
OPTICS, ATOMS AND MOLECULES

34 ISSN 2071-0186. Ukr. J. Phys. 2022. Vol. 67, No. 1

https://doi.org/10.15407/ujpe67.1.34

S. ESHETE
Department of Physics, Debre Tabor University
(P. O. Box 272 Debre Tabor, Ethiopia; e-mail: sitotaweshete11@gmail.com)

EFFECTS OF RESERVOIR INPUT
FIELDS ON THE NON-CLASSICAL FEATURES
OF QUANTUM BEAT CASCADE LASER

The quantum features and quantum statistical properties of a cavity-mode radiation emit-
ted from the coherently prepared degenerate three-level laser have been investigated, by using
the standard quantum electrodynamics approach and accounting for the light-matter interac-
tion. We considered the vacuum reservoir, squeezed vacuum reservoir, and thermal reservoir
to see the effect of reservoir input fields on the statistical and squeezing nature on the cavity
radiation. It is found that the squeezed vacuum reservoir has enhancement effect on the squeez-
ing property, as well as the brightness of the cavity radiation compared to those of the vacuum
and thermal reservoirs. It is also observed that the radiation emitted from the cavity is in the
squeezed state with super-Poissonian photon statistics regardless of the reservoir nature.
K e yw o r d s: super-Poissonian, squeezed state, quantum features, light-matter interaction.

1. Introduction
The light-matter interaction [1–6] is the heart of
quantum optics. When an atom interacts with a light
mode in a certain confinement such as in the cav-
ity, there would be emission of a photon through the
atomic transition either spontaneously, or stimulated.
Spontaneous transmissions are assumed to be the
cause for noise in the cavity radiation. On contrast,
stimulated emission produces light modes which are
assumed to be coherent, in-phase, and focused. Fol-
lowing M.O. Scully [7], researchers did a series of pa-
pers on the development of atomic systems in the
field of quantum optics. For instance, the interaction
of a three-level atomic system with the cavity field
has been studied in [8–25]. It is confirmed that the
three-level atomic system generates a light mode with
non-classical natures by different mechanisms. These
systems are a source of non-classical light, when the
atom is in coherent superposed states and coupled to
the enhanced reservoir modes [23, 25, 26].
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The non-classical behaviors such as the squeez-
ing, entanglement, and photon statistics in the cavity
mode are assumed to be a consequence of the coupling
and atomic coherence. The generation of squeezed
and entangled light from various schemes of coherent
superposed three-level atomic system passing through
the cavity has been studied in [23, 25, 26]. When a
three-level atom in a cascade configuration makes a
transition from the top to the bottom level via the
intermediate level, two photons are emitted. If the
two photons have the same frequency, the three-level
atom is called degenerate; otherwise it is known to be
non-degenerate.

Several authors were researching the quantum op-
tical systems coupled to a reservoir modes, for exam-
ple, cavity mode radiation fluctuations coupled to a
squeezed vacuum reservoir [16, 25, 26], vacuum reser-
voir [27], and thermal reservoir [28] using standard
approaches. In a three-level laser, we could have dif-
ferent configurations,such as cascade [8, 9, 20, 23, 25–
28], V-shaped [12, 21, 29], and lambda-types [14–
19, 22]. One of the fundamental processes in a three-
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Fig. 1. Schematic representations of moving three-level atoms passing through a cavity with
quantized electromagnetic fields. The atoms stay for a time 𝜏 in the cavity such that they
have sufficient decay time

level system is the establishment of population inver-
sion in which three-level atoms are pumped from the
lower electronic state to the upper one to produce a
coherent light [23,26]. Moreover, in the establishment
of a superposed initial atomic state, there would be
the atomic coherence [25, 30]. In one way, the quanti-
fiers of the light beams generated from the atomic sys-
tem in an optical cavity are explained by the atomic
probability difference [23, 25, 26]. Even though it is
possible to quantify the properties of a light beam
in relation to the atomic probability difference, it is
more convenient to see the role of the atomic coher-
ence in the quantifier dynamics.

On the other hand, it is well known that the sys-
tem features are affected, when it immersed into a
reservoir. Thus, light beams produced from an opti-
cal cavity which contains three-level atoms are highly
disturbed by the fields of the reservoir besides the
cavity parameters. Therefore; the quantifiers like the
quadrature squeezing, entanglement, quantum dis-
cord, and intensity of the cavity radiation produced
through the system are changed in a certain manner.

