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MIRROR SYMMETRY
AS AN OPERATOR ALGEBRA
IN THE NONCOMMUTATIVE SPACE-TIME GEOMETRY

The analysis of the geometric and algebraic properties of mirror mappings allowed the latter to
be used as the operator algebra of a noncommutative geometry. The coordinates of the noncom-
mutative geometry are auto- or cross-correlation coordinates in the mirror-mapped spaces. A
particular case of the six-dimensional Kähler manifold which is mapped on the noncommutative
geometry with the vector Clifford algebra Cl4 has been considered. This mapping corresponds
to a tetraquark composed from two quark–anti-quark pairs with the charges ± 2

3
𝑞 taken from

different generations.
K e yw o r d s: mirror symmetry, noncommutative geometry, Clifford algebra, correlation.

1. Introduction

Recent decades have been marked by substantial ad-
vances reached in the application of geometric meth-
ods to physics. First of all, it concerns the appearance
of the string theory of space-time [1, 2]. In the frame-
work of this theory, the mirror symmetry of the geo-
metric parameters of the Calabi–Yau spaces was dis-
covered [3], which considerably simplified the obtain-
ing of the solutions of the approximate equations of
the theory in the mirror approach, whereas the physi-
cal content of the results remained the same. Despite
the impressive results, the string theory still remains
incomplete, because nobody knows which of the vast
number of possible six(or more)-dimensional spaces
corresponds to the physics of our space-time. Ho-
wever, the fathers of string theory do not lose their
optimism and hope for that the further progress is
possible by means of replacing the conventional ge-
ometry with a new apparatus, the noncommutative
geometry.

The fundamentals of the noncommutative geome-
try have been developed by Alain Connes [4] for quan-
tum fields. He used an operational algebra to describe
the geometry. However, in this approach, some dif-
ficulties concerning the primordial state description
still remain unresolved [5].

The aim of this work was to study the methods
by means of which the mirror symmetry can map a
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six-dimensional complex space into a noncommuta-
tive geometry, as well as to find which physical pro-
cesses can correspond to this procedure. The results
of the work can be applied in nuclear physics, quan-
tum mechanics, quantum electrodynamics, string the-
ory, gravitation theory, and astrophysics.

2. Geometry and Algebra
of Mirror Mapping

2.1. Fundamentals of the geometry

Mathematics gives us examples of the mirror symme-
try. Positive and negative numbers form mirror pairs
of the sinverse symmetry with respect to zero. A com-
plex number 𝑧 and the conjugate one 𝑧* form a mirror
pair with respect to the real axis. A combination of
the inverse and permutation symmetries with respect
to the unit circle is demonstrated by the mirror pair
𝑧 and 1/𝑧*.

In geometry, historically, let us proceed a posteri-
ori. Figure 1 demonstrates mirror mappings (mirror
symmetries) of a plane located in a coordinate frame
with the orthogonal basis vectors 1 and 2. The ori-
entation 𝜙 of the plane “mirror” is the multiple of a
rotation by an angle of 45∘, i.e., 𝜙 = 𝑘𝜋/4, where
𝑘 = 0, 1, 2, 3. If 𝜙 ≥ 𝜋, the reflection in the “mirror”
has no sense. The discrete orientation of the “mirrors”
and the pronounced symmetries of the initial and re-
flected basis vectors are interrelated and correspond
to different properties of the mirror mapping, the in-
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Fig. 1. Mirror mappings of oriented planes

Fig. 2. “Translation” by means of two mirrors

verse and permutation symmetries. In addition, the
reflected mirror symmetries (see Figs. 1, 𝑐 and 𝑑)
are opposite to the symmetries shown in Figs. 1, 𝑎
and 𝑏. Note that, for opposite symmetries, the orien-
tations of the “mirrors” are orthogonal in the phase
space of their rotation.

There is another, rather unusual geometric symme-
try, which can be called “translation”. This symmetry
consists of a kit of two plane mirrors separated by
the “distance” △𝑞/2 (Fig. 2). It has some specific fea-
tures. The sizes of zones I–III, where this symmetry is
valid, are identical and equal to △𝑞/2. An arbitrary
point in zone I can be transferred by the distance
△𝑞 to turn out in zone III. An unusual character of
this symmetry consists in the dimension of the physi-
cal quantity △𝑞. Indeed, let us define a 2-dimensional
unit vector in zone I. In polar coordinates, it is de-
scribed by a single parameter △𝑞 = 𝜙. Assuming that
𝜙 = 𝛼𝜋/2 (𝛼 = 0, 1, 2, 3) in zone II, we obtain another
geometric representation for Figs. 1, 𝑎 to 𝑑.

This is a rather trivial result, which illustrates that
the same result can be achieved by rotating either

the “mirror” or the reflected coordinate system (by
rotating a unit vector in the fixed coordinate sys-
tem). However, there is a significant difference be-
tween those rotations: the vector rotates by the angle
△𝜙, whereas the “mirrors” must be rotated by the an-
gle △𝜙/2. The situation becomes complicated, if the
coordinates (𝑟, 𝜙) are determined in zone I, and they
can be reduced to the previous ones, if the first mir-
ror is “normalized” by 1/𝑟2. However, a manifold with
the coordinates (1/𝑟, 𝜙) is mapped in zone III in this
case. This example describes one of the variants of
the appearance of the so-called T-duality in the string
theory, which was considered in work [6]. Finally, one
can imagine a scenario with generalized “mirrors”, the
distance between which is measured in action units ℎ,
where ℎ is the Planck constant. In this case, Fig. 2 is
a good illustration of the uncertainty relation.

