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INDUCED VACUUM CURRENT
AND MAGNETIC FLUX IN QUANTUM
SCALAR MATTER IN THE BACKGROUND
OF A VORTEX DEFECT WITH THE NEUMANN
BOUNDARY CONDITION

A topological defect in the form of the Abrikosov–Nielsen–Olesen vortex in the space of an ar-
bitrary dimension is considered as a gauge-flux-carrying tube that is impenetrable for quantum
matter. The charged scalar matter field is quantized in the vortex background with the perfectly
rigid (Neumann) boundary condition imposed at the side surface of the vortex. We show that
a current circulating around the vortex is induced in the vacuum, if the Compton wavelength
of the matter field exceeds the transverse size of the vortex considerably. The vacuum current
is periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical
manifestation of the Aharonov–Bohm effect. The vacuum current leads to the appearance of an
induced vacuum magnetic flux that, for some values of the tube thickness, exceeds the vacuum
magnetic flux induced by a singular vortex filament. The results are compared to those obtained
earlier in the case of the perfectly reflecting (Dirichlet) boundary condition imposed at the side
surface of the vortex. It is shown that the absolute value of the induced vacuum current and
the induced vacuum magnetic flux in the case of the Neumann boundary condition is greater
than in the case of the Dirichlet boundary condition.
K e yw o r d s: vacuum polarization, Aharonov–Bohm effect, vortex defect.

1. Introduction

There are many theoretical models in field theory
which contain the phenomenon of spontaneous break-
down of symmetries, see, e.g., [1]. This phenomenon
gives rise to topological defects of various kinds,
see, e.g., [2, 3]. In this paper, we will consider a
linear topological defect known as the Abrikosov–
Nielsen–Olesen (ANO) vortex in condensed matter
physics [4, 5] or a cosmic string in cosmology [2, 6, 7].
This topological object is formed, when the first
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homotopy group of the group space of the broken
symmetry group is nontrivial. Abrikosov vortices are
real physical objects in the type-II superconduc-
tors [8, 9]. Cosmic strings are currently hypotheti-
cal objects, and their possible manifestations such
as gravitational waves, high-energy cosmic rays, and
gamma-ray bursts are actively searched in the Uni-
verse [10–12].

In the classical theory of the ANO vortex, a spin-
0 (Higgs) field condenses, and a spin-1 field corre-
sponds to the spontaneously broken gauge group;
they are coupled in the minimal way with constant
𝑒𝐻 . The transverse size of the vortex is of the order
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of the correlation length or the Compton wavelength,
~(𝑚𝐻𝑐)

−1, where 𝑚𝐻 is the mass of the condensate
field. The physical requirements of single-valuedness
of the condensate field and finiteness of the vortex en-
ergy result in the following dependence of the vortex
flux on 𝑒𝐻 : Φ =

∮︀
𝑑xA(x) = 2𝜋~𝑐𝑒−1

𝐻 , where A(x)
is the vector potential of the gauge field, and the in-
tegral is over a path enclosing the vortex once. The
quantized matter field is coupled minimally to the
gauge field with constant 𝑒. So, the quantum effects
in the background of the ANO vortex depend on the
value of 𝑒Φ.

Since the phase with broken symmetry exists only
outside the vortex, the quantum matter field can-
not penetrate inside the vortex. We assume further
that the interaction between the ANO vortex and
the quantized matter field is mediated by the vec-
tor potential of the vortex-forming spin-1 field only,
and the direct coupling between the vortex-forming
spin-0 field and the quantized matter field can be ne-
glected. If so, the ANO vortex does not affect the
surrounding matter in the framework of classical the-
ory, and such an influence is of the purely quantum
nature. The effect is a quantum-field-theoretical man-
ifestation of the famous Aharonov–Bohm effect [13],
see review [14]. It is characterized by the periodic de-
pendence on the value of the vortex flux, Φ, with the
period equal to the London flux quantum, 2𝜋~𝑐𝑒−1. A
particular case of 𝑒𝐻 = 2𝑒 (Φ = 𝜋~𝑐𝑒−1, half of the
London flux quantum) is implemented in ordinary su-
perconductors, see, e.g., [8]. Cases of fractional values
of the London flux quantum are physically meaningful
as well, and can be implemented in chiral superfluids,
liquid crystals, and quantum liquids, see [15, 16].

