛+ 1)𝜋)2 + 𝛽2(𝜀2𝑒(𝑘) + (Δ𝑒 +Δ𝑒ℎ)2)

)︂
.

(23)

Introducing the density of states at the Fermi level,
changing the summation into integration, and using
the relation∑︁
𝑘,𝑛

1

((2𝑛+ 1)𝜋)2 + (𝛽𝐸)2
=

tanh(𝛽𝐸/2)

2𝛽𝐸
, (24)

we get

Δ𝑒 = 𝑈𝑒𝐷𝑒(0)Δ𝑒

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸𝑒(𝑘)

2

)︁
𝐸𝑒(𝑘)

𝑑𝐸𝑒(𝑘)+

+𝑈𝑒ℎ𝐷ℎ(0)Δℎ

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸ℎ(𝑘)

2

)︁
𝐸ℎ(𝑘)

𝑑𝐸ℎ(𝑘), (25)

where 𝐸2
𝑒 (𝑘) = 𝜀3𝑒(𝑘) + (Δ𝑒 +Δ𝑒ℎ)

2 and

𝐸2
ℎ(𝑘) = 𝜀3ℎ(𝑘) + (Δℎ +Δ𝑒ℎ)

2.

Now, if we consider the electron intra-band transition
only, (25) becomes

1

𝑈𝑒𝑁𝑒(0)
=

~𝜔F∫︁
0

tanh

(︂
𝛽(𝜀2𝑒(𝑘)+Δ2

𝑒)
1
2

2

)︂
(𝜀2𝑒(𝑘) + Δ2

𝑒)
1
2

𝑑𝜀𝑒(𝑘). (26)

By using the Laplace transformation, the integral in
(26) yields

1

𝑈𝑒𝑁𝑒(0)
=

~𝜔F∫︁
0

tanh

(︂√
𝜀2𝑒(𝑘)+Δ2

𝑒

2

)︂
√︀
𝜀2𝑒(𝑘) + Δ2

𝑒

𝑑𝜀𝑒(𝑘)−

− 4𝛽2Δ2
𝑒

~𝜔F∫︁
0

∑︁
0

1

𝜋(2𝑛+ 1)4
(︂
1 +

(︁
𝛽𝜀𝑒(𝑘)

𝜋(2𝑛+1)

)︁2)︂2. (27)

Using the integration by parts and substitution meth-
ods, (27) reduces to

1

𝑈𝑒𝐷𝑒(0)
= ln

(︂
1.14

~𝜔F

𝑘B𝑇

)︂
−4Δ2

𝑒𝛽
2

𝜋3
×

×
∞∑︁
0

1

(2𝑛+ 1)3

∞∫︁
0

1

(1 + 𝑧2)2
𝑑𝑧, (28)

where 𝑧 = 𝛽𝜀𝑒(𝑘)
𝜋(2𝑛+1) .
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Applying the Zeta and Riemann zeta functions,
(28) becomes

1

𝑈𝑒𝐷𝑒(0)
= ln

(︂
1.14

~𝜔F

𝑘B𝑇

)︂
− Δ2

𝑒

𝑘2B𝑇
2
(0.1065). (29)

Using [22], (29) becomes

1

𝑈𝑒𝐷𝑒(0)
= ln

(︂
1.14

~𝜔F

𝑘B𝑇

)︂
. (30)

Substituting (30) into (29) and using the relation

ln(1− 𝑥) = −𝑥− 𝑥2

2
+ ...,

we get

Δ𝑒 = 3.06 𝑘B𝑇𝐶

(︂
1− 𝑇

𝑇𝐶

)︂1
2

. (31)

From the well-known BCS theory [22], we have

𝑇𝐶 = 1.14
~𝜔F

𝑘B
exp

(︂
− 1

𝑈𝑒𝐷𝑒(0)

)︂
. (32)

Now, substituting (32) into (31), the superconducting
order parameter in the electron band becomes

Δ𝑒(𝑇 ) = 3.49~𝜔F exp

(︂
− 1

𝑈𝑒𝐷𝑒(0)

)︂(︂
1− 𝑇

𝑇𝐶

)︂1
2

. (33)

Following the same procedure as for the electron
intra-band traditions, the equation of motion for the
superconducting correlation functions ⟨⟨𝑑+𝑘↑, 𝑑