2.2. Properties of mirror-image operators

The symmetry of vectors in Figs. 1, 𝑎 and 𝑏 can be
expressed via the mirror-image operators s1 and s2. If
the notation in the form of ket and bra vectors, 1 ↦→
|+⟩ and 2 ↦→ |−⟩, are used for the vectors in Fig. 1,
then, immediately from Figs. 1, 𝑎 and 𝑏 follows the
action of these operators on the indicated vectors:

s1|+⟩ = +1 |+⟩, s1|−⟩ = −1 |−⟩,
s2|+⟩ = +1|−⟩, s2|−⟩ = +1|+⟩. (1)

The basis vectors |+⟩ and |−⟩ are eigenvectors of the
operator s1 with the eigenvalues 𝜆± = ±1. For nor-
malized orthogonal basis vectors, their scalar product
is defined as ⟨±|±⟩ = 1 and ⟨±|∓⟩ = 0.

From the last expression, it is possible to directly
obtain a matrix representation for the Hermitian op-
erators of mirror mappings,

s1 =
(︁
1 0
0 −1

)︁
, s2 =

(︁
0 1
1 0

)︁
. (2)

These operators form a rectangular basis of the vec-
tor Clifford algebra Cl2, where the scalar product is
defined as the anticommutator so that

s1 · s2 =
1

2
[s1, s2]+ =

1

2
(s1s2 + s2s1) = 0,

and the external (vector) product as the commutator
so that

s1 ∧ s2 =
1

2
[s1, s2] =

1

2
(s1s2 − s2s1) = s1s2.
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In the vector algebra Cl2, the quantity s1s2 is a bivec-
tor or an axial vector, and the operators ±s1s2 de-
termine 𝐽-transformations, i.e., rotations by angles
±90∘. In particular, (s1s2)s1 = −s2 is the left turn,
and (s2s1)s1 = s2 the right one. This operator can
also be represented in the form s1s2 = 𝑖s3, where s3
complements the basis vectors in Cl2 to the vector
algebra Cl3. The complete algebra Cl3 has eight lin-
early independent basis elements, additionally includ-
ing the scalar 1, three bivectors 𝑏𝑘 = 𝑖s𝑘 = 𝜖𝑘𝑖𝑗s𝑖s,
where 𝜖𝑘𝑖𝑗 is the Levi-Civita symbol, and the pseu-
doscalar I = s1s2s3 = 𝑖1. The Cl3 algebra possesses
a new symmetry, 𝑖1, which, for example, transforms
the real plane into the purely imaginary one.

Combinations with new symmetries generate a new
kind of symmetry, projectors P𝑘. Let us form the op-
erator P𝑘± = 1

2 (1 ± s𝑘) with the following proper-
ties: (P𝑘±)

2 = P𝑘± and P𝑘+P𝑘− = 0. The result
of its action, for example, on the basis vectors looks
like P1+(|+⟩ + |−⟩) = |+⟩. To put it differently, in
the “mirror-world”, the projector P distinguishes (re-
moves) one dimension from the plane.

It should be noted that the combinations of the
scalar 1 with the mirror-image operators in the al-
gebra Cl2 made it possible to determine all three
known systems of complex numbers depending on
the properties of the squared imaginary unit: 𝜖2 =
= 0,±1 [7]. On the other hand, the geometrical mir-
ror symmetries in Fig. 1 indicate the existence of mir-
ror symmetries generated by the operators s𝑖 (the or-
dinary “mirror”) and −s𝑖 (the “anti-mirror”). Here, we
may naturally add 1 ↦→ s0 (the “identical mirror”) and
𝑖1 (the “imaginary mirror”), as well as the bivectors
𝑏𝑘, as the elements of 𝐽-transformation.

The formalization of mirror mappings using the
vector Clifford algebra made it possible to consid-
erably extend our understanding of mirror symme-
try. That is why it is expedient to consider the alge-
bra Cl3 as a generalized formulation of mirror sym-
metry and consider its properties and the operations
in it as a consequence of the extended law of mirror
symmetry.

The operator notations −s1 and −s2 are not acci-
dental, because the spectral mapping

𝐹1(𝜓) = V

(︂
𝜓

2

)︂
s1V

−1

(︂
𝜓

2

)︂
(3)

is defined for the matrix representation of the diag-
onal operator s1, where V

(︁
𝜓
2

)︁
is the corresponding

rotation matrix and V
(︁
𝜓
2

)︁
V
(︁
𝜓
2

)︁
= 1. For the dis-

crete rotation angles 𝜓 = 𝛼𝜋/2, where 𝛼 = 0, 1, 2, 3,
the “spectrum” of s1 has the form

𝐹1 ⇒ {s1, s2,−s1,−s2}. (4)

From whence, it follows that the discreteness of the
rotation angle △𝜓 = 𝜋/2 as an element of J-trans-
formation is associated with the conservation condi-
tion for the inverse and permutation symmetries.

The mirror symmetry implies the presence of an
initial space and a mapped one (a “mirror world”).
The initial space is constructed on the eigenvectors
𝜙𝑘1,2 of the mirror-image operators s𝑘, which, in turn,
belong to the three-dimensional Kähler manifold with
the components (𝜉, 𝜂), where 𝜉 = 𝑥 + 𝑖𝑧 and 𝜂 =
= 𝑦−𝑖𝑧 [7]. Let us introduce a multi-dimensional vec-
tor space ℋ(𝑥0, 𝑥1, ...) and a vector |𝑅⟩ in it, which
is projected onto the plane of eigenvectors of the op-
erators s𝑘,

|𝑅⟩ ⇒ |𝑟𝑘⟩ = 𝑟𝑘1 |𝜙𝑘1⟩+ 𝑟𝑘2 |𝜙𝑘2⟩, (5)

where |𝑟𝑘⟩ is the 𝑘-representation of the vector |𝑅⟩,
and 𝑟𝑘𝑛 = ⟨𝜙𝑘𝑛|𝑅⟩ are the covariant coordinates of
|𝑅⟩ in the basis |𝜙𝑘𝑛⟩ of eigenvectors of the opera-
tors s𝑘. For complex coordinates, the Hermitian op-
erators s𝑘 give real values for the quantities like
𝐺𝑘𝑘 = ⟨𝑟𝑘|s𝑘|𝑟𝑘⟩ = |𝑟𝑘1 |2 + |𝑟𝑘2 |2. The latter expression
is the scalar product of the vector |𝑟𝑘⟩ and the vec-
tor ⟨𝑟𝑘| belonging to the conjugate space and mirror-
mapped by the operator s𝑘, ⟨𝑟𝑘|ref = ⟨𝑟𝑘|s𝑟. This ex-
pression corresponds to the mutual correlation (cross-
correlation) of vectors at the mirror mapping.

