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RESONANCE STRUCTURE
OF CROSS-SECTIONS OF SLOW-ELECTRON
SCATTERING BY CALCIUM ATOM

The extended BSR-version of the 𝑅-matrix method has been applied to systematically analyze
the electron scattering by neutral calcium atoms at collision energies up to 4.3 eV. The strong
coupling method with the sets of term-dependent nonorthogonal orbitals and the spline repre-
sentation of the basis functions are used to accurately represent the target wave functions. The
strong-coupling expansion included 39 bound states of the neutral calcium atom, which cover
all its states from the ground one to 4𝑠8𝑠 1𝑆. The complex resonance structure of the angle-
integrated total cross-sections of the elastic 𝑒+Ca scattering and the electron-impact excitation
of the 4𝑠4𝑝 3𝑃 o, 3𝑑4𝑠 3𝐷e, 3𝑑4𝑠 1𝐷e, 4𝑠4𝑝 1𝑃 o, and 4𝑠5𝑠 3𝑆e states of a Ca atom are studied
in detail. The observed structures are associated with particular autodetachment states of the
“incident electron + Ca atom” system. The positions and widths of detected resonances are
determined, and their spectroscopic classification is carried out.
K e yw o r d s: electron, calcium atom, scattering, excitation, ionization, 𝑅-matrix with 𝐵-
splines method, nonorthogonal orbitals, resonances.

1. Introduction
The study of the elementary processes taking place
at electron collisions with calcium atoms is of con-
siderable interest for a number of reasons. First, the
information on parameters of the elementary inter-
action processes between electrons and Ca atoms is
highly required for the successful development of a lot
of directions in modern physics and new technologies,
including plasma physics, astrophysics, upper atmo-
sphere physics, and thermonuclear power engineer-
ing. In particular, calcium produced in the course of
supernova explosions is the most used element, when
quantitatively analyzing the star spectrum [1]. Ca
atoms also have attractive properties for their appli-
cation in optical frequency standards [2]. In addition,
after the activity dealing with controlled thermonu-
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clear fusion had been started, there arose an urgent
necessity in a better understanding of the basic pro-
cesses (elastic scattering, excitation, and ionization)
taking place at collisions of electrons with Ca atoms
[3, 4]. However, for most alkaline earth elements, in-
cluding calcium, the information on the cross-sections
of the elastic scattering and excitation of energy lev-
els in their atoms by the electron impact still remains
limited.

Second, the calcium atom with its ground-state
configuration [1𝑠2 2𝑠2 2𝑝6 3𝑠2 3𝑝6] × (4𝑠2) 1𝑆, as well
as the single- and double-excited states [1𝑠2... 3𝑝6]×
× (4𝑠𝑛ℓ, 3𝑑𝑛ℓ, 4𝑝𝑛ℓ) 3,1𝐿, is similar in many respects
to the helium one. That is, under certain conditions,
it can be considered in the framework of the model of
two electrons above the Ar-like [1𝑠2... 3𝑝6]-core. Va-
lence and covalent correlations are important for both
the ground and low-located excited Ca states. The
widely used method for taking covalent correlations
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into account is based on the application of a semi-
empirical copolarization potential [5]. Although this
potential strongly simplifies calculations and allows
the excitation energies and oscillator strenghts to be
determined with sufficient accuracy, the question re-
mains as to how accurately the model potential can
mimic the covalent correlation, including the non-
local and non-dipole contributions. For this reason,
correlation effects are taken into account in our ap-
proach [6–13] (see Section 2) by including special
additional electronic configurations with an excited
core into the expansion of the target states and
pseudostates.

Third, the atoms of alkaline earth elements are cha-
racterized by high polarizability values. Therefore,
there arises a necessity to accurately take the high po-
larizability of the Ca atom into account. In our work
[6], it was found that the polarization of the Ca atom
in the ground state is determined to a great extent by
the strong dipole excitation of the level 4𝑠4𝑝 1𝑃 o. An
adequate method allowing the polarization effects to
be taken into consideration will be discussed in more
detail in the next section, in connection with the issue
concerning the resonant scattering of slow electrons
by Ca atoms.

Finally, it was found in the experimental [14] and
theoretical [15] works that the 4𝑠24𝑝 2𝑃1/2 state of
the negative calcium ion, Ca−, is stable rather than
resonance as was previously thought. Therefore, it is
worth returning to the problem of theoretical descrip-
tion of resonance phenomena occurring at collisions
of slow electrons with Ca atoms. This task requires
that new concepts and new methods allowing the res-
onance effects to be taken into account should be im-
plied in order to overcome the current, unsatisfactory
state of the theory. Modifications and specifications
of the 𝑅-matrix theory and the strong channel cou-
pling method, which are required for this purpose, are
presented in section 2.

The study of the resonance structure of the e + A
scattering cross sections is a fundamental problem
for the physics of electron-atom collisions. This struc-
ture testifies to the existence of quasistationary auto-
ionization states (AISs) – in the case of neutral atoms,
these are autodetachment states (ADSs) – of the “tar-
get + incident electron” system, the Auger decay of
which leads to a complicated resonance structure of
scattering cross-sections. As a rule, two types of reso-
nances are observed in scattering cross-sections (see,

e.g., works [16, 17]), which are called the Feschbach
and shape resonances. The mechanism of appearance
of Feschbach resonances consists in the capture of the
incident electron in an AIS by the target in one of its
closed channels. However, the electron can be tem-
porarily captured by the target in an open channel
as well. The relevant condition is the presence of
the potential with a specific shape in a certain open
channel. Namely, behind a rather wide barrier, there
should be a well with sufficient depth and width, in
which the scattered electron would become temporar-
ily bound in the AIS.