The physical condition of non-penetration of the
matter field inside the vortex means the absence of
the matter field current through the side surface of
the vortex, namely 𝑗𝑟|𝑟0 = 0, where 𝑟 is a radial co-
ordinate which is perpendicular to the side surface,
and 𝑟0 is the radius of the vortex. Hence, the ANO
vortex can be considered as a magnetic tube of the
finite transverse size. In the case of the scalar matter
field, the condition of non-penetrability can be satis-
fied with the use of a family of boundary conditions
of the Robin type

(cos 𝜃 𝜓 + sin 𝜃 𝑟𝜕𝑟𝜓)|𝑟0 = 0, (1)

where 𝜃 is some arbitrary parameter. Among all pos-
sible values of the parameter 𝜃, two values are promi-

nent. The case of 𝜃 = 0 corresponds to the perfectly
reflecting (Dirichlet) boundary condition 𝜓|𝑟0 = 0.
The case of 𝜃 = 𝜋/2 corresponds the perfectly rigid
(Neumann) boundary condition 𝑟𝜕𝑟𝜓|𝑟0 = 0.

In the present paper, we shall study the current
which is induced in the vacuum of the quantized
charged scalar matter field by the ANO vortex with
nonvanishing transverse size with the perfectly rigid
(Neumann) boundary condition on its side surface
(𝜃 = 𝜋/2). This current creates a magnetic field in the
vacuum, and the total induced vacuum magnetic flux
will be studied in detail in what follows. In the case
of the ANO vortex of zero transverse size, this prob-
lem was solved previously, see [17–19] and references
therein. For the case of the finite transverse size of the
ANO vortex, the induced vacuum current, magnetic
flux, energy and the Casimir force were considered
in the [20–24] for the case of the perfectly reflecting
(Dirichlet) boundary condition.

It should be noted that, for the quantized fermion
matter field, the condition of non-penetration of the
matter field inside the finite transverse size ANO
vortex has a form different from (1), and it can be
parametrized with the help of one parameter in the
case of two-dimensional space and four parameters
in the case of three-dimensional space. The induced
vacuum current and magnetic flux in these cases were
considered for all values of parameters in [25–27].

2. Induced Vacuum
Current and Total Magnetic Flux

We start with the Lagrangian for a complex scalar
field 𝜓 in the (𝑑+ 1)-dimensional space-time

ℒ = (∇𝜇𝜓)
*(∇𝜇𝜓)−𝑚2𝜓*𝜓, (2)

where ∇𝜇 is the covariant derivative, and 𝑚 is the
mass of the scalar field. The vacuum current is con-
ventionally defined as

j(x) = −i
∑︁∫︁
𝜆

(2𝐸𝜆)
−1 ×

×{𝜓*
𝜆(x)[∇𝜓𝜆(x)]− [∇𝜓𝜆(x)]

*𝜓𝜆(x)}, (3)

where 𝜆 is the set of parameters (quantum num-
bers) specifying the state, wave functions 𝜓𝜆(x) form
a complete set of solutions to the stationary Klein–
Fock–Gordon equation(︀
−∇2 +𝑚2

)︀
𝜓𝜆(x) = 𝐸2

𝜆𝜓(x), (4)
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𝐸𝜆 = 𝐸−𝜆 > 0 is the energy of the state; symbol∑︀∫︀
𝜆

denotes summation over discrete and integration

(with a certain measure) over continuous values of 𝜆.
In the present paper we are considering a static

background in the form of the cylindrically symmet-
ric gauge flux tube of the finite transverse size. The
coordinate system is chosen in such a way that the
tube is along the 𝑧 axis. The tube in a 3-dimensional
space is obviously generalized to the (𝑑 − 2)-tube in
a 𝑑-dimensional space by adding extra 𝑑 − 3 dimen-
sions as longitudinal ones. The covariant derivative
is ∇0 = 𝜕0, ∇ = 𝜕 − i𝑒V with 𝑒 being the coupling
constant of the dimension𝑚(3−𝑑)/2 and the vector po-
tential possessing only one nonvanishing component
given by