3. Spectral Representation
of Mirror-Image Operators
and the Quantization in the “Mirror World”

3.1. Spectral-representation operators

Under the conservation condition for the inverse and
permutation symmetries for mirror mappings, the
spectral representation of the mirror mapping opera-
tor s1 (4) has to be considered discrete. In this case,
the spectral components of s1,2 and −s1,2, which are
positive and negative “spectral frequencies”, have to
be separated in some way. Figure 1 suggests that such
a possibility does exist if each pair (s1,2,−s1,2) of the
orthogonal basis vectors generates a (hyper) plane
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and serves as a basis in a new vector space; in other
words, if (s1,2,−s1,2) ⇒ e1,2.

The discreteness of the “spectrum” can be intro-
duced in the following manner. In expression (3) for
the “spectrum” of the diagonal operator s1, the rota-
tion matrices can be expressed in terms of quaternion
and the result can be reduced to the form

𝐹1{s1} = exp(−𝑖s3𝜓)s1 = ℱ3(𝜓)s1, (6)

where the bivector s1s2 = 𝑖s3 is defined as a quater-
nionic imaginary unit, and ℱ3(𝜓) denotes a spectral
transformation operator. Let us express the latter in
the form of an integral which performs the required
discretization and reflects the action of the ±s oper-
ators in various spaces,

ℱ3 =
1

2𝜋

∞∫︁
0

𝑑𝜓𝛩𝛼(𝜓)⊗ exp(−𝑖s3𝜓), (7)

where 𝛩𝛼(𝜓) has the structure of the matrices
s𝛼 (𝛼 = 0, 1, 2, 3) consisting of Dirac delta functions
𝛿(𝜓), and ⊗ denotes the Kronecker product. Using
the operator s0 in the matrix representation, we ob-
tain one of possible discrete representations for 𝛩(𝜓)
in the form

𝛩0(𝜓) =
1

2

(︂
𝛿(𝜓 − 𝑛2𝜋) 0

0 𝛿(𝜓 − 𝜋 − 𝑛2𝜋)

)︂
+

+
1

2

(︂
𝛿(𝜓 − 𝜋

2 − 𝑛2𝜋) 0

0 𝛿(𝜓 − 3𝜋
2 − 𝑛2𝜋)

)︂
, (8)

where the periodicity of the quaternionic variable is
taken into account and 𝑛 = 0, 1, 2, ... . For 𝛩𝛼(𝜓), the
normalization condition looks like

𝑁{s0} =
1

2𝜋

∞∫︁
0

𝑑𝜓𝛩0(𝜓)⊗ s0 =
(︁
s0 0
0 s0

)︁
= e0. (9)

Then, from formula (7), we obtain

ℱ3(𝑛) =
1

2

[︂(︂
s0 0
0 −s0

)︂
+

(︂
−s1s2 0

0 s1s2

)︂]︂
⊗

⊗ exp(−𝑖s3 𝑛 2𝜋). (10)

In this expression, the quantity exp(−𝑖s3𝑛2𝜋) ≡ s0
and does not affect the form of the matrices. But
it shows that a discrete series of operators ℱ in the
s1s2-bivector coordinate is formed. The action of the
operator ℱ3 on s1 is defined as ℱ3 ⊗ s1 and brings

about the basis vectors ℱ3 ⊗ s1 = 1
2 (e1 + e2) and

ℱ3 ⊗ s2 = 1
2 (−e1 + e2), where the new basis vectors

are
e1 =

(︁
s1 0
0 −s1

)︁
, e2 =

(︁
s2 0
0 −s2

)︁
. (11)

Expressions (8) and (10) illustrate an example of ge-
ometric discretization along the bivector axis.

Spectral representation (7) of 𝛩𝛼(𝜓) with the ma-
trix s0 is a discrete analog of the mathematical def-
inition of the spectrum of diagonal matrices and the
geometric interpretation of the orthogonality concept
for the mirror-symmetry operators s1,2 and −s1,2. In
integral (7), the matrix 𝛩𝛼(𝜓) can be generalized to
all matrices of the basis vectors s𝛼 in the Cl3 alge-
bra but the spectral representation is realized only
for even 𝛼-values, i.e., 𝛼 = 0 and 2. This fact makes
it possible to obtain various spectral representations
for 4×4 matrices, including those that are applied in
quantum mechanics (the Majorana and Dirac repre-
sentations). Really, for 𝛩2(𝜓), the above operations
give
𝛾1 =

(︁
0 s1

−s1 0

)︁
, 𝛾2 =

(︁
0 s2

−s2 0

)︁
, (12)

where 𝛾1,2 are the Dirac matrices in the indexing of
mirror-symmetry operators. The normalization inte-
gral produces a new vector,

𝑁2{s0} =
1

2𝜋

∞∫︁
0

𝑑𝜓𝛩2(𝜓)⊗ s0 =
(︁
0 s0
s0 0

)︁
= e4. (13)

The matrices 𝛾1,2 are bivectors because (𝛾1,2)
2 =

= −e0. They can be expressed in terms of the new
vector e4 in the form 𝛾1 = e1e4 and 𝛾2 = e2e4.

The quaternion 𝑄3 = exp(−𝑖s3𝜓) determines rota-
tions in the plane {s1, s2} of the basis vectors s1 and
s2. In work [7], it was shown that the quaternions
𝑄1 = exp(−𝑖s1𝜓) and 𝑄2 = exp(−𝑖s2𝜓) determine
rotations in the planes {s2, s3} and {s3, s1}, respec-
tively. The application of these rotations in Eq. (7)
allows one to obtain additional spectral representa-
tions for the mirror-symmetry operators:

ℱ1 ⊗ s2 =
1

2
(e2 + e3),

ℱ1 ⊗ s3 =
1

2
(−e2 + e3),

ℱ2 ⊗ s3 =
1

2
(e3 + e1),

ℱ2 ⊗ s1 =
1

2
(−e3 + e1).
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The operators e𝛼 (𝛼 = 0, 1, 2, 3, 4) form the basis vec-
tors of the Cl4 algebra in noncommutative geometry.