Taking this as motivation, in this work, we for-
mulate the atomic coherence for a typical three-level
atom passing through a cavity. To achieve this goal,
we have employed the existing atomic probability
difference expression used in [26]. In this context,

the influences of the atomic coherence and reservoir
field are analyzed using analytically approaches. This
helps us to figure out the relationship between the
atomic coherence and the quantifiers of light beams
without omitting the reservoir effect. Therefore, such
study can facilitate the establishment and compre-
hensive understanding of the inherent degree of the
quantifiers due to the atomic coherence and reservoir
fields.

2. Model and Quantum Electrodynamics

In Fig. 1, we show the schematic representation
of coherently superposed three-level atoms passing
through the cavity. The cavity is composed of a single
ported mirror which allows the reservoir field to enter
the cavity via one side and a perfectly reflected mirror
on the other side. In this paper, we consider the de-
generate cascade three-level atoms initially prepared
in a coherent superposition of the top and bottom
levels that are injected at a constant rate 𝑟𝑎 and re-
moved from the laser cavity after some time 𝜏 . We
denote the top, intermediate, and bottom levels of a
three-level atom by |𝑎⟩, |𝑏⟩, and |𝑐⟩, respectively. We
assume the cavity mode to be at resonance with the
two transitions |𝑎⟩ → |𝑏⟩ and |𝑏⟩ → |𝑐⟩, and with di-
rect transition between levels |𝑎⟩ and |𝑐⟩ to be dipole
forbidden. To this end, we write the initial state of a
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single atom as

|𝜓(0)
𝐴 ⟩ = 𝑐(0)𝑎 |𝑎⟩+ 𝑐(0)𝑐 |𝑐⟩, (1)

where 𝑐(0)𝑎 and 𝑐(0)𝑐 are the real probability amplitudes
of an atom in the states |𝑎⟩ and |𝑐⟩, respectively. The
corresponding density of states for the atom is repre-
sented by

𝜌
(0)
𝐴 = 𝜌(0)𝑎𝑎 |𝑎⟩⟨𝑎|+𝜌(0)𝑐𝑐 |𝑐⟩⟨𝑐|+𝜌(0)𝑎𝑐 |𝑎⟩⟨𝑐|+𝜌(0)𝑐𝑎 |𝑐⟩⟨𝑎|, (2)

where 𝜌(0)𝑎𝑎 and 𝜌(0)𝑐𝑐 are the probabilities for the atom
to be on the upper level and lower one, respective-
ly. Furthermore, 𝜌(0)𝑎𝑐 and 𝜌

(0)
𝑐𝑎 are cross-correlations

which can be named as the atomic coherence. These
cross-correlations signifies the probability of an atom
to be found in one electronic energy state at the same
time. The superposed state of an atom at the initial
time is responsible for the induction of the atomic
coherence. This can be explained using quantum me-
chanics purely. Hence, we may not found the classical
analogy for such correlations.

In the rotating approximation scheme and assum-
ing ~ = 1, the quantum Hamiltonian which describes
the interaction of a single atom with the cavity mode
can be written as

�̂�𝐼 = 𝑖𝑔
[︁
(�̂�𝑎𝑏 + �̂�𝑏𝑐) �̂�− �̂�†(�̂�†

𝑎𝑏 + �̂�†
𝑏𝑐)

]︁
, (3)

where �̂� is the annihilation operator for the cavity
mode, and 𝑔 is the atom-field coupling constant which
must be positive (𝑔 > 0). The operators �̂�𝑎𝑏 = |𝑎⟩⟨𝑏|
and �̂�𝑏𝑐 = |𝑏⟩⟨𝑐| are atomic lowering operators.

In this section, however, we found it useful to in-
clude a highlight for the derivation of the time evo-
lution of the system’s density operator describing the
interaction of the cavity mode generated by a three-
level laser coupled to a squeezed vacuum reservoir in
order to make the paper more self-contained.