+
−𝑘↓⟩⟩

for the hole intra-band transitions can be computed
in the form

⟨⟨𝑑+𝑘↑, 𝑑
+
−𝑘↓⟩⟩ =

Δℎ +Δ𝑒ℎ

𝜔 + 𝜀ℎ(𝑘)
⟨⟨𝑑−𝑘′↓, 𝑑

+
−𝑘↓⟩⟩. (34)

and

⟨⟨𝑑,−𝑘′↓𝑑
+
−𝑘↓⟩⟩ =

1

𝜔 − 𝜀ℎ(𝑘)

Δℎ +Δ𝑒ℎ

𝜔 − 𝜀ℎ(𝑘)
⟨⟨𝑑+𝑘↑, 𝑑

+
𝑘↑⟩⟩.

(35)

After a couple of steps, the expression for the super-
conducting order parameter in the hole band Δℎ(𝑇 )
is given by

Δℎ(𝑇 ) = 3.49 ~𝜔F exp

(︂
− 1

𝑈ℎ𝐷ℎ(0)

)︂(︂
1− 𝑇

𝑇𝐶

)︂1
2

. (36)

Where the experimental value of the density of
states and the pairing potentials [23] are the den-
sity of states at the Fermi level and the pairing in-
teraction potential for a hole intra-band transition,
respectively.

The inter-band transition between the electron and
hole bands, the superconducting order parameter can
be related to the Green’s function as

Δ𝑒ℎ =
𝑈𝑒ℎ

4𝛽

∑︁
𝑘

(⟨⟨𝐶+
𝑘↑
, 𝐶+

−𝑘↓⟩⟩+ ⟨⟨𝑑+𝑘↑, 𝑑
+
−𝑘↓⟩⟩). (37)

Performing the same procedures as for the electron
intra-band transitions computed above, the expres-
sion for the superconducting order parameter in the
inter-band transitions Δ𝑒ℎ(𝑇 ) reads

Δ𝑒ℎ(𝑇 ) = 3.49 ~𝜔F ×

× exp

(︃
− 1

𝑈𝑒ℎ

√︀
𝐷𝑒(0)𝐷ℎ(0)

)︃(︂
1− 𝑇

𝑇𝐶

)︂1
2

. (38)

2.2. Dependence of the superconducting
transition temperature on the inter-band
pairing potential

By coupling the two superconducting equations given
below, the dependence of the superconducting tran-
sition temperature on the inter-band interaction po-
tential can be expressed as follows [23]:

Δ𝑒 = 𝑈𝑒(0)𝐷𝑒(0)

~𝜔F∫︁
0

tanh
(︁
𝛽(𝐸𝑒(𝑘))

2

)︁
𝐸𝑒(𝑘)

𝑑𝐸𝑒(𝑘)+

+𝑈𝑒ℎ𝐷ℎ(0)Δℎ

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸ℎ(𝑘)

2

)︁
𝐸ℎ(𝑘)

𝑑𝐸ℎ(𝑘) (39)

and

Δℎ = 𝑈ℎ(0)𝐷ℎ(0)

~𝜔F∫︁
0

tanh
(︁
𝛽(𝐸ℎ(𝑘))

2

)︁
𝐸ℎ(𝑘)

𝑑𝐸ℎ(𝑘)+

+𝑈𝑒ℎ𝐷𝑒(0)Δ𝑒

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸𝑒(𝑘)

2

)︁
𝐸𝑒(𝑘)

𝑑𝐸𝑒(𝑘). (40)

Now, let

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸𝑒(𝑘)

2

)︁
𝐸𝑒(𝑘)

𝑑𝐸𝑒(𝑘) = 𝑓(𝐴)
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and

~𝜔F∫︁
0

tanh
(︁
𝛽𝐸ℎ(𝑘)

2

)︁
𝐸ℎ(𝑘)

𝑑𝐸ℎ(𝑘) = 𝑓(𝐴). (41)

Using (41) in (39) and (40), we get

Δ𝑒 = 𝑈𝑒𝐷𝑒(0)Δ𝑒𝑓(𝐴) + 𝑈𝑒ℎ𝐷ℎ(0)Δℎ𝑓(𝐵), (42)

and

Δℎ = 𝑈ℎ𝐷ℎ(0)Δℎ𝑓(𝐴) + 𝑈𝑒ℎ𝐷𝑒(0)Δ𝑒𝑓(𝐵). (43)