3.2. Spectral representation
in terms of physical variables

Integral (7), which implements the discrete spec-
tral representation of mirror-symmetry operators, is
based on the mathematical and geometric proper-
ties of these operators. As a result of application of
the spectral representation, there appeared an ad-
ditional geometric discretization along the bivector
axes, which is associated with the periodicity of ro-
tation processes. These discrete properties of non-
commutative geometry require that possible physi-
cal processes ensuring their emergence should be ana-
lyzed. Physical variables appear when factorizing the
phase 𝜓 = 𝜔𝑡 = 2𝜋𝑡/𝑇 , where 𝑇 is the rotation
period, or, in the other notation, 𝜓 = 2𝜋𝐸𝑡/ℎ =
= 2𝜋𝑆/ℎ, where 𝐸 is the energy of the rotation pro-
cess, 2𝜋𝐸/ℎ = 𝜔, 𝑆 has the action meaning, and the
normalizing constant ℎ is assumed to be equal to the
Planck constant. In such cases, the integration vari-
ables in Eq. (7) change to 𝑡 or 𝑆, and the quantities
1/𝑇 and 1/ℎ transform into the factors (1/𝑇 )−1 and
(1/ℎ)−1, respectively, in the operators e𝛼. By anal-
ogy with the quantum-mechanical operators of coor-
dinate, q, and momentum, p, these two types of fac-
torization lead to spectral representations that can be
called the “frequency” or the “quantum” representa-
tion, respectively.

There are conditions under which those two rep-
resentations are equivalent. Let us assume that the
rotation process itself is a physical process when the
exponential factor in Eq. (7) is substituted by the
operator R = 𝐸 exp(−𝑖s𝑘𝜔𝑡), where 𝐸 is the energy
of the process R. In the course of this process, the
parameters 𝐸 and 𝜔 vary within certain limits. The
condition that the spectral representation is indepen-
dent of the R-process parameters can be formulated
from Eq. (7), in particular, in the form

(𝐸1𝑇1 − 𝐸2𝑇2)(e1 + e2) = 0. (14)

Whence it follows that 𝐸1𝑇1 = 𝐸2𝑇2 = const. If we
put this constant equal to the Planck constant ℎ, then
it follows that 𝐸 = ℎ𝜈 and R is a non-classical rota-
tion process. As a basic integral for the spectral rep-
resentation in terms of physical variables, we adopt

the following expression with 𝜔𝑡:

ℱ𝑘 = 2𝜋

∞∫︁
0

𝑑𝑡𝛩0,2(𝑡)⊗ exp(−𝑖s𝑘𝜔𝑡). (15)

It should be noted that when factorizing the phase
𝜓 = 2𝜋𝑆/ℎ and integrating over the variable 𝑆,
the arguments of the delta-functions take the form
𝑆 − 1

4𝑚ℎ − 𝑛ℎ, where 𝑚 = 0, 1, 2, 3. This expression
shows that s𝑘 and −s𝑘 in terms of action differ from
each other by half the action quantum, 1

2ℎ. This fact
confirms a possibility of the physical realization of
Fig. 2 with △𝑞/2 = ℎ/2.

4. Correlation Representation of Mirror
Mappings in Noncommutative Geometry

Let us introduce autocorrelation operators G𝑘 =
= |𝑟𝑘⟩⟨𝑟𝑘|. For normalized vectors |𝑟𝑘⟩, they have the
projector property (G𝑘)2 = G𝑘. Let us also define
the operators K𝑘

𝑟𝑙... = G𝑘s𝑟s𝑙..., which correspond
to the mutual correlation (cross-correlation) between
the vector |𝑟𝑘⟩ and the vector ⟨𝑟𝑘| located in the
conjugate space and mirror-mapped by the operators
s𝑟s𝑙..., i.e., ⟨𝑟𝑘|ref = ⟨𝑟𝑘|s𝑟s𝑙.... The operators K𝑘

𝑟𝑙...

possess the following property:

K𝑘
𝑟𝑙...|𝑟𝑘⟩ = 𝑝𝑘𝑟𝑙...|𝑟𝑘⟩, 𝑝𝑘𝑟𝑙... = ⟨𝑟𝑘|s𝑟s𝑙...|𝑟𝑘⟩, (16)

where 𝑝𝑘𝑟𝑙... are the eigenvalues of the cross-correlation
operator K𝑘

𝑟𝑙.... These numbers are scalar products
of vectors in the initial and mirror spaces. This con-
dition guarantees the existence of the operator ex-
pression 𝑝𝑘𝑟𝑙...s𝑟s𝑙... and the representation of the
cross-correlation operator eigenvalues up to constant
factors 𝜆𝑟𝑙... that are eigenvalues of the operators
s𝑟s𝑙.... It is this circumstance that makes it possible
to change from the operator representation of s𝑟 to
a pure vector interpretation of s𝑟 as basic vectors in
noncommutative geometry. From the definition of the
operator G𝑘 and expression (5), we obtain

G𝑘 = |𝑟𝑘1 |2p𝑘11+ |𝑟𝑘2 |2p𝑘22+ 𝑟𝑘1𝑟𝑘*2 p𝑘12+ 𝑟
𝑘
2𝑟
𝑘*
1 p𝑘21, (17)

where p𝑘𝑛𝑚 = |𝜙𝑘𝑛⟩⟨𝜙𝑘*𝑚 |, and the asterisk (*) means
the complex conjugation. The operators p𝑘𝑛𝑚 have
the property (p𝑘𝑛𝑚)2 = p𝑘𝑛𝑚𝛿𝑛𝑚, where 𝛿𝑛𝑚 is the
Kronecker symbol. In other words, the operators p𝑘𝑛𝑛
determine projectors and (p𝑘𝑛𝑚)2 = 0 (𝑛 ̸= 𝑚). Ho-
wever, the commutator of the operators p𝑘12 and p𝑘21
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equals [p𝑘12,p𝑘21] = p𝑘11−p𝑘22. If we express the projec-
tors p𝑘𝑛𝑛 in terms of the mirror-symmetry operators
s𝑘 in the standard form,

p𝑘11 = p𝑘+ =
1

2
(1+ s𝑘), (18)

p𝑘22 = p𝑘− =
1

2
(1− s𝑘), (19)

then [p𝑘12,p
𝑘
21] = s𝑘.