𝑉𝜙 = Φ/2𝜋, (5)

outside the tube; here, Φ is the value of the gauge flux
inside the (𝑑 − 2)-tube, and 𝜙 is the angle in polar
(𝑟, 𝜙) coordinates on a plane which is transverse to
the tube. The Neumann boundary condition at the
side surface of the tube (𝑟 = 𝑟0) is imposed on the
scalar field:

𝜕𝑟𝜓𝜆|𝑟=𝑟0
= 0, (6)

i.e., the surface of the flux tube is a perfectly rigid
boundary for the matter field.

The solution to (4) and (6) outside the impenetra-
ble tube of radius 𝑟0 takes the form

𝜓𝑘𝑛p(x) = (2𝜋)(1−𝑑)/2𝑒ipxd−2𝑒i𝑛𝜙Ω|𝑛−𝑒Φ/2𝜋|(𝑘𝑟, 𝑘𝑟0),

(7)
where

Ω𝜌(𝑢, 𝑣) =
𝑌 ′
𝜌(𝑣)𝐽𝜌(𝑢)− 𝐽 ′

𝜌(𝑣)𝑌𝜌(𝑢)[︀
𝐽 ′
𝜌
2(𝑣) + 𝑌 ′

𝜌
2(𝑣)

]︀1/2 , (8)

and 0 < 𝑘 < ∞, −∞ < 𝑝𝑗 < ∞ (𝑗 = 1, 𝑑− 2), 𝑛 ∈ Z
(Z is the set of integer numbers), 𝐽𝜌(𝑢) and 𝑌𝜌(𝑢)
are the Bessel functions of order 𝜌 of the first and
second kinds, the prime near the function means the
derivative with respect to the function argument. So-
lutions (7) obey orthonormalization condition∫︁
𝑟>𝑟0

𝑑 𝑑x𝜓*
𝑘𝑛p(x)𝜓𝑘′𝑛′p′(x) =

=
𝛿(𝑘 − 𝑘′)

𝑘
𝛿𝑛,𝑛′ 𝛿𝑑−2(p− p′). (9)

Using (3) and (7), we get 𝑗𝑟 = j𝑑−2 = 0 and

𝑗𝜙(𝑟) ≡ 𝑥1𝑗2(x)− 𝑥2𝑗1(x) = (2𝜋)1−𝑑

∫︁
𝑑𝑑−2𝑝×

×
∞∫︁
0

𝑑𝑘 𝑘(p2 + 𝑘2 +𝑚2)−1/2𝑆(𝑘𝑟, 𝑘𝑟0), (10)

where
𝑆(𝑢, 𝑣) =

∑︁
𝑛∈Z

(︂
𝑛− 𝑒Φ

2𝜋

)︂
Ω2

|𝑛−𝑒Φ/2𝜋|(𝑢, 𝑣). (11)

Due to the infinite range of the summation, the last
expression is periodic in the flux Φ with a period equal
to 2𝜋𝑒−1, i.e., it depends on the quantity

𝐹 =
𝑒Φ

2𝜋
−

[︂[︂
𝑒Φ

2𝜋

]︂]︂
, (12)

where [[𝑢]] is the integer part of the quantity 𝑢 (i.e.,
the integer which is less than or equal to 𝑢).