Rearranging (42) and (43), we get, respectively,

Δ𝑒 [1− 𝑈𝑒𝐷𝑒(0)𝑓(𝐴)] = 𝑈𝑒ℎ𝐷ℎ(0)Δℎ𝑓(𝐵), (44)

and

Δℎ [1− 𝑈ℎ𝐷ℎ(0)𝑓(𝐴)] = 𝑈𝑒ℎ𝐷𝑒(0)Δ𝑒𝑓(𝐵). (45)

Considering the product of (44) and (45), we obtain

[1− 𝑈𝑒𝐷𝑒(0)𝑓(𝐴)] [1− 𝑈ℎ𝐷ℎ(0)𝑓(𝐵)] =

= 𝑈2
𝑒ℎ𝐷ℎ(0)𝑓(𝐵)𝐷𝑒(0)𝑓(𝐴). (46)

At 𝑇 = 𝑇𝐶 ,Δ𝑒 = Δℎ = 0. Thus, we have 𝑓(𝐴) =
= 𝑓(𝐵) = 𝑓(𝑇𝐶).

Hence, (46) becomes[︀
𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ

]︀
𝑓2(𝑇𝐶)+

+

[︂
𝑈𝑒

𝐷ℎ(0)
+

𝑈ℎ

𝐷𝑒(0)

]︂
𝑓(𝑇𝐶)−

1

𝐷𝑒(0)𝐷ℎ(0)
= 0. (47)

Therefore, the solution of (47) is given by

𝑓(𝑇𝐶) =

(︃
1

2

(︂
𝑈𝑒

𝐷ℎ(0)
+

𝑈ℎ

𝐷𝑒(0)

)︂
−

−

√︃
1

4

(︂
𝑈𝑒

𝐷ℎ(0)
+

𝑈ℎ

𝐷𝑒(0)

)︂2
+

(︂
𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ

𝐷𝑒(0)𝐷ℎ(0)

)︂)︃
/

(𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ). (48)

But, at

𝑇 = 𝑇𝐶 , 𝑓(𝑇𝐶) = ln(1.14
~𝜔F

𝑘B𝑇𝐶
.

Hence, (48) becomes

ln 1.14
~𝜔F

𝑘B𝑇𝐶
=

(︃
− 1

2

(︂
𝑈𝑒

𝐷ℎ(0)
+

𝑈ℎ

𝐷𝑒(0)

)︂
−

−

√︃
1

4

(︂
𝑈𝑒

𝐷ℎ(0)
+

𝑈ℎ

𝐷𝑒(0)

)︂2
+

(︂
𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ

𝐷𝑒(0)𝐷ℎ(0)

)︂)︃
/

(𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ).

Finally, the dependence of the superconducting
transition temperature on the intra-band s and inter-
band interaction potentials is given by

𝑇𝐶 = 1.14
~𝜔F

𝑘B
exp

(︁(︀
− 𝑈𝑒𝐷𝑒(0)− 𝑈ℎ𝐷ℎ(0)−

−
√︁
(𝑈𝑒𝐷𝑒(0)+𝑈ℎ𝐷ℎ(0))2+4(𝑈2

𝑒ℎ−𝑈𝑒𝑈ℎ)𝐷𝑒(0)𝐷ℎ(0)
)︀
/

(2(𝑈2
𝑒ℎ − 𝑈𝑒𝑈ℎ)𝐷𝑒(0)𝐷ℎ(0))

)︁
. (49)

Now, if the intra-band interaction potentials are ig-
nored, and the superconducting transition temper-
ature is induced only by the inter-band interaction
potential, (49) reduces to

𝑇𝐶 = 1.14
~𝜔F

𝑘B
exp

(︃
− 1

𝑈𝑒ℎ

√︀
𝐷𝑒(0)𝐷ℎ(0)

)︃
. (50)

Thus, (50) yields the dependence of the superconduc-
ting transition temperature (𝑇C) on the inter-band in-
teraction potential in the two-band model mediated
by the inter-band pairing interaction. Therefore, one
can easily observe that, by taking the electron intra-
band pairing potential and the hole intra-band pair-
ing potential equal to zero, the inter-band interaction
potential can induce the superconducting transition
temperature 𝑇C.