In the Cl3 algebra, the operators p𝑘𝑛𝑚 can be rep-
resented using two pairs,

p2
12 =

1

2
(s1 + 𝑖s3), p2

21 =
1

2
(s1 − 𝑖s3) (20)

and
p1
12 =

1

2
(s2 + 𝑖s3), p1

21 =
1

2
(s2 − 𝑖s3). (21)

The former generates the 𝑘 = 2-representation for the
operator −s2, and the latter the 𝑘 = 1-representation
for the operator s1. An analysis shows that the gen-
eral expression for the representation G𝑘 in the 𝑘-
basis looks like

G𝑘 =
1

2
𝜀𝑘𝑙𝑟[|𝑟𝑘1 |2(1+ s𝑘) + |𝑟𝑘2 |2(1− s𝑘)+

+ 𝑟𝑘1𝑟
𝑘*
2 (s𝑙 + 𝑖s𝑟) + 𝑟𝑘2𝑟

𝑘*
1 (s𝑙 − 𝑖s𝑟)], (22)

where 𝜀𝑘𝑙𝑟 is the Levi–Civita symbol for the permuta-
tions (123), (231), and (312). Therefore, the formula
for G1 in Eq. (22) has the form

G1 = 𝑔10s0 + 𝑔11s1 + 𝑔12s2 + 𝑔13s3, (23)

where the expansion coefficients are as follows:

𝑔10 =
1

2
(|𝑟𝑘1 |2 + |𝑟𝑘2 |2), 𝑔11 =

1

2
(|𝑟𝑘1 |2 − |𝑟𝑘2 |2),

𝑔12 =
1

2
(𝑟𝑘1𝑟

𝑘*
2 + 𝑟𝑘2𝑟

𝑘*
1 ), 𝑔13 =

𝑖

2
(𝑟𝑘1𝑟

𝑘*
2 − 𝑟𝑘2𝑟

𝑘*
1 ),

(24)

and 𝑖 is the imaginary unit. The expansion coeffi-
cients 𝑔1𝛼 are real numbers, and G1 looks like

G1 = |𝑟1⟩⟨𝑟1| =

(︃
|𝑟1|2 𝑟1𝑟

*
2

𝑟2𝑟
*
1 |𝑟2|2

)︃
. (25)

In optics, G1 is called the coherence matrix for qua-
si-monochromatic radiation, and the parameters 2𝑔𝛼
are called the Stokes parameters describing the po-
larization of electromagnetic waves. Expansion (23)

is complete because four G components are repre-
sented by four linear combinations of four linearly in-
dependent matrices s𝛼. If we turn to expression (16)
for the cross-correlation operator K𝑘

𝛼. and sum up
a construction of the type 𝑝𝑘𝛼s𝛼, where 𝑝𝛼 = 2𝑔𝛼,
over 𝛼, then, to an accuracy of a factor of 2, we
will obtain a representation for the autocorrelation
operator G1 in the initial space. Thus, expressions
(22) and (23) reflect the correlation properties of a
two-dimensional vector space with complex coordi-
nates mirror-mapped onto a four-dimensional basis of
a vector space with noncommutative geometry. This
4-basis can be considered as hyperbolic hypercomplex
numbers and the conjugation of the form s̄0 = s0 and
s̄𝑘 = −s𝑘 (the Clifford conjugation) can be intro-
duced. By analogy with complex numbers, for which
𝑧1𝑧2 = (𝑧1 · 𝑧2)+ 𝑖[𝑧1 × 𝑧2] for this 4-basis, the metric
tensor 𝜇𝛼𝛽 is defined as a scalar product in the form

𝜇𝛼𝛽 = (s̄𝛼 · s𝛽) =
1

2
(s̄𝛼s𝛽 + s̄𝛽s𝛼), (26)

where 𝛼, 𝛽 = 0, 1, 2, 3. The tensor 𝜇𝛼𝛽 is diagonal
with the signature diag (𝜇𝛼𝛽) = = (1,−1,−1,−1),
which is characteristic of the Riemannian (Minkow-
ski) space. The external product is also defined as

(s̄𝛼 ∧ s𝛽) =
1

2
(s̄𝛼s𝛽 − s̄𝛽s𝛼). (27)

Formulas (26) and (27) written for the 4-basis are also
valid for 4-vectors.

5. Spectral Transformations
at Mirror Mapping

5.1. Tangent spaces at mirror mapping

Let us analyze the tangent space – more precisely,
the tangent subspace – for the vector |𝑟𝑘⟩ in the ini-
tial space and its components at mirror mapping. The
components of the vector |𝑟𝑘⟩ are separated using the
projectors P𝑘± = 1

2 (1±s𝑘) according to the formulas

{|𝑟𝑘⟩}+ = P𝑘+|𝑟𝑘⟩ = 𝑟𝑘1 |+⟩𝑘,
{|𝑟𝑘⟩}− = P𝑘−|𝑟𝑘⟩ = 𝑟𝑘2 |−⟩𝑘.