Besides the importance of ADSs (AISs) in the elect-
ron-atom (ion) scattering processes, these states also
play an essential role in plasma and solids. In plasma,
as a result of collisions between electrons and atoms
(ions), intensive excitation of the ADSs (AISs) in the
e+A system takes place, which affects the energy bal-
ance in plasma, thus being a convenient tool for its
diagnosis. In solids, there may occur cases where con-
duction electrons interact with impurity atoms (ions)
of the crystal lattice via the formation of ADSs (AISs)
and, as a result, this interaction has a resonance char-
acter. Beam experiments in which the energy and
angular dependences of the cross-sections of elastic
scattering , excitation, and atomic (ionic) ionization
by electron impact are measured serve as an exper-
imental basis for elucidating the nature of the reso-
nance structure of scattering cross-sections. Relevant
experiments for e + Ca scattering were performed in
works [18–20] and their results will be reported below
in the course of systematic presentation of the results
of BSR calculations.

In this paper, to study the resonance effects oc-
curring at the collisions of slow electrons with Ca
atoms, we used a new version of the 𝑅-matrix method
[briefly, the 𝐵-Spline 𝑅-matrix (BSR) method], which
was developed in works [6–13, 21–26]. In the frame-
work of this version, a new method was proposed
to take resonance effects into account. It is based
on the application of term-dependent nonorthogo-
nal orbitals and spline representations for basis func-
tions. The proposed method is free from many of
the disadvantages inherent to earlier known meth-
ods that are used to make allowance for resonance
effects (see, for example, works [16,17] and references
therein) associated with the introduction of a spe-
cial additional quadratic integrable correlation func-
tions 𝜒Γ

𝑗 into the expansion of the total wave func-
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tion for the (𝑁 + 1)-electron system “atom + in-
cident electron”. This procedure is known to often
lead to the appearance of a non-physical pseudores-
onance structure in e + A scattering cross-sections
and to a substantial increase in the number alge-
braic or integro-differential equations that are to be
solved.

The analysis of resonances in e+A scattering is of-
ten based on the single-level Breit–Wigner formula
for isolated (non-overlapping) resonances. However,
in the case of two resonance states with close energies
in the same partial wave, the determination of reso-
nance parameters becomes quite a difficult task and
requires the generalization of the single-level Breit–
Wigner formalism to the multichannel case. Among
plenty of other methods that are widely used in the
literature to calculate and analyze the parameters of
complicated resonance structures in multichannel sys-
tems, the most reliable turned out the method devel-
oped in the works by Shimamura et al. [27–30]. It is
based on the concept of “complete separation of res-
onance and nonresonance channel spaces” and uses
the properties of the eigenphase sum and its en-
ergy derivative. Both the latest developments of this
method [31] and its application in various domains of
collision physics (see, e.g., work [32]) testify to the
importance and relevance of this approach. Just the
latter together with the BSR version of the 𝑅-matrix
method was used in this work to study the compli-
cated resonance structure of e + Ca scattering cross-
sections.

This paper is organized as follows. Section 2 is de-
voted to the systematic exposition of the physical
foundations of the strong channel coupling (SCC)
and 𝑅-matrix methods, as well as their modifica-
tions that are based on the application of nonorthog-
onal orbitals and 𝐵-splines as basic functions. In sec-
tion 3, after a brief description of the computational
scheme of the BSR version of the 𝑅-matrix method,
the main techniques are discussed that are used to
study e+Ca scattering resonances in the framework of
the above-mentioned concept of “resonance and non-
resonance channel spaces” [27–31]. There we also an-
alyze the resonance structure in the energy depen-
dences of the angle-integrated total cross-sections of
elastic e + Ca scattering and electron-impact excita-
tion of the 4𝑠4𝑝 3𝑃 o, 3𝑑4𝑠 3𝐷e, 3𝑑4𝑠 1𝐷e, 4𝑠4𝑝 1𝑃 o,
and 4𝑠5𝑠 3𝑆e states of the Ca atom. The results ob-
tained are summarizes in the final section.

2. Methods for Calculating
Electron Scattering by Atoms

A detailed description of the SCC and 𝑅-matrix
methods, as well as their capabilities to study inelas-
tic collisions of slow electrons with atoms, was given
in works [6–13, 16, 17, 21–26]. Therefore, it is perti-
nent to confine the theoretical part of this paper to
a brief description of possible improvements of those
methods, which are based on the application of time-
dependent non-orthogonal orbitals and 𝐵-splines as
basic functions.

2.1. Strong channel coupling method

In this subsection, the multichannel quantum prob-
lem of slow-electron scattering at complex atoms is
considered in the framework of the SCC method. In
the framework of the 𝐿𝑆-coupling scheme, a state of
the e+A system is characterized by a set of quantum
numbers Γ ≡ {𝛾, 𝐿, 𝑆,𝑀𝐿,𝑀𝑆 , 𝜋}, where 𝐿 and 𝑆
are the total orbital and spin moments, respectively;
𝑀𝐿 and 𝑀𝑆 are their projections on a given axis; 𝜋 is
the parity of the whole (𝑁 + 1)-electron system; and
𝛾 ≡ {𝐿𝑖, 𝑆𝑖,𝑀𝐿𝑖

,𝑀𝑆𝑖
, 𝜋𝑖} is a similar set of quan-

tum numbers for the target A in the 𝑖-th state. The
wave function ΨΓ

𝛼(𝑋,𝑥𝑁+1) describing the scattering
of an electron by the 𝑁 -electron target A is a solu-
tion of the Schrödinger equation (the atomic units
𝑒 = 𝑚𝑒 = ~ = 1 are used)