Let us rewrite (11) in the form

𝑆(𝑢, 𝑣) = 𝑆0(𝑢) + 𝑆1(𝑢, 𝑣), (13)

where

𝑆0(𝑢) =

=

∞∑︁
𝑛=0

[︀
(𝑛+ 1−𝐹 ) 𝐽2

𝑛+1−𝐹 (𝑢)−(𝑛+𝐹 ) 𝐽2
𝑛+𝐹 (𝑢)

]︀
(14)

and

𝑆1(𝑢, 𝑣) =

∞∑︁
𝑛=0

[(𝑛+ 1− 𝐹 )Λ𝑛+1−𝐹 (𝑢, 𝑣) −

− (𝑛+ 𝐹 )Λ𝑛+𝐹 (𝑢, 𝑣)] , (15)

where

Λ𝜌(𝑢, 𝑣) =

=
𝐽 ′ 2
𝜌 (𝑣)

[︀
𝑌 2
𝜌 (𝑢)− 𝐽2

𝜌 (𝑢)
]︀
− 2𝐽 ′

𝜌(𝑣)𝐽𝜌(𝑢)𝑌
′
𝜌(𝑣)𝑌𝜌(𝑢)

𝑌 ′ 2
𝜌 (𝑣) + 𝐽 ′ 2

𝜌 (𝑣)
.

(16)

The vacuum current 𝑗𝜙 circulating around the (𝑑−
− 2)-tube leads to the appearance of a vacuum mag-
netic field with strength 𝐵3...𝑑 directed along the
(𝑑 − 2)-tube; this is a consequence of the Maxwell
equation

𝑟𝜕𝑟𝐵
3...𝑑
(𝐼) (𝑟) = −𝑒𝑗𝜙(𝑟), (17)
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where the coupling constant 𝑒 differs in general from
𝑒. The total flux of the induced vacuum magnetic field
across a plane which is orthogonal to the (𝑑−2)-tube
is defined as

Φ
(𝐼)
𝑑 = 2𝜋

∞∫︁
𝑟0

𝑑𝑟 𝑟𝐵3...𝑑
(𝐼) (𝑟) (18)

and is given by the expression

Φ
(𝐼)
𝑑 = 𝑒𝜋

∞∫︁
𝑟0

𝑑𝑟 𝑟𝑗𝜙(𝑟)

(︂
1− 𝑟20

𝑟2

)︂
. (19)

Inserting 𝑗𝜙(𝑟) (10) and changing the order of inte-
gration over 𝑟 and p, we get, see [20],

Φ
(𝐼)
𝑑 = 𝑒𝑚𝑑−3 (4𝜋)

(2−𝑑)/2

2Γ(𝑑/2)

∞∫︁
0

𝑑𝑢√
1 + 𝑢2/(𝑑−2)

×

×𝒟(𝑚𝑟0
√︀

1 + 𝑢2/(𝑑−2)), (20)

where Γ(𝑣) is the Euler gamma-function and

𝒟(𝑦) =

∞∫︁
𝑦

𝑑𝑥

(︂
1− 𝑦2

𝑥2

)︂ ∞∫︁
0

𝑑𝑧 𝑧√
𝑧2 + 𝑥2

𝑆
(︁
𝑧, 𝑧

𝑦

𝑥

)︁
. (21)

It should be noted that the function 𝒟(𝑦) (21) is im-
mediately related to the total induced vacuum mag-
netic flux in the 𝑑 = 2 case:

Φ
(𝐼)
2 =

𝑒

2𝑚
𝒟(𝑚𝑟0). (22)

Since 𝑆1(𝑢, 0) = 0, one can obtain

𝒟(0) =

∞∫︁
0

𝑑𝑥

∞∫︁
0

𝑑𝑧 𝑧√
𝑧2 + 𝑥2

𝑆0(𝑧) =

=
1

3
𝐹 (1− 𝐹 )

(︂
𝐹 − 1

2

)︂
, (23)

and the total induced vacuum magnetic flux in the
𝑑 = 2 case is finite in the limit of a singular (i.e.,
infinitely thin) vortex filament, 𝑟0 → 0 [17]:

lim
𝑟0→0

Φ
(𝐼)
2 =

𝑒

6𝑚
𝐹 (1− 𝐹 )

(︂
𝐹 − 1

2

)︂
. (24)

However, in the 𝑑 ≥ 3 cases, the total induced mag-
netic flux becomes infinite in the limit of the infinitely
thin vortex filament [18]. In this case, the considera-
tion of the vacuum polarization by the vortex filament
of the finite transverse size is especially actual.