The basis vectors of the tangent space are formed on
the basis of the action on the components {|𝑟𝑘⟩}±
of the covariant 4-gradient with differentiation with
respect to the coordinates 𝑥𝛼 in the basis of the op-
erators s𝛼.
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Let us define the 4-gradient as ∇̄ = 𝜕0s0−∇, where
∇ = 𝜕𝑘s𝑘 is the vector part (here, summation over
the repeated index is implied). Since P𝑘± = (P𝑘±)

2,
the action of 4-gradient on the components {|𝑟𝑘⟩}±
gives rise to the formation of the operator of tangent
subspace, T𝑘, according to the rule T𝑘± = ∇P𝑘±.
Then the process of obtaining a tangent subspace for
the components of the vector |𝑟𝑘⟩ can be described by
the expression T𝑘±{|𝑟𝑘⟩}±. Let us put, for example,
𝑘 = 1. As a result, for T𝑘+{|𝑟𝑘⟩}+, we obtain

T1+𝑟
1
1|+⟩1 = (𝜕0 + 𝜕1)𝑟

1
1|+⟩1 +

+
1

2
(𝜕2 + 𝑖𝜕3)𝑟

1
1s2|+⟩1 −

1

2
𝑖(𝜕2 + 𝑖𝜕3)𝑟

1
1s3|+⟩1. (28)

The corresponding expression for T𝑘−{|𝑟𝑘⟩}− differs
only in signs.

The solution 𝑟11 of the equation T1+𝑟
1
1|+⟩1 =

= 0 can be obtained in the factorized form, 𝑟11 =
=𝑟11(𝑥

2, 𝑥3)𝑤1
1(𝑥

0, 𝑥1). For the equation T1−𝑟
1
2|−⟩1=

= 0, the solution corresponds to the complex con-
jugate expression 𝑟1*2 = 𝑟1*2 (𝑥2, 𝑥3)𝑤1*

2 (𝑥0, 𝑥1). The
derivatives 𝜕2 ± 𝑖𝜕3 = 0 determine the Cauchy–
Riemann condition for the complex functions
𝑟11(𝑥

2, 𝑥3) and 𝑟1*2 (𝑥2, 𝑥3), and the functions 𝑤1
1 and

𝑤1*
2 determine waves in physical space-time coor-

dinates 𝑥0 = 𝑐𝑡 and 𝑥𝑘 = (𝑥, 𝑦, 𝑧). These waves
propagate in opposite directions along the coordinate
axis 𝑥1. Really, the functions 𝑤1

1 and 𝑤1*
2 can be writ-

ten in terms of their Fourier transforms 𝑤1
1(𝑡, 𝑥

1) =
= ℱ{𝜔1𝑡− 𝑘1𝑥

1} and 𝑤1*
2 (𝑡, 𝑥1) = ℱ*{𝜔2𝑡 + 𝑘2𝑥

1}.
Then the corresponding equations look like

(𝜕0 + 𝜕1)ℱ{𝜔1𝑡− 𝑘1𝑥
1} = (𝜔1/𝑐− 𝑘1) = 0,

(𝜕0 − 𝜕1)ℱ*{𝜔2𝑡+ 𝑘2𝑥
1} = (𝜔2/𝑐− 𝑘2) = 0.

(29)

We require that there should be such functions 𝑤1

and 𝑤*
2 that satisfy Eqs. (29) and which derivatives

are nonzero. The solutions 𝑤1 and 𝑤*
2 describe the

wave processes: 𝑤1
1(𝑥

0, 𝑥1) = 𝑤1
1(𝜔1(𝑡 − 𝑥1/𝑐)) and

𝑤1*
2 (𝑥0, 𝑥1) = 𝑤1*

2 (𝜔2(𝑡 + 𝑥1/𝑐)). It is easy to see
that the expansion in the eigenvectors of other op-
erators has a structure similar to that of the above
solutions. For this purpose, one should only cyclically
permutate the coordinate numbers in the results ob-
tained for the vector components. Since the structure
of the differential operator in Eq. (28) corresponds
to the Cl2 algebra, we have three modifications of
the Cl2 algebras to describe the tangent subspaces

of the “mirror-world”, which depend on the propaga-
tion direction of the wave process. This direction is
determined by the choice of the basis consisting of
the eigenfunctions of the operators s𝑘, in which the
vector |𝑟𝑘⟩ is represented in the initial space.

It should be noted that the obtained results de-
scribe a rather wide class of wave processes; in partic-
ular, provided the corresponding form of the function
𝑤, it can be the motion of a particle with the velocity
𝑐. In this case, the physical content of the variable 𝜔
substantially changes.

5.2. Formation of the basis
of noncommutative geometry
in “mirror world-2”

The tangent space in “mirror world-1”, which was
built for our four-dimensional space-time, showed the
existence of three wave processes. These waves prop-
agate in three orthogonal directions described by the
noncommutative geometry with the Cl2 algebra. For
analysis, let us take the variant of the tangent sub-
space for the vector |𝑟𝑘⟩ in the form of plane waves
and satisfying the condition ⟨𝑟𝑘|𝑟𝑘⟩ = 𝐸:

|𝑟𝑘⟩ =
√︂
𝐸

2
exp(𝑖𝑘𝑥𝑘/2)[exp(−𝑖𝜔𝑡/2)|+⟩𝑘 +

+ exp(𝑖𝜔𝑡/2)|−⟩𝑘]. (30)

This expression describes a vector with the rotational
frequency 𝜔/2 in various bases of the eigenvectors
of the operators s𝑘. From expression (22), it follows
that, for vectors (30), the autocorrelation operators
G𝑘 in “mirror world-1” have the form

G𝑖𝑘 =
1

2
𝐸 [1+ exp(−𝑖s𝑖𝜔𝑡)s𝑘], (31)

where (𝑖𝑘) = (12), (23), (31), and 1 = s0. Sub-
stituting the exponential factor in Eq. (15) by G =
= G12 +G23 +G31 for 𝛼 = 0, we obtain