(𝐻𝑁+1 − 𝐸)ΨΓ
𝛼(𝑋,𝑥𝑁+1) = 0,

𝐻𝑁+1 =

𝑁+1∑︁
𝑖=1

(︂
−1

2
∇2

𝑖 −
𝑍

𝑟𝑖

)︂
+

𝑁+1∑︁
𝑖>𝑗=1

1

𝑟𝑖𝑗

(1)

with certain boundary conditions for the e + A scat-
tering problem. Here, 𝑟𝑖𝑗 is the distance between the
𝑖-th and 𝑗-th electrons, 𝑟𝑖 is the distance from the
𝑖-th electron to the nucleus, 𝐻𝑁+1 is the Hamilto-
nian of the (𝑁 + 1)-electron system “atom + inci-
dent electron”, 𝑁 is the number of electrons in the
target atom A, 𝑍 is the nuclear charge, 𝐸 is the to-
tal energy of the e + A system, 𝑥𝑖 ≡ (r𝑖, 𝜎𝑖) stands
for the spatial and spin coordinates of the 𝑖-th elec-
tron, and 𝑋 ≡ (𝑥1, ..., 𝑥𝑁 ) denotes the set of spatial
and spin coordinates of all 𝑁 electrons in the target
atom A. The subscript 𝛼 of the function ΨΓ

𝛼(𝑋,𝑥𝑁+1)
(the latter is often called the collision wave function)
characterizes initial conditions and usually denotes
the input scattering channel.
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The collision wave function ΨΓ
𝛼(𝑋,𝑥𝑁+1) can be

expanded in the complete set of 𝑁 -electron wave
functions Φ𝑖(𝑋) ≡ Φ𝑖(𝑥1, ..., 𝑥𝑁 ) of the target A,
which are eigenstates of the Hamiltonian 𝐻𝑁 . The
coefficients of such an expansion play the role of the
wave function of incident electron. In practical calcu-
lations, this expansion is written as follows:

ΨΓ
𝛼(𝑋,𝑥𝑁+1) = 𝐴

𝑛∑︁
𝑖=1

Φ̄Γ
𝑖 (𝑋; r𝑁+1, 𝜎𝑁+1)×

× 𝐹Γ
𝑖𝛼(𝑟𝑁+1)

𝑟𝑁+1
+

𝑚∑︁
𝑗=1

𝑐𝑗𝜒
Γ
𝑗 (𝑋,𝑥𝑁+1). (2)

Here, 𝐴 is the antisymmetrizing operator, 𝑛 the num-
ber of channels, 𝑚 the number of correlation functions
𝜒Γ
𝑗 included into the second sum in expansion (2),

and 𝐹Γ
𝑖𝛼(𝑟) is the radial wave function of scattered

electron in the 𝑖-th channel. The subscript 𝛼 charac-
terizes the initial conditions and usually marks the
input scattering channel. In practice, as a rule, ex-
pansion (2) includes all terms corresponding to open
channels and only a finite number of terms describing
energy-closed channels.

Let 𝑘𝑖, 𝑙𝑖, 𝑚𝑙𝑖 , and 𝑚𝑠𝑖 denote the quantum num-
bers of incident electron. The channel wave functions
Φ̄Γ

𝑖 contain the atomic wave functions Φ𝑖(𝑥1, ..., 𝑥𝑁 ),
as well as the spin, 𝜒 1

2𝑚𝑠𝑖
, and angular, 𝑌𝑙𝑖𝑚𝑙𝑖

, parts
of the wave function of the incident electron, which
are mutually related according to the addition rules of
moment vectors. In the case of nonrelativistic Hamil-
tonian 𝐻𝑁+1, this relation corresponds to the fixed
values of the total orbital momentum 𝐿 and the total
spin 𝑆, with each of those quantities commuting with
the Hamiltonian 𝐻𝑁+1. Then, the expansion of the
channel function Φ̄Γ

𝑖 in the target states Φ𝑖 looks like

Φ̄Γ
𝑖 (𝑥1, ..., 𝑥𝑁 ; r̂𝑁+1, 𝜎𝑁+1) =

=
∑︁

𝑀𝐿𝑖
𝑚𝑙𝑖

∑︁
𝑀𝑆𝑖

𝑚𝑠𝑖

(𝐿𝑖𝑀𝐿𝑖
, 𝑙𝑖𝑚𝑙𝑖 |𝐿𝑀𝐿)×

× (𝑆𝑖𝑀𝑆𝑖
,
1

2
𝑚𝑠𝑖 |𝑆𝑀𝑆)Φ𝑖(𝑥1, ..., 𝑥𝑁 )×

×𝑌𝑙𝑖𝑚𝑙𝑖
(r̂𝑁+1)𝜒 1

2𝑚𝑠𝑖
(𝜎𝑁+1), (3)

where the standard notation for the Clebsch–Gordan
coefficients is used.

The wave function of the continuum, 𝐹Γ
𝑖𝛼(𝑟), which

describes the radial motion of scattered electron in
the 𝑖-th channel, is defined as follows:

𝐹Γ
𝑖𝛼(𝑟) ≡ 𝐹Γ

𝑘𝑖𝑙𝑖𝛼(𝑟), 𝐹Γ
𝑖𝛼(0) = 0, 𝜀𝑖 = 𝑘2𝑖 /2. (4)

The total energy of the (𝑁+1)-electron system equals
𝐸 = 𝐸𝑖(𝑍,𝑁) + 𝜀𝑖, where 𝐸𝑖(𝑍,𝑁) is the energy of
the atomic state corresponding to the 𝑖-th channel,
and 𝜀𝑖 = 𝑘2𝑖 /2 is the kinetic energy of the incident
electron (in atomic units). If the difference 𝐸 −𝐸𝑖 is
positive, which corresponds to the open channel, then
the continuum function 𝐹Γ

𝑖𝛼(𝑟) includes a divergent
wave at infinity; otherwise, i.e., if 𝐸 − 𝐸𝑖 < 0, the
function 𝐹Γ

𝑖𝛼(𝑟) is quadratically integrable.
The total wave function (2) of the (𝑁 +1)-electron

system is expanded in the set of target states and
pseudostates, the wave functions Φ𝑖(𝑋) of which are
constructed as linear combinations