We denote the density operator of squeezed vacuum
reservoir modes by �̂�(𝑡). Then the density operator
for the system alone is given by

𝜌(𝑡) = Tr𝑅[�̂�(𝑡)], (4)

where Tr𝑅 indicates the trace over the reservoir vari-
able only. The density operator �̂�(𝑡) evolves in time
according to

𝑑

𝑑𝑡
�̂�(𝑡) =

1

𝑖~

[︁
�̂�(𝑡), �̂�(𝑡)

]︁
, (5)

where �̂�(𝑡) is the Hamiltonian which governs the in-
teraction between the system and the reservoir. By
considering initially the system and the reservoirs to
be uncorrelated, it is possible to write, for the den-
sity operator of the system and the reservoirs at the
initial time (𝑡 = 0), that �̂�(0) = 𝜌(0)⊗ �̂� [31], where
𝜌(0) and �̂� are the density operators of the system
and the reservoir at the initial time, respectively. In
view of these relations, Eq. (5) could be written as

𝑑

𝑑𝑡
�̂�(𝑡) =

1

𝑖~

[︁
�̂�(𝑡), 𝜌(0)⊗ �̂�

]︁
−

− 1

~2

𝑡∫︁
0

[︁
�̂�(𝑡′),

[︁
�̂�(𝑡′), �̂�(𝑡′)

]︁]︁
𝑑𝑡′. (6)

Applying the weak coupling approximation which im-
plies that �̂�(𝑡′) = 𝜌(𝑡′)⊗ �̂�, it follows that

𝑑

𝑑𝑡
𝜌(𝑡) =

1

𝑖~
Tr𝑅

{︁[︁
�̂�(𝑡), 𝜌(0)⊗ �̂�

]︁}︁
−

− 1

~2

𝑡∫︁
0

Tr𝑅

{︁[︁
�̂�(𝑡),

[︁
�̂�(𝑡′), 𝜌(𝑡′)⊗ �̂�

]︁]︁}︁
𝑑𝑡′, (7)

Let the system with a single-mode light with fre-
quency 𝜔 be coupled to a single-mode continuum
squeezed vacuum reservoir. Therefore, the interaction
between the system and the squeezed vacuum reser-
voir is described by the Hamiltonian

�̂�(𝑡) = 𝑖~
∑︁
𝑖

𝜇𝑖

(︁
(�̂�†𝐴𝑖𝑒

𝑖(𝜔−𝜔𝑖) − �̂�𝐴†
𝑖𝑒

−𝑖(𝜔−𝜔𝑖)
)︁
. (8)

Here, 𝐴𝑖 is the annihilation operator for the reservoir
mode with frequency of 𝜔𝑖. The coefficient 𝜇𝑖 is the
coupling constant describing the interaction between
the intracavity mode and the reservoir mode. App-
lying the cyclic property of the trace and the relation
Tr𝑅

(︀
�̂�⊗ �̂�(𝑡)

)︀
= ⟨�̂�(𝑡)⟩𝑅 and with the fact that, for

squeezed vacuum reservoirs

⟨𝐴𝑖⟩𝑅 = ⟨𝐴†
𝑖 ⟩𝑅 = 0, (9)

one can get

Tr𝑅

{︁[︁
�̂�(𝑡), 𝜌(0)⊗ �̂�

]︁}︁
= 0. (10)

Therefore; Eq. (7) becomes

𝑑

𝑑𝑡
𝜌(𝑡)=− 1

~2

𝑡∫︁
0

Tr𝑅

{︁[︁
�̂�(𝑡),

[︁
�̂�(𝑡′), 𝜌(𝑡′)⊗ �̂�

]︁]︁}︁
𝑑𝑡′.

(11)
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After the lengthy, but straightforward integration,
Eq. (11) takes the form

𝑑

𝑑𝑡
𝜌 =

𝜅𝑁

2

[︀
2�̂�†𝜌�̂�− 𝜌�̂��̂�† − �̂��̂�†𝜌

]︀
+

+
𝜅(𝑁 + 1)

2

[︀
2�̂�𝜌�̂�† − 𝜌�̂�†�̂�− �̂�†�̂�𝜌

]︀
+

+
𝜅𝑀

2

[︀
2�̂�†𝜌�̂�† − 𝜌�̂�†2 − �̂�†2𝜌

]︀
+

+
𝜅𝑀*

2

[︀
2�̂�𝜌�̂�− 𝜌�̂�2 − �̂�2𝜌

]︀
, (12)

where 𝜅 = 2𝜋𝑔(𝜔)𝜇2(𝜔) is the cavity damping
constant. The squeezed vacuum effects are incorpo-
rated through the mean photon number of the reser-
voir mode 𝑁 = sinh2(𝑟), and the constant 𝑀 =
=

√︀
𝑁(𝑁 + 1) represents the phase property of the

reservoir.
Applying the adiabatic approximation scheme [31]

for a three-level laser, the master equation for the
system coupled to a squeezed vacuum reservoir could
be written as
𝑑