3. Numerical Analysis
of the Induced Vacuum Characteristics

As one can see from the previous section, in order to
find the induced vacuum magnetic flux in the 𝑑-di-
mensional space, we first need to find it in the 2-di-
mensional space. Unfortunately, this task in the case
of a vortex tube of finite transverse size can be solved
only by numerical methods.

With this aim, we rewrite expression (10) in the
𝑑 = 2 case in the dimensionless form

𝑟𝑗𝜙(𝑟)|𝑑=2 =
1

2𝜋

∞∫︁
0

𝑑𝑧 𝑧

[︂
𝑧2 +

(︁𝑚𝑟0
𝜆

)︁2]︂−1/2

𝑆(𝑧, 𝜆𝑧),

(25)
where 𝜆 = 𝑟0/𝑟 (𝜆 ∈ [0, 1]).

In the limit of a singular filament (𝑟0 = 0), ex-
pression (25) contains only 𝑆0 (14). The summation
in (14) can be performed analytically and (25) is re-
duced to the following form, see [20]:

𝑟𝑗sing𝜙 (𝑟)
⃒⃒
𝑑=2

=
sin(𝐹𝜋)

𝜋3

∞∫︁
𝑚𝑟

𝑑𝑤
𝑤2√︀

𝑤2 − (𝑚𝑟)2
×

×
{︀
𝑤
[︀
𝐾2

1−𝐹 (𝑤)−𝐾2
𝐹 (𝑤)

]︀
+(2𝐹−1)𝐾𝐹 (𝑤)𝐾1−𝐹 (𝑤)

}︀
,

(26)

where 𝐾𝜌(𝑢) is the Macdonald function of order 𝜌.
The total induced vacuum magnetic flux in this case,
see (24), attains the maximal absolute value equal to
|𝑒|/(72

√
3𝑚) at 𝐹 = 𝐹±, where

𝐹± =
1

2

(︂
1± 1√

3

)︂
. (27)

Next, we will numerically compute the induced vac-
uum current in the 𝑑 = 2 case at 𝐹 = 𝐹+, when the
integral in (25) is likely to be most distinct from zero
(note that the current at 𝐹 = 𝐹− equals to that at
𝐹 = 𝐹+ with the opposite sign). So, for a vortex tube
of nonvanishing radius, we have to compute values of
dimensionless quantity 𝑟𝑗𝜙 at different values of 𝜆. To
do this, we perform the high-precision numerical in-
tegration in (25) with the help of a technique devel-
oped earlier in [20–24]. The results of computation
can be approximated by an interpolation function in
the form

𝑟𝑗𝜙(𝑟)|𝑑=2 =

[︂
𝑒−2𝑥

√
𝑥

]︂ [︂
𝑃𝑛(𝑥− 𝑥0)

𝑥𝑛

]︂
𝑄𝑘(𝑥

2)

𝑅𝑘(𝑥2)
, 𝑥 > 𝑥0,

(28)
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Fig. 1. The dimensionless induced vacuum current (𝑟𝑗𝜙) as a function of the dimensionless distance from the axis of the tube
(𝑥) for different values of the dimensionless tube radius (𝑥0) for the case of the Neumann (NC) and the Dirichlet (DC) boundary
conditions: (a), (c) solid line corresponds to 𝑟𝑗𝜙 × 102 for 𝑥0 = 1, dashed line corresponds to 𝑟𝑗𝜙 × 10 for 𝑥0 = 2/3, and dotted
line corresponds to 𝑟𝑗𝜙 for 𝑥0 = 1/3; (b), (d) solid line corresponds to the cases of a singular filament (𝑥0 = 0), dashed line
corresponds to 𝑥0 = 10−1, dotted line corresponds to 𝑥0 = 10−2, and dash-dotted line corresponds to 𝑥0 = 10−3. Variable 𝑥 is
along the abscissa axis