Φ𝑖(𝑋) =
∑︁
𝑗

𝑐𝑖𝑗𝜙𝑗 (𝑥1, ..., 𝑥𝑁 ), (5)

where 𝜙𝑗 is a given set of antisymmetric single-con-
figuration functions corresponding to a certain tar-
get state {𝐿𝑖, 𝑆𝑖, 𝜋𝑖}. The energy spectrum 𝐸𝑖(𝑍,𝑁)
of target A and the expansion coefficients 𝑐𝑖𝑗 can
be determined from the diagonalization condition for
the 𝑁 -electron Hamiltonian 𝐻𝑁 in the basis of func-
tions (5),

⟨Φ𝑖|𝐻𝑁 |Φ𝑗⟩ = 𝐸𝑖(𝑍,𝑁)𝛿𝑖𝑗 . (6)

In the framework of the multi-configuration Hart-
ree–Fock (MCHF) method, the configuration state
functions (CSFs) 𝜙𝑗(𝑥1, ..., 𝑥𝑁 ) can be expressed as
the antisymmetric product of single-electron wave
functions 𝜙𝛼𝑗 (𝑥𝑗). If the spin-orbit interaction is in-
significant, the wave function of a separate electron
in the central field can be represented as the product
of the spatial and spin functions,

𝜙𝛼𝑗
(𝑥) = 𝜙𝑛𝑗 𝑙𝑗𝑚𝑗

(r)𝜒 (𝑚𝑠|𝜎) =

=
1

𝑟
𝑃𝑛𝑗 𝑙𝑗 (𝑟)𝑌𝑙𝑗𝑚𝑗

(r̂)𝜒 (𝑚𝑠|𝜎), (7)

where 𝑛𝑗 , 𝑙𝑗 , and 𝑚𝑗 are the principal, azimuthal,
and magnetic quantum numbers, respectively; 𝑚𝑠 is
the spin projection; and 𝛼𝑗 denotes the set of quan-
tum numbers {𝑛𝑗 , 𝑙𝑗 ,𝑚𝑗 ,𝑚𝑠}. The fundamental issue
is the selection of the type of radial single-electron
wave functions 𝑃𝑛𝑗 𝑙𝑗 (𝑟) – they can be analytical or-
bitals of the Slater type, or Hartree–Fock orbitals in
a self-consistent field, or radial orbitals 𝑃𝑛𝑗 𝑙𝑗 (𝑟) in
simple static model potentials–and the configurations
included in expansion (5) of target states and pseu-
dostates. The program codes allowing the calculation
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of those orbitals and atomic states were carefully de-
scribed in our previous works [6, 9, 11, 13, 21]. Here,
we only note that the solutions of matrix equation (6)
determine the eigenvalues of the target atom energy.

The second sum on the right-hand side of expansion
(2) contains the quadratically integrable correlation
functions 𝜒Γ

𝑗 (𝑋,𝑥𝑁+1), which describe the bound
states in the (𝑁 +1)-electron system and possess the
same angular symmetry as ΨΓ

𝛼(𝑋,𝑥𝑁+1). These func-
tions serve to improve the description of the system
states at small distances from the nucleus and often
lead to a faster convergence of expansion (2). Making
use of the functions 𝜒Γ

𝑗 , it is also possible to take
into account the effect of some ADSs of the negative
ion A−, which manifest themselves in the scattering
of electrons at neutral atoms A. In practical calcula-
tions, the correlation functions 𝜒Γ

𝑗 are most often used
to eliminate restrictions imposed on the collision wave
function ΨΓ

𝛼 by the condition of the function 𝐹Γ
𝑖𝛼 or-

thogonality to every radial target orbital 𝑃𝑛𝑗 𝑙𝑗 with
the same symmetry [16, 17],

⟨𝑃𝑛𝑗 𝑙𝑗 |𝐹Γ
𝑖𝛼⟩ =

∞∫︁
0

𝑃𝑛𝑗 𝑙𝑗 (𝑟)𝐹
Γ
𝑖𝛼(𝑟) d𝑟 = 0, at 𝑙𝑖 = 𝑙𝑗 . (8)

Of course, the orthogonality condition (8) is a
purely “technical” assumption because the radial or-
bitals 𝑃𝑛𝑗 𝑙𝑗 and 𝐹Γ

𝑖𝛼 are calculated for different poten-
tials. This condition does not follow from the basic
requirements of quantum mechanics and was intro-
duced in the SCC method proceeding from the rea-
sons of calculation convenience. As a result of con-
straints imposed on the collision function ΨΓ

𝛼 by
the orthogonality condition (8), the incident electron
cannot be virtually captured in one of the unfilled
subshells participating in expansion (5) of the tar-
get states and pseudostates. In the framework of the
standard SCC method, the possibility of such a cap-
ture, as was marked above, is taken into considera-
tion by including special additional correlation func-
tions 𝜒Γ

𝑗 into expansion (2). However, this method
of making allowance for resonance effects is not the
most advantageous one and often leads to the ap-
pearance of a nonphysical pseudoresonance structure
in scattering cross-sections, as well as to the neces-
sity to solve a cumbersome system of coupled integro-
differential equations for 𝐹Γ

𝑖𝛼. In order to avoid these
difficulties, increase the accuracy of the theory, and
extend the scope of its application, we must abandon

the “forced” condition (8) of orthogonality between
the continuum functions 𝐹Γ

𝑖𝛼 and the radial target
orbitals 𝑃𝑛𝑗 𝑙𝑗 . Now, there is no need to separately
introduce a special set of correlation functions 𝜒Γ

𝑗 ,
which would account for the influence of some au-
toionization states, into the second sum in expansion
(2) because the first sum in this expansion will al-
ready contain the wave functions of those states.