𝑑𝑡
𝜌 =

𝜉

2

[︀
2�̂�†𝜌�̂�− 𝜌�̂��̂�† − �̂��̂�†𝜌

]︀
+

+
𝜂

2

[︀
2�̂�𝜌�̂�† − 𝜌�̂�†�̂�− �̂�†�̂�𝜌

]︀
+

+
Ω

2

[︀
2�̂�†𝜌�̂�† − 𝜌�̂�†2 − �̂�†2𝜌

]︀
+

+
Ω*

2

[︀
2�̂�𝜌�̂�− 𝜌�̂�2 − �̂�2𝜌

]︀
. (13)

Here, 𝜉 = 𝐴𝜌
(0)
𝑎𝑎 + 𝜅𝑁 , 𝜂 = 𝐴𝜌

(0)
𝑐𝑐 + 𝜅(𝑁 + 1), Ω =

= 𝜅𝑀 +𝐴𝜌
(0)
𝑎𝑐 , Ω* = 𝜅𝑀 +𝐴𝜌

(0)
𝑐𝑎 . The constant 𝐴 =

= 2𝑟𝑎𝑔
2

𝛾2 is the linear gain coefficient with 𝛾 to be the
spontaneous decay rate.

3. Atomic Probabilities

It is worth mentioning that the quantum properties
of the light generated by a three-level system are de-
termined using the master equation as a tool for the
derivation of stochastic differential equations. At the
initial time 𝑡 = 0, the probability for the atom to be
on the level |𝑎⟩ is 𝜌(0)𝑎𝑎 and the probability of finding
the atom on the level |𝑐⟩ is 𝜌(0)𝑐𝑐 which satisfies the
relation 𝜌

(0)
𝑎𝑎 + 𝜌

(0)
𝑐𝑐 = 1. Using the fact that the am-

plitudes are real, we can write, in Eq. (1), 𝑐(0)𝑎 = sin𝜑

and 𝑐
(0)
𝑐 = cos𝜑. Given that 𝜌(0)𝑐𝑐 − 𝜌

(0)
𝑎𝑎 = cos 2𝜑, we

Fig. 2. Plots of the atomic probabilities (𝜌(0)𝑐𝑐 and 𝜌
(0)
𝑎𝑎 ) and

the probability difference (𝜌(0)𝑐𝑐 − 𝜌
(0)
𝑎𝑎 ) against the atomic co-

herence in a single three-level system

now introduce the atomic coherence 𝜌(0)𝑎𝑐 = 𝜌
(0)
𝑐𝑎 = 𝛽

such that

𝛽 = 𝑐(0)𝑎 𝑐(0)𝑐 = cos𝜑 sin𝜑 =
sin 2𝜑

2
. (14)

Hence, we can write the probability difference in
terms of the atomic coherence as

𝜌(0)𝑐𝑐 − 𝜌(0)𝑎𝑎 =
√︀
1− 4𝛽2. (15)

In view of this, we can write the probability of an
atom to be on the upper energy level as

𝜌(0)𝑎𝑎 =
1−

√︀
1− 4𝛽2

2
. (16)

Using straightforward algebra, the probability of an
atom to be on the lower level can be formulated in
terms of the atomic coherence as

𝜌(0)𝑐𝑐 =
1 +

√︀
1− 4𝛽2

2
. (17)

In Fig. 2, the red curve represents the probability
of an atom to be found on the upper energy level,
while the blue curve represents the probability of an
atom to be found on the lower energy level. However,
the black curve reads as the atomic probability differ-
ence. As we infer from this figure, the atomic coher-
ence is bounded in between 0 and 0.5 (0 ≤ 𝛽 ≤ 0.5).
At the extreme point 𝛽 = 0.5 which physically tells
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us an atom has equal probabilities to be found on
both the upper and lower energy levels. At 𝛽 = 0,
the atom occupies the lower state with a probability
of 100% for which 𝜌

(0)
𝑐𝑐 = 0. Furthermore, the proba-

bility difference is decreasing, as the atomic coherence
is increasing, and becomes zero at 𝛽 = 0.5.