where 𝑥 = 𝑚𝑟, 𝑥0 = 𝑚𝑟0 and 𝑃𝑗(𝑦), 𝑄𝑗(𝑦), 𝑅𝑗(𝑦)
are polynomials in 𝑦 of the 𝑗-th order with the 𝑥0-
dependent coefficients. It turns out that, for the inter-
polation of data, the most suitable choice of function
(28) contains the polynomials with indices 𝑛 = 9 and
𝑘 = 4. The first factor in square brackets describes
the large-distance behavior in the case of a zero-radius
tube (filament), the second factor in square brackets
is an asymptotics at small distances from the side sur-
face of the tube, the last factor describes the behav-
ior at intermediate distances. Since the vortex tube
is impenetrable, 𝑟𝑗𝜙(𝑟) (28) vanishes at 𝑥 ≤ 𝑥0.

The results in the 𝑑 = 2 case for the induced vac-
uum current in the case of the Neumann boundary
condition are presented on Fig. 1, a and Fig. 1, b. For
comparison, we also present the results for the in-
duced vacuum current in the case of the Dirichlet
boundary condition [20], see Fig. 1, c and Fig. 1, d. As
one can see, the current is negligible for the tube
of large radius, i.e., of order of the Compton wave-
length and greater, 𝑟0 ≥ 𝑚−1, see Fig. 1, a and
Fig. 1, c. One can note that the induced vacuum cur-
rent in the case of the Neumann boundary condition
has a much weaker dependence on the tube thickness

𝑥0 (Fig. 1, a) as compared to that in the case of the
Dirichlet boundary condition (Fig. 1, c). The current
in the case of 𝑟0 ≪ 𝑚−1 is comparable with the cur-
rent in the case of a singular filament, see Fig. 1, b
and Fig. 1, d. It should be noted that, in the case
of the Dirichlet boundary condition, the induced vac-
uum current is always less in value than in the case
of a singular filament, see Fig. 1, d. It is not true
for the case of the Neumann boundary condition, see
Fig. 1, b. It should be noted that the value of the cur-
rent in the case of the Neumann boundary condition
is greater than the value of the current in the case of
the Dirichlet boundary condition at any value of the
tube thickness.

Using (19), (21), (22), and (28), we compute nu-
merically the total induced vacuum magnetic flux in
the 𝑑 = 2 case for different values of the tube thick-
ness (parameter 𝑥0 = 𝑚𝑟0). The results of the com-
putation in the dimensionless form can be approxi-
mated by an interpolation function in the form

ln
𝑚Φ

(𝐼)
2

𝑒
= ln𝒟(𝑥0) =𝑀1(𝑥0)Θ(𝑋 − 𝑥0)+

+
[︁
𝑎+ 𝑏𝑥10 + 𝑑𝑥50 +

√︀
𝐿2(𝑥0)

]︁
Θ(𝑥0 −𝑋), (29)
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Fig. 2. The dimensionless induced vacuum magnetic flux in spaces of different dimensionality as a function
of the dimensionless tube radius (𝑥0) for the case of the Neumann (NC) and the Dirichlet (DC) boundary
conditions: 𝑒−1𝑚Φ

(𝐼)
2 – solid line, 𝑒−1Φ

(𝐼)
3 – dashed line, (𝑒𝑚)−1Φ

(𝐼)
4 – dotted line. The case of 𝑥0 = 0 and

𝑑 = 2 is presented by a horizontal solid line

The dimensionless induced vacuum magnetic flux in the cases of dimension 𝑑 = 2, 3, 4

for tubes of different radii and for the case of the Neumann (NC) and Dirichlet (DC) boundary condition