Substituting the collision function ΨΓ
𝛼 in form (2)

into the Schrödinger equation (1) and projecting the
result in turn onto the target wave functions Φ𝑖 and
the correlation functions 𝜒Γ

𝑗 , we obtain a system of
coupled integro-differential equations for the radial
functions 𝐹𝑖 ≡ 𝐹Γ

𝑖𝛼(𝑟),(︂
d2

d𝑟2
− 𝑙𝑖(𝑙𝑖 + 1)

𝑟2
+

2𝑍

𝑟
+ 𝑘2𝑖

)︂
𝐹𝑖(𝑟) =

= 2
∑︁
𝑗

(𝑉𝑖𝑗 +𝑊𝑖𝑗 +𝑋𝑖𝑗)𝐹𝑗(𝑟). (9)

Here, 𝑘2𝑖 = 2[𝐸−𝐸𝑖(𝑍,𝑁)] and 𝑉𝑖𝑗 is the direct local
potential, whereas the integral operators of nonlocal
exchange, 𝑊𝑖𝑗 , and nonlocal correlation, 𝑋𝑖𝑗 , poten-
tials are determined as follows:

𝑊𝑖𝑗𝐹𝑗 =

∞∫︁
0

𝑊𝑖𝑗(𝑟, 𝑟
′)𝐹𝑗(𝑟

′) d𝑟′,

𝑋𝑖𝑗𝐹𝑗 =

∞∫︁
0

𝑋𝑖𝑗(𝑟, 𝑟
′)𝐹𝑗(𝑟

′) d𝑟′.

(10)

The general expressions for the operators 𝑉𝑖𝑗 , 𝑊𝑖𝑗 ,
and 𝑋𝑖𝑗 are very cumbersome. Their explicit expres-
sions were written only for electron scattering at sim-
ple atoms. However, for complex atoms and ions, they
can be constructed with the help of program code [32].

2.2. 𝑅-matrix method and its modifications

Let us describe the basics of the standard 𝑅-matrix
method, in which the problem of Hamiltonian diago-
nalization in the space of both open and closed chan-
nels is reduced, in essence, to solving a system of alge-
braic equations. A distinctive feature of the 𝑅-matrix
method consists in that the whole configuration space
of the (𝑁 +1)-electron system “atom + incident elec-
tron” is divided into two regions: the inner region,
𝑟 ≤ 𝑎, where all particles of the system (the electrons
and the nucleus) are close in pair to one another and
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strongly interact, and the outer region, 𝑟 > 𝑎, where
the scattered electron is “sensitive” only to the local
potential of its interaction with the atom. The radius
𝑎 of the inner region is chosen to be minimum but
such that all radial wave functions 𝑃𝑛𝑗 𝑙𝑗 of atomic
electrons would vanish with a given accuracy at 𝑟 > 𝑎.

In the framework of this method, the 𝑅-matrix is
calculated. It is determined from the equation

𝐹Γ
𝑖 (𝑎) =

𝑛∑︁
𝑗=1

𝑅Γ
𝑖𝑗(𝐸)

(︃
𝑎

d𝐹Γ
𝑗

d𝑟𝑁+1
− 𝑏𝑗𝐹

Γ
𝑗

)︃
𝑟𝑁+1=𝑎

,

𝑖 = 1, ..., 𝑛 (11)

by solving the problem of 𝑒 + A collision in the in-
ner region (𝑟 ≤ 𝑎). Here, 𝐹𝑗 and 𝑑𝐹𝑗/𝑑𝑟𝑁+1 are the
solutions of the system of equations (9) at the bound-
ary 𝑟 = 𝑎, and the parameters 𝑏𝑗 can be chosen
arbitrarily.

Let us solve the problem of 𝑒 + A collision in the
inner region. For this purpose, we express the total
wave function of the (𝑁 + 1)-electron system corre-
sponding to a given energy 𝐸 in the expansion form

ΨΓ
𝐸 =

∑︁
𝑘

𝐴Γ
𝐸𝑘Ψ

Γ
𝑘 . (12)

Similarly to Eq. (2), we construct an energy-
independent discrete basis of (𝑁 + 1)-electron func-
tions for each set of quantum numbers {𝐿, 𝑆, 𝜋},

ΨΓ
𝑘 (𝑋,𝑥𝑁+1) =

= 𝐴
∑︁
𝑖,𝑗

Φ̄Γ
𝑖 (𝑋, r̂𝑁+1, 𝜎𝑁+1)

𝑢𝑗(𝑟𝑁+1)

𝑟𝑁+1
𝑐Γ𝑖𝑗𝑘 +

+
∑︁
𝑖

𝜒Γ
𝑖 (𝑋,𝑥𝑁+1)𝑑

Γ
𝑖𝑘, (13)

where the functions Φ̄Γ
𝑖 and 𝜒Γ

𝑖 have the same mean-
ing as in expansion (2). Note now that in the first sum
in the right-hand side of Eq. (13), the radial orbitals
of scattered electron, 𝐹Γ

𝑖𝛼, were expanded in the set
of basis functions 𝑢𝑗 , which are determined within a
finite interval 0 ≤ 𝑟 ≤ 𝑎 and satisfy the following
boundary conditions:

𝑢𝑗(0) = 0, 𝑎
d𝑢𝑗

d𝑟

⃒⃒⃒⃒
𝑟=𝑎

= 𝑏𝑢𝑗(𝑎), (14)

where 𝑏 is an arbitrary real constant. For the basis
functions 𝑢𝑗 satisfying the boundary conditions (14),

the Hamiltonian 𝐻𝑁+1 is not Hermitian in the inner
region because the surface terms do not vanish at
𝑟 = 𝑎. However, these members can be removed using
the Bloch operator [33]

𝐿𝑁+1 ≡
𝑁+1∑︁
𝑖=1

1

2
𝛿(𝑟𝑖 − 𝑎)

(︂
d

d𝑟𝑖
− 𝑏− 1

𝑟𝑖

)︂
. (15)

Now, it is expedient to rewrite the Schrödinger
equation (1) in the form

(𝐻𝑁+1 + 𝐿𝑁+1 − 𝐸)Ψ = 𝐿𝑁+1Ψ. (16)

Using the expansion of Green’s function (𝐻𝑁+1 +
+𝐿𝑁+1 − 𝐸)−1 of the operator in the left hand side
of Eq. (16) in the discrete basis ΨΓ