ℱ0{G} =
𝐸𝑇

2
(3e0 + e1 + e2 + e3), (32)

where the periodic dependence on the coordinates
of the bivectors 𝑖s𝑘 is omitted, because it does not
change expressions for the formed basis vectors,

e𝛼 =
(︁
s𝛼 0
0 −s𝛼

)︁
, 𝛼 = 0, 1, 2, 3. (33)
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On the basis of the results obtained, one can build
the model of the space in “mirror world-2” in the fol-
lowing manner. There is a discrete 𝑆-space of action
in the form of three-dimensional space {𝑛1, 𝑛2, 𝑛3}
composed of cubic cells. All cell edges have the length
𝐸𝑇 and they are the coordinate axes of the bivectors
𝑖s𝑘. The lattice sites are described by the noncom-
mutative geometry with basis vectors (33). For 𝛩2 in
Eq. (15), the system of basis vectors ℱ2{G} can be
obtained in the form

ℱ2{G} =
𝐸𝑇

2
(3e4 + 𝛾1 + 𝛾2 + 𝛾3), (34)

where 𝛾𝑘 are the Dirac matrices in terms of the
mirror-symmetry operators,

𝛾𝑘 =
(︁

0 s𝑘
−s𝑘 0

)︁
. (35)

For a nonclassical rotation process, we should put
𝐸𝑇 = ℎ in expressions (32) and (34).

6. Noncommutative Geometry
with Higher Dimensions

6.1. Passage to 4- or 5-dimensional
noncommutative geometry

Joining the “mirror” (s𝑘) and “anti-mirror” (−s𝑘) op-
erators into a single mirror mapping operator e𝑘
increases the dimension of the initial mirror-image
space. Let us introduce two complex spaces, ℋ𝑎 and
ℋ𝑏, that do not intersect, but possess a common point
0. In the basic representation of |𝑟𝑘⟩ (𝑘 = 1), the pro-
jections of the vectors in these spaces can be written
in the form

|𝑟𝑎⟩ = 𝑎(𝑓1|+⟩+ 𝑓2|−⟩),
|𝑟𝑏⟩ = 𝑏(𝑓3|+⟩+ 𝑓4|−⟩),

(36)

where 𝑎 and 𝑏 are constant factors. Let us join these
spaces, ℋ𝑎⊕ℋ𝑏, and construct a correlation operator
G, which, in this case, is represented by the 4 × 4
matrix

G =

(︃
|𝑎|2G11 𝑎𝑏*G12

𝑏𝑎*G21 |𝑏|2G22

)︃
, (37)

where G𝑘𝑟 are 2 × 2 matrices. The diagonal op-
erators G11 and G22 describe the correlations be-
tween the components of the vectors in each of the
spaces ℋ𝑎 and ℋ𝑏, whereas G12 and G21 the corre-
lation (interaction) of those components between ℋ𝑎

and ℋ𝑏. Hence, not only the dimension of the initial
mirror-image space increases. In order to deal with
the noncommutative geometry, it follows from expres-
sion (37) that the basis vectors (31) must be supple-
mented with symmetry operators with nondiagonal
elements. Making use of the vector e4 from Eq. (34),
one can obtain the extension of the noncommutative
geometry Cl3 to the Cl4 algebra. These algebras form
the 𝑆-space of action in “mirror world-2”. For a non-
classical 𝑆-space, certain commutation relations are
satisfied. In the case of Cl3 algebra, these relations
for bivectors and a 3-vector look like

e′𝑘 ∧ e′𝑙 =
1

2
[e′𝑘, e

′
𝑙] = ℎ2e𝑘e𝑙,

e′𝑟 · (e′𝑘 ∧ e′𝑙) = ℎ3𝜖𝑘𝑙𝑟e𝑟e𝑘e𝑙,
(38)

where 𝜖𝑘𝑙𝑟 is the Levi-Civita symbol and e′𝑘 = ℎe𝑘.

6.2. Passage to 6-dimensional
mirror-image space

Let us consider separately the following nonclassical
case. Let us couple the components of the vectors
in the spaces ℋ𝑎 and ℋ𝑏 by means of the 𝐽-trans-
formation: i.e., in Eq. (36), 𝑓3 = 𝑓2 and 𝑓4 = −𝑓1,
as well as 𝑎 =

√︁
2𝑞
3ℎ and 𝑏 =

√︁
− 2𝑞

3ℎ = 𝑖𝑎, where
𝑞 is a real constant associated with the elementary
charge. As a result of the operation ℋ𝑎 ⊕ℋ𝑏, we ob-
tain a six-dimensional Kähler manifold of the initial
mirror-image space for “mirror world-2”. In this case,
the correlation blocks in Eq. (37) read

G11 = 𝛼

(︃
|𝑓1|2 𝑓1𝑓

*
2

𝑓2𝑓
*
1 |𝑓2|2

)︃
,

G12 = 𝛽*

(︃
𝑓1𝑓

*
2 −|𝑓1|2

|𝑓2|2 −𝑓2𝑓*1

)︃
,

G21 = 𝛽

(︃
𝑓2𝑓

*
1 |𝑓2|2

−|𝑓1|2 −𝑓1𝑓*2

)︃
,

G22 = 𝛼

(︃
|𝑓2|2 −𝑓2𝑓*1
−𝑓1𝑓*2 |𝑓1|2

)︃
,

(39)

where 𝛼 = 2𝑞
3ℎ and 𝛽 = 𝑖 2𝑞3ℎ .

The correlation G of the six-dimensional space in
“mirror world-2” can be mapped to the noncommu-
tative geometry with the help of the cross-correlation
K of “mirror world-2” and “mirror world-3”, which is
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performed using the basis vectors e𝛼 [Eq. (33)] and
the bivectors 𝛾 [Eq. (35)] together with commutation
relations (38). As a result, six vectors of the noncom-
mutative geometry can be written in “mirror world-
3”. They look like

𝛱 = 𝑝0e0+𝑝1e1+𝑝2e2+𝑝4e4+𝑝14𝑖ℎ𝛾1+𝑝24𝑖ℎ𝛾2. (40)

Here, the 𝑝𝛼-values are determined using formula (16):

𝑝0 = 2𝑞(|𝑓1|2 + 𝑓2|2), 𝑝1 =
2

3
𝑞(|𝑓1|2 − 𝑓2|2),

𝑝2 =
2

3
𝑞(𝑓1𝑓

*
2 + 𝑓2𝑓

*
1 ), 𝑝4 =

2

3
𝑞(𝑓1𝑓

*
2 − 𝑓2𝑓

*
1 ),

𝑝14 =
2

3
𝑞(𝑓1𝑓

*
2 + 𝑓2𝑓

*
1 ), 𝑝24 =

2

3
(−𝑞)(|𝑓1|2 − 𝑓2|2).