2.3. Electronic specific heat
in the electron and hole ntra-bands

The electronic specific heat per atom of a supercon-
ducting material for the electron intra-bands is deter-
mined using the following relation [24, 25]:

𝐶𝑒
𝑒𝑠 =

𝜕

𝜕𝑇

1

𝐷𝑒(𝑇 )

∑︁
𝑝

𝜀𝑒(𝑘)⟨⟨𝐶+
𝑘↑, 𝐶𝑘↑, ⟩⟩, (51)

where 𝜀𝑒(𝑘) is the electron energy and 𝐷𝑒(𝑇 ) is the
density of states.

By employing the Green‘ function given by
⟨⟨𝐶+

𝑘↑, 𝐶𝑘↑, ⟩⟩ changing the summation into the inte-
gration, and using the relation

∑︀
𝑘 = 𝐷𝑒(0)

∫︀
𝑑𝜀𝑒(𝑘),
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we obtain

𝐶𝑒
𝑒𝑠 =

2𝐷𝑒(0)

𝑁

~𝜔F∫︁
0

𝑑𝜀𝑒(𝑘)

(︃(︂
𝛽𝜀𝑒(𝑘)𝛼2 exp(𝛽𝛼2)

𝑇 (exp(𝛽𝛼2) + 1)2

)︂
+

+
𝛽(𝛼1 − 𝜀𝑒(𝑘)𝜀𝑒(𝑘)

2𝑇
√︀
𝜀2𝑒(𝑘) + Δ2

𝑒 +Δ2
𝑒ℎ +Δ𝑒Δ𝑒ℎ +Δ𝑒ℎΔ𝑒

)︃
×

×

[︃
𝛼1 exp(𝛽𝛼1)

[exp(𝛽𝛼1]
2 −

[︃
𝛼2 exp(𝛽𝛼2)

[exp(𝛽𝛼1)− 1]
2

]︃]︃
, (52)

where

𝛼1 = +
√︀
𝜀2𝑒(𝑘) + (Δ𝑒 +Δ𝑒ℎ)2.

Since each intra-band can be treated separately, the
inter-band interaction can be ignored [26]. Thus, un-
der this assumption, we get

𝛼1 =
√︀

𝜀2𝑒(𝑘) + Δ2
𝑒.

and

𝛼2 = −
√︀
𝜀2𝑒(𝑘) + (Δ𝑒 +Δ𝑒ℎ)2.

Similarly, in the absence of the inter-band interaction
Δ𝑒ℎ = 0 [26], we have

𝛼2 = −
√︀
𝜀2𝑒(𝑘) + Δ2

𝑒.

Now, substituting the values of alpha one and 𝛼1 and
alpha two 𝛼2into (52) and performing a couple of
steps, we get

𝐶𝑒
𝑒𝑠

𝑇
=

2

𝐷𝑒(0)𝑘B𝑇 2
×

×
~∫︁

0

𝜀2𝑒(𝑘) 𝑑𝜀𝑒(𝑘) secℎ
2

(︃√︀
𝜀2𝑒(𝑘) + Δ2

𝑒

2𝑘B𝑇

)︃
. (53)

Furthermore, by applying a similar procedure as for
the electronic specific heat for the electron intra-band
above, we obtain the expression for the electronic spe-
cific heat for the hole intra-band to be

𝐶ℎ
𝑒𝑠

𝑇
=

2

𝐷𝑒(0)𝑘B𝑇 2
×

×
~∫︁

0

𝜀2𝑒(𝑘)𝑑𝜀𝑒(𝑘) secℎ
2

(︃√︀
𝜀2𝑒(𝑘) + Δ2

𝑒

2𝑘B𝑇

)︃
. (54)

2.4. Entropy in the electron
and hole intra-bands

As is well known, the entropy is a measure of disorder
of a system [27]. From the thermodynamic relations,
the entropy is evaluated from the electron specific
heat [28]. So, the entropy for the electron intra-band
is expressed as

𝑆𝑒 =

𝑇∫︁
0

𝐶𝑒
𝑒𝑠

𝑑𝑇

𝑇
. (55)

Now, using (53) in (55), we get

𝑆𝑒 =

𝑇∫︁
0

2

𝐷𝑒(0)𝑘B𝑇
×

×
~𝜔F∫︁
0

𝜀2𝑒(𝑘)𝑑𝜀𝑒(𝑘) secℎ
2

(︃√︀
𝜀2𝑒(𝑘) + Δ2

𝑒

2𝑘B𝑇

)︃
𝑑𝑇

𝑇
. (56)