𝑘 , the formal solu-
tion of the Schrödinger equation (1) can be written
as follows:

|ΨΓ⟩ =
∑︁
𝑘

|ΨΓ
𝑘 ⟩

1

𝐸Γ
𝑘 − 𝐸

⟨ΨΓ
𝑘 |𝐿𝑁+1|ΨΓ⟩int. (17)

The coefficients 𝑐Γ𝑖𝑗𝑘 and 𝑑Γ𝑖𝑘 in expansion (13) are
determined simultaneously with the energy eigenval-
ues 𝐸Γ

𝑘 when numerically diagonalizing the matrix of
the modified Hamiltonian 𝐻𝑁+1 + 𝐿𝑁+1 in the dis-
crete basis ΨΓ

𝑘 (13):

⟨ΨΓ
𝑘 |𝐻𝑁+1 + 𝐿𝑁+1|ΨΓ

𝑘′⟩int = 𝐸Γ
𝑘 ⟨ΨΓ

𝑘 |ΨΓ
𝑘′⟩int. (18)

Here, the integration over the radial variables is
confined to the inner 𝑅-matrix region. Since the
boundary conditions (14) are imposed on the ba-
sis functions 𝑢𝑗 , the 𝐸Γ

𝑘 spectrum is discrete. The
calculated eigenvalues 𝐸Γ

𝑘 of the Hermitian matrix
⟨ΨΓ

𝑘 |𝐻𝑁+1 + 𝐿𝑁+1|ΨΓ
𝑘′⟩ are real and form a dis-

cretized continuum.
The essence of the method aimed at the discretiza-

tion of the continuum of the (𝑁 + 1)-electron sys-
tem “atom + incident electron”, which was proposed
in our works [6–13, 21–26], consists in the expan-
sion of the target bound orbitals 𝑃𝑛𝑗 𝑙𝑗 (𝑟) and the
scattered electron orbitals 𝐹Γ

𝑖𝛼(𝑟) (r) in a complete
finite set {𝐵𝑖}𝑛𝑖=1 of the basis splines 𝐵𝑖 and the
following single diagonalization of the matrix of the
self-conjugated system Hamiltonian 𝐻𝑁+1 + 𝐿𝑁+1

in the discrete basis (13). The main advantage of
this method of continuum discretization is based on
the fact that the matrix of the total Hamiltonian
𝐻𝑁+1 + 𝐿𝑁+1 has a very sparse – namely, band –
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structure in the 𝐵-spline basis, which considerably
simplifies the solution of the corresponding system of
algebraic equations. At the same time, 𝐵-splines are
best suited for developing the computational methods
in the scattering theory. The calculation of the ma-
trix of the Hamiltonian 𝐻𝑁+1 +𝐿𝑁+1 in the discrete
basis (13) and its diagonalization can be performed
using the program code [32, 34] for each fixed set of
quantum numbers {𝐿, 𝑆, 𝜋}.

By projecting Eq. (17) onto the channel functions
Φ̄Γ

𝑖 and carrying out calculations at the point 𝑟 = 𝑎,
we arrive at formula (11) in which the elements of
𝑅-matrix are determined by the expression

𝑅Γ
𝑖𝑗(𝐸) =

1

2𝑎

∑︁
𝑘

𝑤Γ
𝑖𝑘(𝑎)𝑤

Γ
𝑗𝑘(𝑎)

𝐸Γ
𝑘 − 𝐸

. (19)

To make expressions in formulas (11) and (19)
shorter, the following notations were introduced for
the exposed radial wave functions 𝐹Γ

𝑖 and surface am-
plitudes 𝑤Γ

𝑖𝑘:

𝐹Γ
𝑖 (𝑟𝑁+1) = 𝑟𝑁+1⟨Φ̄Γ

𝑖 |ΨΓ
𝑘 ⟩′,

𝑤Γ
𝑖𝑘 = 𝑎⟨Φ̄Γ

𝑖 |ΨΓ
𝑘 ⟩′𝑟𝑁+1=𝑎.

(20)

The primed matrix components ⟨Φ̄Γ
𝑖 |ΨΓ

𝑘 ⟩′ in expres-
sions (20) mean that integration should be performed
over the spatial and spin coordinates of all electrons
except for the radial coordinate 𝑟𝑁+1 of the scattered
electron.

The formulas obtained for the 𝑅-matrix [Eq. (19)]
and the continuous spectrum orbitals [Eq. (11)] de-
scribe the process of electron scattering by atoms or
ions in the inner 𝑅-matrix region. Together with the
expression for the coefficients 𝐴Γ

𝐸𝑘 in expansion (12),

𝐴Γ
𝐸𝑘

=
1

2𝑎
(𝐸Γ

𝑘 −𝐸)−1
∑︁
𝑖

𝑤𝑖𝑘(𝑎)

(︂
𝑎
d𝐹Γ

𝑖

d𝑟
− 𝑏𝐹Γ

𝑖

)︂
𝑟=𝑎

=

=
1

2𝑎
(𝐸Γ

𝑘 − 𝐸)−1w𝑇R−1FΓ, (21)

they allow the collision wave function ΨΓ
𝐸 to be calcu-

lated in the inner region for any total system energy
𝐸. Using relationships (11) and (19)–(21), it is possi-
ble to correctly determine the 𝐾- and 𝑆-matrices us-
ing the procedure of matching the solutions in the in-
ner region with the asymptotic solutions in the outer
region,

𝐹𝑖𝛼(𝑟) ∼
𝑟→∞

𝑘
−1/2
𝑖 [𝛿𝑖𝛼 sin 𝜉𝑖(𝑟) +𝐾𝑖𝛼 cos 𝜉𝑖(𝑟)]. (22)

Here, 𝐾𝑖𝛼 are the elements of 𝐾-matrix,

𝜉𝑖(𝑟) = 𝑘𝑖𝑟−𝑙𝑖𝜋/2+𝜂𝑖 ln (2𝑘𝑖𝑟)+arg Γ(𝑙𝑖+1−𝑖𝜂𝑖) (23)

is the asymptotic phase of the regular Coulomb func-
tion with 𝜂𝑖 = −(𝑍 − 𝑁)/𝑘𝑖, and arg Γ(𝑙𝑖 + 1 − 𝑖𝜂𝑖)
is the phase of the Γ-function of the complex argu-
ment. The details of matching procedure were care-
fully described in our papers [6,32,34]. The scattering
𝑛×𝑛-matrix 𝑆𝑖𝛼 and the transition 𝑛×𝑛-matrix 𝑇𝑖𝛼

can be determined using the known matrix relations

S = 1+T =
1+ 𝑖K

1− 𝑖K
. (24)

In what follows, these matrices are used to calculate
the scattering cross-sections and all other observed
quantities.