All 𝑝𝛼-components are real-valued. The coordinate
𝑝3 = 0. It corresponds to the sum of oppositely ori-
ented axial vectors, which can be related to magnetic
moments.

7. Conclusions

This article is not aimed at solving the problems in
the string theory or noncommutative geometry. In-
stead, the attempt is made to find a common ground,
where they can meet. For this purpose, the purely
physical a posteriori method based on one of fun-
damental symmetries, mirror symmetry, was cho-
sen. The latter allowed the concept of “initial state”,
which can acquire a real physical meaning, to be in-
troduced into the theory.

Mirror mappings and conservation conditions for
mirror symmetries – inverse and permutation ones –
were taken as the basis of the research method. Its
formalization with the help of the algebra of ge-
ometric constructions of mirror reflections on the
plane made it possible to introduce 2 × 2-matrix
mirror-image operators, which satisfy the Clifford
algebra Cl3 and form the basis of the noncom-
mutative geometry. Components in this vector ba-
sis are auto-correlations or cross-correlations of the
components of vectors in the initial and mirror-
mapped space. The conservation conditions for mir-
ror symmetries brought about the appearance of
𝑛𝐽-transformation, i.e., discrete rotations by angles
±𝑛 90∘ (𝑛 = 0, 1, 2, ...), for the basis vectors. On the
basis of this transformation, a kind of continuum in-
tegral [8] was introduced, which, with the help of mir-
ror mapping operation, extended the representation

of matrix operators to 4 × 4 matrices and the initial
space of the mirror mapping (complex, in the general
case) from 4 to 8 dimensions.

A physical implementation of the described math-
ematical results had to be sought in the rotation
processes appearing at mirror mappings. The corre-
sponding solution is obtained in terms of physical
space-time coordinates for three tangent subspaces
in “mirror world-1”. In “mirror world-2”, the applica-
tion of continuum integral to the sum of subspaces
made it possible to increase the dimension of the ba-
sis of the noncommutative geometry to the Cl4 alge-
bra, which includes Dirac matrices as bivectors of a
vector algebra. For this result of transformation not
to depend on the energy and frequency of the rota-
tion process, the process must be nonclassical, i.e.,
the relation 𝐸 = ℎ𝜈 must be satisfied.

The model of a four-component complex vector
representing a six-dimensional complex space is cre-
ated in “mirror world-2”. The mapping of this model
on six vectors of the noncommutative geometry
with real-valued coordinates is constructed in “mir-
ror world-3”. These coordinates are cross-correlations
between the components of the vectors from “mirror
world-2” and the vectors mirror-mapped in “mirror
world-3”. From the physical point of view, the pre-
sented model can be regarded as a tetraquark com-
posed of two quark-antiquark pairs with the charges
± 2

3𝑞 from different quark generations. A way to asso-
ciate the considered model with electromagnetic fields
is illustrated in Appendix.

The author is grateful to Yuliya Parko and Andriy
Stepenko (the “Zhytt’elyub” Foundation) for their help
in preparing this paper.

APPENDIX
Tangent Space of Noncommutative
Geometry of the Cl3 Algebra

In expression (40), let us apply the correspondence princi-
ple as ℎ → 0. In the obtained 4-vector, let us denote its
components as 𝑝0 → 𝐴0, and the covariant components as
𝑝𝑘 → −𝐴𝑘. Using the Minkowski space metric and in terms of
new notations, we obtain

W = 𝐴0e0 +𝐴1e1 +𝐴2e2 +𝐴3e3. (41)

For the 4-gradient, we have

∇ = 𝜕𝛼e
𝛼 = 𝜕0e0 −

3∑︁
𝑘=1

𝜕𝑘e𝑘. (42)
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The tangent space is constructed as the internal and external
products, which are represented by the anticommutator and
commutator, respectively,

∇W = ∇W +∇∧W =
1

2
[∇,W̄]− +

1

2
[∇,W̄]. (43)

Whence it follows that

∇W = 𝜕𝛼𝐴
𝛼e0,

∇∧W = −𝜕0A− grad 𝐴0 + rot A = P+B, (44)

where A = 𝐴𝑘e𝑘, grad =
∑︀𝑘=3

𝑘=1 𝜕𝑘e𝑘, P is a polar vector, and
B = rot A is a bivector with the components 𝜕𝑘𝐴

𝑟 − 𝜕𝑟𝐴𝑘

(𝑘, 𝑟 = 1, 2, 3).
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ДЗЕРКАЛЬНА СИМЕТРIЯ ЯК АЛГЕБРА
ОПЕРАТОРIВ ДЛЯ НЕКОМУТАТИВНОЇ ГЕОМЕТРIЇ
ПРОСТОРУ-ЧАСУ

Аналiз геометричних i алгебраїчних властивостей дзер-
кальних вiдображень дозволив використовувати їх як опе-
раторну алгебру некомутативної геометрiї. Координатами
некомутативної геометрiї є авто- або крос-кореляцiї коорди-
нат дзеркально вiдображених просторiв. Розглянуто окре-
мий випадок шестивимiрного келерова многовиду, який вiд-
ображається на некомутативну геометрiю з векторною ал-
геброю Клiффорда Cl4. Цей випадок вiдображення вiдпо-
вiдає тетракварку у складi двох пар кварк-антикварк з рi-
зних поколiнь i зарядами ± 2

3
𝑞.

Ключ о в i с л о в а: дзеркальна симетрiя, некомутативна
геометрiя, алгебра Клiффорда, кореляцiя.
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