4. Time Evolution of the Cavity Mode

Applying the cyclic property of a trace, 𝑑
𝑑𝑡 ⟨�̂�(𝑡)⟩ =

= Tr
(︁

𝑑
𝑑𝑡𝜌(𝑡)�̂�

)︁
and the commutation relation

[�̂�, �̂�†] = 1, the cavity mode evolves in time according
to
𝑑

𝑑𝑡
⟨�̂�(𝑡)⟩ = −𝜀

2
⟨�̂�(𝑡)⟩. (18)

It can be also verified that
𝑑

𝑑𝑡
⟨�̂�2(𝑡)⟩ = −𝜀⟨�̂�2(𝑡)⟩+Ω, (19)

and
𝑑

𝑑𝑡
⟨�̂�†(𝑡)�̂�(𝑡)⟩ = −𝜀⟨�̂�†(𝑡)�̂�(𝑡)⟩+ 𝜉. (20)

In which 𝜀 = 𝜅+𝐴
√︀
1− 4𝛽2.

5. Squeezing of Cavity-Mode Radiation

One of the measures of the non-classical nature of a
light beam generated from a certain quantum optical
system is achieved by calculating the quadrature vari-
ance of the fields in the system analytically. Quad-
rature squeezing is useful to detect the non-classical
properties of a cavity radiation. We can study the
quadrature squeezing of a three-level laser by con-
sidering the cavity field fluctuations associated with
the noise incident into the cavity. Here, we study the
quadrature variance of a cavity field which leads us to
formulate the radiation squeezing. First, we denote a
positive quadrature operator by �̂�+ and define it in
terms of the cavity mode operator by

�̂�+ = �̂�† + �̂� (21)

and its conjugate

�̂�− = 𝑖
(︀
𝑎† − �̂�

)︀
. (22)

Quadrature squeezing is occurred in one of the above
quadratures, either in a positive quadrature or in
the negative one. If the cavity field has the squeez-
ing property in the positive quadrature, its conjugate

will be noisy. To show this, we seek to calculate the
quadrature variances. The variance of the quadrature
given in Eqs. (21) and (22) can be expressed as

Δ𝑄2
± = 1 + ⟨: �̂�±, �̂�± :⟩. (23)

In this notation, we use :: to represent the normal
ordering of the cavity mode operator and the expres-
sion ⟨�̂�±, �̂�±⟩ = ⟨�̂�2

±⟩−⟨�̂�±⟩⟨�̂�±⟩. With the help of
this relation, one can show that

Δ𝑄2
± = 1 + 2⟨�̂�†�̂�⟩ ±

[︀
⟨�̂�2⟩+ ⟨�̂�†2⟩

]︀
. (24)

Using the large time approximation, which leads to
steady state solutions of Eqs. (18), (19) and (20), one
can write Eq. (24) as

Δ𝑄2
± = 1 +

2

𝜀
(𝜉 ± Ω). (25)

We now recall the Heisenberg uncertainty principle
to detect on which quadrature of the field is squeezed,
inequality of variances product should satisfy

Δ𝑄+Δ𝑄− ≥ 1 (26)

together with either Δ𝑄2
+ < 1 and Δ𝑄2

− > 1 or
Δ𝑄2

− < 1 and Δ𝑄2
+ > 1. In the following sections,

we consider specific conditions of a quantum beat
cascade laser such as in the squeezed vacuum, ther-
mal, and ordinary vacuum reservoirs. Now, we test
the maximum possibility to have a quantum beat cas-
cade laser (QBCL).

5.1. 𝑄𝐵𝐶𝐿 in squeezed vacuum reservoir

Using the standard approaches and steady state so-
lutions, we realize the positive and negative quadra-
ture variances for the three-level system coupled to a
squeezed vacuum reservoir that

Δ𝑄2
± = 1 +

𝐴
[︁
1−

√︀
1− 4𝛽2 ± 2𝛽

]︁
+ 2𝜅(𝑁 ±𝑀)

𝜅+𝐴
√︀

1− 4𝛽2
.

(27)

With the Heisenberg uncertainty relation between the
positive and negative quadrature operators, it is de-
tected that the negative quadrature variance is be-
low the classical limit. Hence, the cavity field is in a
squeezed state for the system coupled to a squeezed
vacuum reservoir.
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Figure 3 shows the plots quadrature variance
against the atomic coherence for a three-level quan-
tum beat laser coupled to a squeeze vacuum reser-
voir. In this figure, it is indicated that the system
generates light beams which are in the squeezed state
in the negative quadrature for certain values of 𝐴 and
𝑁 . We will have a particular value for 𝛽 at which
the curve changes its nature. Furthermore, this spe-
cial value of 𝛽 depends on the linear gain coefficient
for fixed values of the other parameters. For exam-
ple, for the curve with 𝐴 = 100, the quadrature vari-
ance decreases, as the value of 𝛽 increases in the in-
terval 0 < 𝛽 < 0.464, and the quadrature variance
increases, as the value of 𝛽 increases in the interval
0.464 < 𝛽 < 0.5. The reason to have such dynam-
ics of the quadrature variance is associated with the
nature of probability fluctuations for an atom to be
on either the upper energy level or lower one. This
must be due to that the probability of finding the
atom to be on the lower energy level increases, while
the probability of an atom to be on the upper en-
ergy level decreases. If the atom has equal probabili-
ties to be found on the upper and lower energy levels,
the quadrature variance is inflated, and, hence, the
light beam emitted in the cavity loses its squeezing
nature. Consequently, the light beams are associated
with a high noise. However, such increment of the
noise can be suppressed using the input fields from
the squeezed vacuum reservoir.