Thus, we obtain the entropy of the electron intra-
band to be

𝑆𝑒 =
2

𝐷𝑒(0)𝑘B
×

×
𝑇∫︁

0

~𝜔F∫︁
0

1

T
𝜀2𝑒𝑑𝜀𝑒(𝑘)𝑑𝑇 secℎ2

(︃√︀
𝜀2𝑒(𝑘) + Δ2

𝑒

2𝑘B

)︃
. (57)

Furthermore, by using (54) and applying a similar
procedure as for the entropy for the electron intra-
band above, we obtain the expression for the entropy
for the hole intra-band to be

𝑆ℎ =
2

𝐷ℎ(0)𝑘B
×

×
𝑇∫︁

0

~𝜔F∫︁
0

1

𝑇
𝜀2ℎ𝑑𝜀ℎ(𝑘) 𝑑𝑇 secℎ2

(︃√︀
𝜀2ℎ(𝑘) + Δ2

ℎ

2𝑘B

)︃
. (58)

2.5. Density of states
in the electron and hole intra-bands

The dependence of the density of states on the exci-
tation energy 𝜀in the electron band [29, 30] is given
by

𝐷𝑒(𝜀) = lim
𝜀𝑒→0

1

2𝜋

∑︁
𝑘

[︁
𝐺↑↑(𝑘, 𝜀+ 𝑖𝜀𝑒(𝑘))−

−𝐺↓↓(𝑘, 𝜀− 𝑖𝜀𝑒(𝑘))
]︁
, (59)
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where the density of states is dependent on the Green
function 𝐺↑↑ for the electron band.

Now, using (14) in (19), we have

⟨⟨𝐶−𝑘↓, 𝐶
+
−𝑘↓⟩⟩ =

𝜀+ 𝜀𝑒(𝑘)

𝜀2(𝑘)− 𝐸2
𝑒 (𝑘)

, (60)

where 𝐸2
𝑒 (𝑘) = 𝜀2𝑒(𝑘) + Δ2

𝑒.
By using the partial fraction method, (60) becomes

⟨⟨𝐶−𝑘↓, 𝐶
+
−𝑘↓⟩⟩ =

1

2

(︂
1

𝜀(𝑘)− 𝐸𝑒(𝑘)

)︂(︂
1 +

𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
+

+
1

2

(︂
1

𝜀+ 𝐸𝑒(𝑘)

)︂(︂
1− 𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
. (61)

Using the definition of the Dirac delta function, the
expression for the density of states for the electron
intra-band given in (59) becomes

𝐷𝑒(𝜀) =
1

2

∑︁
𝑘

[︃(︂
1 +

𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
𝛿(𝜀(𝑘)− 𝐸𝑒(𝑘))+

+

(︂
1− 𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
𝛿(𝜀(𝑘) + 𝐸𝑒(𝑘))

]︃
. (62)

Now, changing the summation into the integration in
(62) and assuming the density of states does not make
any variation over this integral, we get

𝐷𝑒(𝜀)=𝐷𝑒(0)

~𝜔F∫︁
0

(︂
1 +

𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
𝛿(𝜀(𝑘)−𝐸𝑒(𝑘))𝑑𝜀𝑒(𝑘)+

+𝐷𝑒(0)

~𝜔F∫︁
0

(︂
1− 𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
𝛿(𝑘)+𝐸𝑒(𝑘)+𝐸𝑒(𝑘))𝑑𝜀𝑒(𝑘).

(63)

Applying the Dirac delta integration properties such
that

∫︀
𝑓(𝑥)𝛿(𝑥− 𝑎))𝑑𝑥 = 𝑓(𝑎), we obtain

𝐷𝑒(𝜀) = 𝐷𝑒(0)

(︂
2𝜀𝑒(𝑘)

𝐸𝑒(𝑘)

)︂
. (64)

Finally, for 𝜀𝑒(𝑘) = 𝜀(𝑘) and 𝐸2
𝑒 (𝑘) = 𝜀2𝑒(𝑘) +Δ2

𝑒, we
get

𝐷𝑒(𝜀) =

⎧⎨⎩2𝐷𝑒(0)
𝜀(𝑘)

𝜀2(𝑘)−Δ2
𝑒

for 𝜀(𝑘) > Δ𝑒,

0 for 𝜀(𝑘) < Δ𝑒.
(65)

Similarly, applying the same procedure as for the
electron intra-band above, the density of states in the
hole intra-band becomes

𝐷ℎ(𝜀) =

⎧⎨⎩2𝐷ℎ(0)
𝜀(𝑘)