It is worth noting here that for the e+A scattering
processes with the participation of quasi-stationary
AISs, there are still no standard recipes for construct-
ing a physically acceptable basis ΨΓ

𝑘 for the expan-
sion of the collision wave function ΨΓ

𝐸 . Since the first
sum in formula (13) does not include some channels,
the results of 𝑅-matrix calculations of the electron
scattering processes by atoms or ions can be consid-
ered valid only in the case where these channels are
closed and the influence of the corresponding AISs
is small. For this reason, the interval of collision en-
ergies where expansions (12) and (13) are applicable
will be limited. An alternative approach, which was
proposed in our works [6,9,11,13,21], is based on sup-
plementing the discrete basis set ΨΓ

𝐸 with the wave
functions of pseudostates that simulate the part of
discrete and continuous spectra omitted in the first
sum in expansion (13). This approach allows the tar-
get polarization in the field of incident electron to be
taken into account rather accurately, which is espe-
cially important at low collision energies.

While performing specific numerical calculations
for 𝑒 + A scattering processes, the computing time
is mostly spent on the calculation of the matrix ele-
ments in Eq. (18) and the diagonalization of the self-
conjugate Hamiltonian 𝐻𝑁+1 + 𝐿𝑁+1 in the discrete
basis ΨΓ

𝑘 (13). However, this time-consuming proce-
dure has to be executed only once. Afterwards, the
𝑅-matrix can be determined within the whole energy
interval using formula (19). The energy dependence of
𝑅-matrix is only governed by the energy denomina-
tor in formula (19). This circumstance allows detailed
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calculations to be performed in a wide energy inter-
val with a small energy increment. We also obtain the
possibility to practically move into the complex en-
ergy plane in order to calculate the 𝑅-matrix poles
and so forth.

As a rule, the choice between representations (12)
and (13) for the collision wave function ΨΓ

𝐸 is associ-
ated with the convergence, stability, and accuracy of
calculations. The accuracy of results largely depends
on the choice of basis functions 𝑢𝑗 . The analysis of
the basic equations of the 𝑅-matrix theory, which
was carried out in our works [6–13], showed that the
main difficulties of this method (in particular, the
weak convergence of expansion (12)) can be avoided
if, instead of the basis of numerical functions 𝑢𝑗 , the
basis splines 𝐵𝑖 with compact carriers in the inner
region 𝑟 ≤ 𝑎 are used. In practical calculations, the
application of 𝐵-splines as the basis functions 𝑢𝑗 con-
siderably speeds up the computational process and, at
the same time, provides a required accuracy of wave
function approximation by splines. In such a way, it
is possible to avoid the necessity to introduce the so-
called Buttle corrections [35] into the diagonal matrix
elements (19).

The basis splines 𝐵𝑖 possess some properties that
seem to be specially aimed at resolving computational
difficulties in the 𝑅-matrix method. The idea of us-
ing the basis splines 𝐵𝑖 in the 𝑅-matrix theory is
associated with several important points. First, the
finite properties of 𝐵-splines form the mathematical
basis of their usage as the basis functions 𝑢𝑗 . Namely,
every 𝐵-spline has an unambiguously defined min-
imum compact carrier associated with the 𝑅-matrix
segment [0, 𝑎], This fact is very important for the cor-
rect formulation of scattering problem in the inner re-
gion 0 ≤ 𝑟 ≤ 𝑎. Second, the application of 𝐵-splines
as the basis functions 𝑢𝑗 is analogous to the solu-
tion of the 𝑒+A scattering problem on the 𝑅-matrix
segment [0, 𝑎], beyond which the basis splines 𝐵𝑖 van-
ish. In this case, all interaction potentials, including
the direct, 𝑉𝑖𝑗 , exchange, 𝑊𝑖𝑗 , and correlation, 𝑋𝑖𝑗 ,
ones, are projected onto the complete 𝐵-spline basis
so that they become efficiently truncated in a natural
way at 𝑟 > 𝑎. Finally, a finite set of 𝐵-splines forms
a complete basis on the segment [0, 𝑎]. This property
makes it possible to construct optimal compact ex-
pansions for the radial orbitals of scattered electron,
𝐹Γ
𝑖𝛼, in the form of finite sums. In turn, this circum-

stance means that spline representations for various

quantum-mechanical operators have a highly sparse
band structure, which significantly simplifies the com-
putational scheme of the 𝑅-matrix method.

Hence, the essence of the above-described BSR ver-
sion of the 𝑅-matrix method is as follows:

∙ the continuum radial functions 𝐹Γ
𝑖𝛼(𝑟) are not or-

thogonalized to the target orbitals 𝑃𝑛𝑗 𝑙𝑗 (𝑟),
∙ term-dependent non-orthogonal orbitals and

spline representations are used for the basis functions,
∙ resonance effects are considered not taking the

correlation functions 𝜒Γ
𝑖 into account.