5.2. QBCL in a thermal vacuum reservoir

In this section, we let the system to interact with
the fields of a thermal reservoir. The fields from such
baths are assumed to be in the thermal equilibrium
at a certain temperature. Thus, the mean number of
photons indecent into the cavity is calculated accord-
ing to the following relation:

𝑁𝑐 =
1

𝑒~𝜔/𝐾B𝑇 − 1
. (28)

Here, ~ is the reduced Planck constant, 𝐾B is the
Boltzmann constant, and 𝑇 is the temperature.

At this point, we replacie a squeezed vacuum reser-
voir by a thermal reservoir, make limit 𝑁 → 𝑁𝑐, and,
hence, set the parameter 𝑀 = 0. Then Eq. (27) can
be reduced to

Δ𝑄2
− = 1 +

𝐴
[︁
1−

√︀
1− 4𝛽2 − 2𝛽

]︁
+ 2𝜅𝑁𝑐

𝜅+𝐴
√︀
1− 4𝛽2

. (29)

Fig. 3. Plots of the quadrature variance of the cavity mode
radiation (𝑁 = 10) against the atomic coherence for a squeezed
vacuum reservoir for the cavity damping constant 𝜅 = 0.8, with
different values of the linear gain coefficient 𝐴 = 5 (the red
dashed curve), 𝐴 = 20 (the blue dashed curve) and 𝐴 = 100

(the black solid curve)

Fig. 4. Plots of the quadrature variance of the cavity mode
radiation (𝑁 = 𝑁𝑐 = 10) against the atomic coherence for
a thermal reservoir for the cavity damping constant 𝜅 = 0.8,
with different values of the linear gain coefficient 𝐴 = 5 (the
blue solid curve), 𝐴 = 20 (the red solid curve) and 𝐴 = 100

(the red dashed curve)

In Fig. 4, we plot the quadrature variance against
the atomic coherence for a three-level cascade beat
laser system coupled to a thermal reservoir. In this
case, we infer that the quadrature variance in the re-
gion 0 < 𝛽 < 0.5 spans above the classical standard
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Fig. 5. Plots of the quadrature variance of the cavity mode
radiation (𝑁 = 0) against the atomic coherence for an ordinary
vacuum reservoir for the cavity damping constant 𝜅 = 0.8, with
different values of the linear gain coefficient 𝐴 = 5 (the red solid
curve), 𝐴 = 20 (the blue dashed curve) and 𝐴 = 100 (the black
solid curve)

for small values of 𝐴. Therefore; we immediately get
from the figure that the light beams generated in the
cavity are not in the squeezed state. This must be due
to the high noise nature of the thermal light incident
into the cavity via a coupler. This detects that, in a
three-level cascade beat laser, the light beam gener-
ated from the cavity has no squeezing nature, when
it coupled to the thermal bath.

According to the information presented in Fig. 4, it
is well known that there is no quadrature squeezing at
all. It occurs for small values of the linear gain coeffi-
cients 𝐴 = 5 and 𝐴 = 20. But, for 𝐴 = 100 solely, the
squeezed states of the cavity mode radiation would
appear in the small region of the atomic coherence
(0.093 < 𝛽 < 0.491). This result shows that there
would be induced the noise in the cavity which may
force the cavity filed to fluctuate beyond the classi-
cal fluctuation limit. Thus, the linear gain coefficient
would be enough to be large to suppress such fluc-
tuations due to thermal photons. It is a not denied
fact that even though the thermal photons cause the
noise, they make the cavity mode radiation to become
bright. Our findings and results in this paper are in
agreement with the works cited in [28].