𝜀2(𝑘)−Δ2
ℎ

for 𝜀(𝑘) > Δℎ,

0 for 𝜀(𝑘) < Δℎ.
(66)

2.6. Condensation energy
in the iron-based superconductor
Ba1−𝑥Na𝑥Fe2As2
The comprehension of the origin of the condensa-
tion energy 𝐸𝐶 is a vital step toward identifying
the mechanism of high-temperature superconductiv-
ity [31, 32]. The value of the condensation energy 𝐸𝐶

is a measure of how much stable the superconduc-
ting state is as compared to the normal state. The
condensation energy in the two-band model is given
by [33]

𝐸𝐶 = ⟨𝐸𝑆⟩ − ⟨𝐸𝑁 ⟩,

𝐸𝐶 = (𝐸kin(𝑠) − 𝐸kin(𝑛)) + (𝐸po(𝑆) − 𝐸po(𝑛)),

𝐸𝐶 = Δ𝐾𝐸 +Δ𝑃𝐸. (67)

The change in the kinetic energy in (67) is given as

Δ𝐾𝐸 = −1

2
𝐷𝑒(0)Δ

2
𝑒 −

1

2
𝐷ℎ(0)Δ

2
ℎ. (68)

Similarly, the change in the potential energy in (67)
is given as

Δ𝑃𝐸 =
Δ*

ℎΔ𝑒

𝑈𝑒ℎ
+

Δ*
𝑒Δℎ

𝑈𝑒ℎ
.

Since the superconducting order parameters in each
band are real, Δ*

𝑒(ℎ) = Δ𝑒(ℎ). Thus, we obtain

Δ𝑃𝐸 = 2
ΔℎΔ𝑒

𝑈𝑒ℎ
. (69)

For the inter-band pairing potential less than 𝑈𝑒ℎ<0
(attractive), the intra-band order parameters have
the same sign. Hence, (67) becomes

𝐸𝐶 = −1

2
𝐷𝑒(0)Δ

2
𝑒 −

1

2
𝐷ℎ(0)Δ

2
ℎ +

+2
ΔℎΔ𝑒

𝑈𝑒ℎ
+ 2

ΔℎΔ𝑒

𝑈𝑒ℎ
. (70)

Substituting (33) and (36) into (70) for Δ2
𝑒 and, re-

spectively using the values of the different parame-
ters, we get the expression for the condensation en-
ergy to be

𝐸𝐶 =

(︂
−0.48 +

52.178

𝑈𝑒ℎ

)︂
× 103

(︂
1− 𝑇

𝑇𝐶

)︂
. (71)
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3. Results and Discussion

In this work, we have used the model Hamiltonian de-
veloped for the two-band iron-based superconductor
IBSC Ba1−𝑥Na𝑥Fe2As2. We obtained the expressions
for the temperature dependence of the superconduc-
ting order parameters for the intra-band, inter-band,
and electronic specific heat. Moreover, we obtained
the dependences of the superconducting transition
temperature (𝑇C) on the inter-band pairing poten-
tial 𝑈𝑒ℎ, density of states 𝐷(𝐸)on the excitation en-
ergy, and the condensation energy 𝐸𝐶 on the temper-
ature, pairing interaction potential, and superconduc-
ting transition temperature.

Now, by using (33), (36), and (38) and some ex-
perimental values for the two-band model high-tem-
perature IBSC Ba1−𝑥Na𝑥Fe2As2 and applying some
credible approximations, we plotted the phase dia-
gram of electron intra-band Δ𝑒(𝑇 ), hole intra-band
Δℎ(𝑇 ), inter-band Δ𝑒ℎ(𝑇 ), and the total supercon-
ducting order parameter versus the temperature as
shown in Fig. 1.

As can be seen from Fig. 1, as the temperature in-
creases, all the superconducting order parameters de-
crease and vanish at the transition temperature (𝑇C)
of Ba1−𝑥Na𝑥Fe2As2. From Fig. 1, we have compared
physically the theoretical results with experimental
data and have a significant difference at zero temper-
ature. All are decrease with increasing the tempera-
ture, and all vanish at the critical temperature.

Secondly, using (50), we have shown a variation of
the superconducting transition temperature with the
inter-band interaction potential of Ba1−𝑥Na𝑥Fe2As2
as shown in Fig. 2.