𝑥0 1 2/3 1/3 10−1 10−2 10−3

𝑚
𝑒
Φ

(𝐼)
2 , NC 7.09× 10−6 7.79× 10−5 9.05× 10−4 5.34× 10−3 9.92× 10−3 0.01

𝑚
𝑒
Φ

(𝐼)
2 , DC 2.36× 10−8 5.76× 10−7 2.07× 10−5 4.88× 10−4 3.66× 10−3 6.22× 10−3

1
𝑒
Φ

(𝐼)
3 , NC 10−6 1.41× 10−5 2.26× 10−4 2.14× 10−3 9.34× 10−3 1.64× 10−2

1
𝑒
Φ

(𝐼)
3 , DC 3.07× 10−9 8.83× 10−8 4.13× 10−6 1.48× 10−4 2.22× 10−3 6.55× 10−3

1
𝑚𝑒

Φ
(𝐼)
4 , NC 7.5× 10−8 1.3× 10−6 3.02× 10−5 5.58× 10−4 1.08× 10−2 1.15× 10−1

1
𝑚𝑒

Φ
(𝐼)
4 , DC 2.06× 10−10 7.06× 10−9 4.43× 10−7 2.68× 10−5 1.25× 10−3 1.32× 10−2

where 𝑀𝑗(𝑦), 𝐿𝑗(𝑦) are polynomials in 𝑦 of the 𝑗-th
order, Θ(𝑦) is the Heaviside step function and 𝑋 =
= 10−2. Using (20) and (29), we compute numerically
the total induced magnetic flux in the 𝑑 = 3, 4 cases,
i.e. Φ(𝐼)

3 and Φ
(𝐼)
4 . The results for the 𝑑 = 2, 3, 4 cases

are presented in Fig. 2, a and in Table. For compar-
ison, we also present the results for the induced flux
in the case of the Dirichlet boundary condition [20],
see Fig. 2, b and Fig. 2, c.

As one can see, in the case of the Neumann bound-
ary condition (for 𝑑 = 2), there is a region of the tube
thickness (0 < 𝑥0 < 0.4), where the absolute value of
the induced flux is greater than in the case of a singu-
lar filament, see Fig. 2, a. Whereas the absolute value
of the flux induced by a singular filament is always
greater than the absolute value of the flux induced by
a tube of the nonvanishing radius with the Dirichlet
boundary condition, see Fig. 2, b and Fig. 2, c. One
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can see also that the induced flux from a tube with
the Neumann boundary condition is greater than the
induced flux from a tube with the Dirichlet boundary
condition at any value of the tube thickness.

In the case of higher space dimensions, the behav-
ior of the induced flux in the case of the Neumann
and Dirichlet boundary conditions is similar, see
Fig. 2. For the case of a space with a higher dimension
(𝑑 = 4) at large radii of the tube, the induced flux is
a more strongly decreasing function. But, at smaller
radii of the tube, the induced flux is a more strongly
increasing function compared to that in the case of
the space with a smaller dimension (𝑑 = 3). While
the induced flux in the unphysical case of a singular
filament is infinite for 𝑑 > 2„ the induced flux in the
physical case of a tube of nonvanishing radius is fi-
nite. As one see from Table, the absolute value of the
flux induced by a tube with the Neumann boundary
condition is always greater than the absolute value of
the flux induced by a tube with the Dirichlet bound-
ary condition for any dimension of the space.

4. Summary

In the present paper, we have considered the current
and the total magnetic flux which are induced in the
vacuum of the quantized charged scalar matter field
by a topological defect in the form of the ANO vortex
in a space of arbitrary dimension. We assume that the
ANO vortex is impenetrable for the quantum mat-
ter. The perfectly rigid (Neumann) boundary condi-
tion is imposed on the matter field at the side sur-
face of the vortex. The same problem was considered
previously for the vortex with the perfectly reflect-
ing (Dirichlet) boundary condition on its side surface
[20]. So, we compare the results obtained for the Neu-
mann and Dirichlet boundary conditions at the side
surface of the vortex.

In both cases of the above- mentioned boundary
conditions, the induced current is circulating around
the vortex, and it is vanishingly small in the case
of the vortex transverse size being of the order of
or exceeding the Compton wavelength of the matter
field (𝑥0 & 1), see Fig. 1, Fig. 2 and Table for the
𝑑 = 2, 3, 4 dimensions of the space. This confirms the
previously obtained conclusion [21–24] that the vac-
uum polarization effects are essential only for matter
fields with masses which are much smaller than the
scale of the spontaneous symmetry breaking (mass of
the Higgs field forming the topological defect).