5.3. QBCL in vacuum reservoir

In this section, we study the quadrature variance and
the corresponding quadrature squeezing for a vacuum

reservoir. To do this, if we replace a thermal reservoir
by an ordinary vacuum one by applying the approxi-
mation 𝑁𝑐 = 0. Then Eq. (29) is reduced to

Δ𝑄2
− = 1 +

𝐴
[︁
1−

√︀
1− 4𝛽2 − 2𝛽

]︁
𝜅+𝐴

√︀
1− 4𝛽2

. (30)

This condition is more practical [4] to be used and
has the intermediate effect on the quantum nature of
a cavity field radiation. Here, there is nothing enters
the cavity. Then the quadrature squeezing of the sys-
tem depends only on the atomic coherence which is
induced by a coherent superposition. The linear gain
coefficient, and the photon decay rate into a vacuum
reservoir are described by Eq. (30). As the atomic co-
herence 𝛽 changes from 0.0 to 0.5, which is shown in
Fig. 5, the variance of a cavity radiation decreases to
a minimal value near to the maximum atomic coher-
ence and raised again, while we approach the value
𝛽 = 0.5.

In Fig. 3, it is observed that the quadrature vari-
ance Δ𝑄2

− is minimum for 𝐴 = 100 and at 𝛽 = 0.023.
The quadrature variance decreases, as the values of 𝛽
increases in the region 0 < 𝛽 < 0.023, and it increases
in the region 0.023 < 𝛽 < 0.5. At the maximum value
of 𝛽, the cavity light beams totally lose their quan-
tum nature in general and squeezing property in par-
ticular. In addition, any effect of the reservoir is not
observed for this case. But we are still observing the
squeezing for the light beam generated through the
system.

This shows that the quadrature squeezing can be
increased for the light beams generated through a
three-level cascade laser by coupling it with a squee-
zed vacuum reservoir. It can be taken as a way for
the noise reduction. Therefore; we can get light with
a higher squeezing which is generated from a three-
level cascade laser coupled with a squeezed vacuum
reservoir than light beams generated from a three-
level cascade laser coupled to a vacuum reservoir.

6. Photon Statistics

The statistical properties of a light beam gener-
ated through a certain quantum optical system can
be studied in the three regimes such as sub-Poisso-
nian [32–35], super-Poissonian [36], and Poissonian
ones. These photon statistical distributions are char-
acterized by comparing the variance of the photon
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Fig. 6. Plots of the quadrature variance of the cavity mode
radiation against the atomic coherence for a squeezed vacuum
reservoir for the cavity damping constant 𝜅 = 0.8, linear gain
coefficient 𝐴 = 5, and 𝑁 = 10

number and the mean number of photons for the cav-
ity mode light.

The light beams which possess the super-Poisso-
nian photon statistics satisfy the mathematical in-
equality Δ𝑛2 > 𝑛. Such light beams are termed as
chaotic light. On contrast, when the light beams pos-
sess the sub-Poissonian distribution, the governing
inequality is Δ𝑛2 < 𝑛. This photon statistics indi-
cates that such light beams are squeezed light. In the
Poissonian photon statistics, the variance of the pho-
ton number us equal to the mean number of photon
Δ𝑛2 = 𝑛.

The mean number of photons for a single-mode ra-
diation which denoted by 𝑛 is defined as

𝑛 = ⟨�̂�†�̂�⟩. (31)

The mean number of photons for the cavity radia-
tion containing 𝑛 photons can be obtained from the
solution of Eq. (20) in a steady state:

𝑛 =
1

2𝜅+ 2𝐴
√︀
1− 4𝛽2

[︁
𝐴(1−

√︀
1− 4𝛽2) + 𝜅𝑁

]︁
.

(32)

This mean number of photons represents the cavity
light generated from a three-level laser coupled to a
broad-band squeezed vacuum reservoir. Furthermore,

Fig. 7. Plots of the quadrature variance of the cavity mode
radiation against the atomic coherence for a vacuum reservoir
for the cavity damping constant 𝜅 = 0.8 and the linear gain
coefficient 𝐴 = 5

Fig. 8. Plots of the quadrature variance of the cavity mode
radiation against the atomic coherence for a thermal reservoir
for the cavity damping constant 𝜅 = 0.8, linear gain coefficient
𝐴 = 5, and 𝑁𝑐 = 10

the photon number variance of a single-mode radia-
tion is defined by

Δ𝑛2 = ⟨�̂�2⟩ − ⟨�̂�⟩2, (33)

where the term ⟨�̂�2⟩ represents the dispersion of cav-
ity light beams. Thus, the variance of the photon
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number of the cavity radiation can be expressed by