One can observe from Fig. 2 that, as the interaction
inter-band pairing potential 𝑈𝑒ℎ increases, the super-
conducting temperature increases and vice versa for
the substance under consideration. From Fig. 2, we
have compared physically the theoretical results with
experimental findings: all are originated at the same
point, and all increase with increasing the inter-band
pairing potential.

Thirdly, by considering (53) and (54), we plotted
the phase diagram for the electronic specific heat in
the electron intra-band, 𝐶𝑒

𝑒𝑠(𝑇 ), and the specific heat
for the hole intra-band, 𝐶ℎ

𝑒𝑠(𝑇 ), versus the tempera-
ture, as depicted in Fig. 3.

As can be seen from Fig. 3, the electronic spe-
cific heat for both electron and hole intra-bands

Fig. 1. Superconducting order parameters versus the temper-
ature for the iron-based superconductor Ba1−𝑥Na𝑥Fe2As2

Fig. 2. Superconducting transition temperature versus the
inter-band pairing potential energy for the iron-based super-
conductor Ba1−𝑥Na𝑥Fe2As2

Fig. 3. Electronic specific heat versus the temperature for
iron-based superconductor Ba1−𝑥Na𝑥Fe2As2
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Fig. 4. Entropy (𝑆) versus the temperature for IBSC
Ba1−𝑥Na𝑥Fe2As2

Fig. 5. Density of states for the electron intra-band at dif-
ferent temperature values versus the excitation energy for the
iron-based superconductor

Fig. 6. Density of states for the hole intra-band at different
temperature values versus the excitation energy for iron-based
superconductor Ba1−𝑥Na𝑥Fe2As2

increases with the temperature and sharply de-
creases at the transition temperature 𝑇C = 34 K of
Ba1−𝑥Na𝑥Fe2As2. This is due to the fact that, when

Fig. 7. Condensation energy versus the temperature for iron-
based superconductor Ba1−𝑥Na𝑥Fe2As2

Fig. 8. Condensation energy versus the inter-band pair-
ing potential at 𝑇 = 0 K for iron-based superconductor
Ba1−𝑥Na𝑥Fe2As2

Fig. 9. Condensation energy versus the superconduc-
ting transition temperature for iron-based superconductor
Ba1−𝑥Na𝑥Fe2As2

the material becomes superconducting at zero mag-
netic field, its electronic specific heat jumps at the
transition temperature (𝑇C) and then decays, since
the transition is continuous, as the latent heat is not
released during the process. From Fig. 3, we have also
compared the theoretical and experimental data. All
are originated from the same point, and all increase
with the temperature up to the critical temperature
and decrease after the critical temperature.
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By considering (57) and (58), we have plotted the
phase diagrams for the entropy in the electron intra-
band 𝑆𝑒(𝑇 ) and in the hole intra-band 𝑆ℎ(𝑇 ) versus
the temperature as depicted in Fig. 4.

As can be seen from Fig. 4, the entropy for both
electron and hole intra-bands increase with the tem-
perature up to the transition temperature (𝑇C =
= 34 K) of Ba1−𝑥Na𝑥Fe2As2. Furthermore, by con-
sidering (65) and (66), we plotted the phase diagrams
for the density of states in the electron intra-band
𝐷𝑒(𝐸) and density of states in the hole intra-band
𝐷ℎ(𝐸) versus the excitation energy for different val-
ues of the temperature as shown in Figs. 5 and 6,
respectively. From Fig. 4, we have compared the the-
oretical and experimental findings. All are originated
from the same point, and all increase with the tem-
perature up to the critical temperature.

From Figs. 5 and 6, one can observe that the varia-
tion of the densities of states of both the electron and
hole intra-bands with the excitation energy is anal-
ogous. Furthermore, it can be seen from the figures
that both densities of states decrease as the value of
the temperature increases.

Finally, using (71), we plotted the phase diagrams
of the condensation energy versus the temperature,
condensation energy versus the inter-band pairing
potential 𝑈𝑒ℎ at 𝑇 = 0 K, and condensation en-
ergy versus the superconducting transition tempera-
ture as shown in Figs. 7–9, respectively, for the IBSC
Ba1−𝑥Na𝑥Fe2As2.

As can be seen from Fig. 7, the condensation energy
decreases as the temperature increases and vanishes
at the transition temperature. In Fig. 8, the conden-
sation energy decreases, as the inter-band pairing po-
tential increases. Lastly in Fig. 9, the condensation
energy increases, as the temperature increases, and
tends to be constant at the condensation energy equal
to zero, 𝐸𝐶 = 0. In Figs. 7–9 respectively, we have
compared the theoretical and experimental findings
that reveal a significant difference.