In both cases of the above- mentioned boundary
conditions, the induced vacuum current decreases ex-
ponentially at large distances from the vortex. The
current and the induced vacuum magnetic flux are
odd in the value of the vortex flux, Φ, and periodic in
this value with the period equal to the London flux
quantum, 2𝜋𝑒−1. They vanish at 𝐹 = 0, 1/2, 1 and
are of opposite signs in the intervals 0 < 𝐹 < 1/2
and 1/2 < 𝐹 < 1, with their absolute values being
symmetric with respect to the point 𝐹 = 1/2. In the
case of a space of dimension 𝑑 > 2, the account for
the finite transverse size of the vortex eliminates an
unphysical divergence for the total induced vacuum
flux, which takes place in the case of a singular vortex
filament.

The visible difference between the cases of the Neu-
mann and Dirichlet boundary conditions lies in the
magnitude of the vacuum polarization effects. The
absolute value of the induced vacuum current and
the induced vacuum magnetic flux in the case of the
Neumann boundary condition is greater than that in
the case of the Dirichlet boundary condition. In par-
ticular, as one can see from Fig. 1, d and Fig. 2, b
for the dimension of the space 𝑑 = 2, the vacuum ef-
fects in the case of the Dirichlet boundary condition
are always smaller than in the case of a singular vor-
tex filament. However, as one can see from Fig. 1, b,
for the case of the Neumann boundary condition, the
absolute value of the induced vacuum current can ex-
ceed the absolute value of the induced vacuum cur-
rent in the case of a singular vortex filament. Moreo-
ver, there is a region of the vortex thickness values
(0 < 𝑥0 < 0.4), see Fig. 2, a, where the absolute value
of the induced vacuum magnetic flux is greater than
that in the case of a singular vortex filament for the
𝑑 = 2 space.
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IНДУКОВАНI ВАКУУМНИЙ СТРУМ
ТА МАГНIТНИЙ ПОТIК У КВАНТОВАНIЙ
СКАЛЯРНIЙ МАТЕРIЇ В ПРИСУТНОСТI
ВИХРОВОГО ДЕФЕКТУ З ГРАНИЧНОЮ
УМОВОЮ ТИПУ НЕЙМАНА

Топологiчний дефект у виглядi вихору Абрикосова–Нiльсе-
на–Олесена у просторi довiльної вимiрностi розглядається
як трубка, що мiстить потiк калiбрувального поля та є не-
проникливою для поля матерiї. Квантоване заряджене ска-
лярне поле матерiї квантується з урахуванням наявностi
вихору, на поверхнi якого накладено умову типу Нейма-
на. Показано, що навколо вихору iндукується вакуумний
струм за умови, що комптонiвська довжина хвилi поля ма-
терiї значно перевищує поперечний розмiр вихору. Вакуум-
ний струм є перiодичною функцiєю вiд потоку калiбруваль-
ного поля вихору, що є квантово-польовим проявом ефе-
кту Ааронова–Бома. Вакуумний струм викликає появу iн-
дукованого вакуумного магнiтного потоку, який (за деяких
значень товщини трубки) перевищує вакуумний магнiтний
потiк, що iндукується сингулярним вихором. Отриманi ре-
зультати були порiвнянi з результатами, отриманими для
випадку, коли на поверхню трубки накладалися граничнi
умови типу Дiрiхле. Було показано, що у випадку грани-
чної умови типу Неймана абсолютнi значення iндукованого
вакуумного струму та iндукованого вакуумного магнiтного
потоку перевищують значення вiдповiдних величин у ви-
падку, коли на трубку накладаються граничнi умови типу
Дiрiхле.

Ключ о в i с л о в а: вакуумна поляризацiя, ефект Аароно-
ва–Бома, вихровий дефект.
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