Δ𝑛2 =
⟨︀
�̂�2�̂�†2

⟩︀
− 𝑛2 − 3𝑛− 2. (34)

On the basis of the compression between the mean
number of photons 𝑛 and the variance of the photon
number, we showed the nature of the cavity mode ra-
diation for the system under consideration. It is the
sufficient condition to show system’s photon statis-
tics distribution, when it is coupled to different reser-
voirs. To be specific, as clearly shown in the plots of
Fig. 6 (for the case of a quantum beat cascade laser
coupled to a squeezed vacuum reservoir), Fig. 8 (for
the case of a quantum beat cascade laser coupled to a
thermal reservoir) and Fig. 7 (for the case of a quan-
tum beat cascade laser coupled to a vacuum reser-
voir). As we observe from all these figures, the pho-
ton statistics regardless of the nature of a reservoir is
super-Poissonian.

7. Conclusions

In this work, the quantum properties of the cavity
radiation emitted from a degenerate cascade three-
level laser coupled to different reservoirs have been
analyzed. The most influencing factors for the quan-
tum features are the atomic coherence and the reser-
voir nature. It is confirmed that, with the optimum
value of the atomic coherence, the quantum proper-
ties of a degenerate three-level laser coupled to reser-
voir modes could be enhanced. Based on the ana-
lytic calculations and simulations, we have catego-
rized the system under consideration using the na-
ture of a reservoir coupled to it. The system belongs
to bright squeezed radiation generators, when it is
coupled to a squeezed vacuum reservoir accompanied
with the high pumping rate of three-level atoms into
the cavity. The system may be also categorized under
dim squeezed radiation generators, when it is coupled
to an ordinary vacuum environment. On contrary, the
system may also be in the category of bright noisy
generators, when it is coupled to a thermal reser-
voir. It is found that radiation emitted from a degen-
erate three-level laser has the most squeezing prop-
erty, when the system is coupled to a squeezed vac-
uum reservoir. In the case, where the system is cou-
pled to a thermal bath, it loses quantum features due
to the entirely classical nature of the thermal bath. It
is also observed from our work that, when the three-
level laser is coupled to a vacuum reservoir, the radia-

tion emitted from the cavity is highly dependent only
on the cavity parameters such as the linear gain of the
medium and the atomic coherence. Overall, the reser-
voir nature is a very influential factor for the cavity
radiation. For example, when the system is coupled to
a squeezed vacuum reservoir, the squeezing property
of the cavity radiation is enhanced, while the mean
number of photons is increased. Hence, we obtain the
bright squeezed light in this case.

The study of quantum statistical properties of the
system was another issue. According to our statisti-
cal analysis, the cavity mode radiation emitted from a
degenerate three-level laser has the super-Poissonian
photon statistics. Different papers stated that the
squeezed states of light have the sub-Poissonian pho-
ton statistics [see for example, [7, 9, 10]]. But in our
analysis, we observe the possibility of a squeezed light
with the super-Poissoian photon statistics. Thus, this
work has confirmed that a degenerate three-level laser
coupled to different reservoir modes possesses the
super-Poissonian photon statistics. These results give
a new insight for a non-classical light which may pos-
sess the super-Poissonian photon statistics.
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С.Ешете

ВПЛИВ ПОЛIВ НА ВХОДI У ПОРОЖНИНУ
НА НЕКЛАСИЧНI ВЛАСТИВОСТI IМПУЛЬСНОГО
КАСКАДНОГО ЛАЗЕРА

Дослiджуються квантовi i статистичнi властивостi моди ви-
промiнювання порожнини когерентного виродженого три-
рiвневого лазера iз застосуванням стандартних методiв
квантової електродинамiки та з урахуванням взаємодiї ви-
промiнювання iз речовиною. Розглянуто вакуумну, стисну-
ту вакуумну та термальну порожнини для того, щоб визна-
чити вплив полiв на входi порожнини на статистичнi вла-
стивостi i природу стиснення випромiнювання з неї. Вста-
новлено, що для стиснутої вакуумної порожнини вплив на
стискування та на яскравiсть випромiнювання найбiльшi
порiвняно з вакуумною та термальною порожнинами. Зна-
йдено також, що випромiнювання iз порожнини знаходи-
ться в стиснутому станi з суперпуассонiвською статистикою
фотонiв незалежно вiд типу порожнини.

Ключ о в i с л о в а: суперпуассонiвський, стиснутий стан,
квантовi властивостi, взаємодiя свiтла iз речовиною.
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