4. Conclusion

In this research work, we have studied the two-band
model high-temperature IBSC Ba1−𝑥Na𝑥Fe2As2 by
developing a model Hamiltonian and by using
the well-known double-time temperature-dependent
Green’s function technique. The superconducting or-
der parameters for electron intra-band Δ𝑒(𝑇 ), hole

intra-band Δℎ(𝑇 ) and inter-band Δ𝑒ℎ(𝑇 ) versus the
temperature phase diagrams are demonstrated in
Fig. 1 and have different values at zero tempera-
ture, decrease as the temperature increases, and all
vanish at the superconducting transition temperature
(𝑇C) due to the presence of the inter-band hopping
in Ba1−𝑥Na𝑥Fe2As2. Furthermore, as demonstrated
in Fig. 2, the superconducting transition temperature
increases, as the inter-band pairing potential 𝑈𝑒ℎ in-
creases. The occurrence of the inter-band transitions
enriches the pairing of electrons and forces the sys-
tem to have a single superconducting transition tem-
perature. In Fig. 3, we have shown the variation of
the electronic specific heat for both the electron and
hole intra-bands. One can easily observe the increase
of the electronic specific heat, as the temperature
increases, and the abrupt decrease in the electronic
specific heat of both bands at the transition temper-
ature. The increase of the entropy of both bands with
the temperature is also demonstrated in Fig. 4. Like-
wise, in Figs. 5 and 6, the density of states for the elec-
tron and hole intra-bands vary in a similar manner
with the excitation energy and decrease as the value
of the temperature is increased. Lastly, in Figs. 7–9,
we have portrayed the dependence of the condensa-
tion energy on the temperature, on the inter-band
pairing potential, and on the superconducting transi-
tion temperature, respectively. The figures show that,
with increasing the temperature, the inter-band pair-
ing potential, superconducting transition tempera-
ture, and the magnitude of the condensation energy
decrease. The results we obtained in the current re-
search work are in a broad agreement with previous
findings [29, 34, 35].
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Т.Лiссану, Г.Касей, Т.Негуссi

ТЕОРЕТИЧНЕ ДОСЛIДЖЕННЯ
В РАМКАХ ДВОЗОННОЇ МОДЕЛI НАДПРОВIДНИХ
ТА ТЕРМОДИНАМIЧНИХ ВЛАСТИВОСТЕЙ
ВИСОКОТЕМПЕРАТУРНОГО НАДПРОВIДНИКА
НА ОСНОВI ЗАЛIЗА Ba1−𝑥Na𝑥Fe2As2

Виконано теоретичне дослiдження надпровiдникових та
термодинамiчних властивостей високотемпературного над-
провiдника на основi залiза Ba1−𝑥Na𝑥Fe2As2 в рамках дво-
зонної моделi. Побудовано модельний гамiльтонiан iз вико-
ристанням двочасової температурозалежної функцiї Грiна,

розраховано параметри порядку для переходiв електрона
та дiрки в зонi та мiж зонами, температуру переходу в над-
провiдний стан, густини станiв та енергiї конденсацiї. Роз-
раховано питому теплоту та ентропiю для переходiв еле-
ктронiв i дiрок у зонi. Використовуючи експериментальнi
данi та деякi наближення, ми побудували фазовi дiаграми
для параметрiв порядка як функцiй температури, розра-
хували залежнiсть критичної температури вiд потенцiалу
мiжзонної взаємодiї, температурнi залежностi питомої те-
плоти i ентропiї для переходiв електронiв i дiрок у зонi та
залежнiсть густини станiв для таких переходiв вiд енергiї
збудження для рiзних значень температури. Крiм того, зна-
йдено залежностi енергiї конденсацiї вiд температури, мiж-
зонного потенцiалу двiйкування при 𝑇 = 0 K вiд енергiї
конденсацiї та енергiї конденсацiї вiд температури 𝑇C пе-
реходу в надпровiдний стан. Виконано порiвняння теоре-
тичних i експериментальних значень. Отриманi результати
добре узгоджуються з попереднiми.

Ключ о в i с л о в а: параметри порядка, питома теплота,
густина станiв, енергiя конденсацiї, Ba1−𝑥Na𝑥Fe2As2.
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