As a result, the proposed BSR version of the 𝑅-
matrix method can be applied without engaging any
correlation functions 𝜒Γ

𝑖 . Alternatively, a minimum
necessary set of such functions can be used to pro-
vide the completeness of the 𝑅-matrix expansion
(13). Such an approach is based on correct calcula-
tions of the continuum radial functions 𝐹Γ

𝑖𝛼(𝑟) in the
inner region 𝑟 ≤ 𝑎. The application of nonorthogo-
nal (to the bound target orbitals 𝑃𝑛𝑗 𝑙𝑗 (𝑟)) continuum
wave functions 𝐹Γ

𝑖𝛼 eliminates the necessity to intro-
duce an additional set of correlation functions into
the second sum in expansion (13). This operation, as
was noted above, often leads to various artificial ef-
fects, e.g., pseudoresonances, which are observed in
the calculation results obtained for scattering cross-
sections.

Unlike the standard 𝑅-matrix method [16, 17], in
the framework of its proposed BSR version [6–13,21–
26], the radial target orbitals 𝑃𝑛𝑗 𝑙𝑗 are optimized for
every term independently. The application of term-
dependent nonorthogonal orbitals provides a more ac-
curate description of the target states and makes it
possible to most comprehensively take into account
such important physical effects as the valent and co-
valent correlations in atoms with unfilled shells and
the relaxation of the quantum-mechanical orbit of ex-
cited electron. Much in the development of the con-
cept of non-orthogonal orbitals and the establishment
of their role in the calculations of atomic structures
and scattering processes was done in work [6], which
served as the basis for creating the corresponding soft-
ware package [32].

3. Resonances at Electron
Scattering by Calcium Atom

The calculations of the target structure and the col-
lision processes were carried out in this work simi-
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larly to our previous calculations of electron scatter-
ing by the neutral calcium atom at low collision en-
ergies [6,8,36]. The total wave function ΨΓ

𝛼(𝑋,𝑥𝑁+1)
of the (𝑁 +1)-electron system “atom + incident elec-
tron” for every combination Γ ≡ {𝛾, 𝐿, 𝑆,𝑀𝐿,𝑀𝑆 , 𝜋}
was expanded in the set of 39 lowest spectroscopic
states of the Ca atom up to the 4𝑠8𝑠 1𝑆 state. Accu-
rate representations of the target wave functions were
obtained using the MCHF method with nonorthogo-
nal orbitals and spline representations for the basis
functions [37] in the ab initio calculations of the Ca
atomic structure. In so doing, the valent and cova-
lent correlations were taken into account by includ-
ing special additional electronic configurations with
the excited core into the target state and pseudostate
expansion (5). In our previous work [6], in order to
find the calculation accuracy of the target wave func-
tions, we determined the binding energies for 39 low-
est spectroscopic states of Ca atom and the oscillator
strengths for most important transitions in it. The ac-
curacy of calculated binding energies turned out close
to that reached in extensive MCHF calculations [38],
and this description of target structure is substan-
tially better as compared to those used in previous
calculations via the standard 𝑅-matrix method [39–
41]. The deviations of the calculated energy values
from the NIST-recommended ones was, in general,
less than 0.1 eV. The results of oscillator strength cal-
culations are also in good agreement with the NIST-
recommended data [43].

In this work, the BSR software package [32] was
used to drscribe the e-Ca scattering. The specificity
of its application to e+Ca scattering was described in
works [6, 7]. Here, we only note that term-dependent
orthogonal orbitals are used which are optimized
separately for various examined states. Besides that,
both the bound target orbitals and the scattered elec-
tron ones are represented in the form of expansion in
the basis splines 𝐵𝑗 determined within the finite 𝑅-
matrix interval 0 ≤ 𝑟 ≤ 𝑎. In the calculations of e+Ca
scattering, as well as in the calculations of the target
bound states, we used 118 basis splines of the 8th
order. The 𝑅-matrix radius was equal to 𝑎 = 80𝑎0,
where 𝑎0 = 0.529× 10−10 m is the Bohr radius.

Let us proceed directly to the study of resonance
phenomena at the collision of slow electrons with Ca
atoms. When electrons collide with neutral atoms,
the effects of virtual capture of the incident electron
in the unfilled subshells of the target lead to char-

acteristic features in the elastic scattering and exci-
tation cross-sections near the thresholds of new en-
ergetically closed channels. It can be explained as a
result of the following circumstance. Along with the
direct potential excitation, there exists a resonant ex-
citation associated with the formation and decay of
quasi-stationary states in the “atom + incident elec-
tron” system. The autoionization decay of such states
of a negative ion A− gives an additional contribution
to the atomic excitation or elastic scattering cross-
section.

It is known that most of real resonances manifest
themselves in multichannel systems of electron-atom
interactions. However, a lot of essential features of
resonance phenomenon reveal themselves in the sim-
pler single-channel situation. That is why we begin to
discuss resonances from the single-channel case.

Let us firstly consider the properties of the partial
resonant amplitude. They form a basis for tests that
are often used to detect unstable quasi-stationary
states (resonances) at purely elastic e + A scatter-
ing and in the absence of nonresonant background. If
the point concerns the e+A collision at energies close
to resonance, then the partial nonresonant waves are
relatively small and the main contribution to the to-
tal scattering cross-section is given by the partial
resonant wave only. Aa a result, a drastically pro-
nounced and approximately symmetric maximum will
be observed in the experimentally measured cross-
section. Its presence, generally speaking, testifies that
a certain resonance may exist.

In practice, when detecting resonances by means
of phase analysis, the phase shifts 𝛿𝑙 or the real and
imaginary parts of the partial amplitude are deter-
mined at various energies. For the resonant ampli-
tude, the phase shift 𝛿𝑙𝑟 corresponding to the angular
momentum 𝑙𝑟 is given by the expression [44]

𝛿𝑙𝑟 = arctg

[︂
Γ

2(𝐸𝑟 − 𝐸)

]︂
. (25)

As a result, at the resonance point (𝐸 = 𝐸𝑟), the
phase shift 𝛿𝑙𝑟 equals 𝜋/2, the partial amplitude be-
comes purely imaginary, and the scattering cross-
section reaches its maximum value. The specific cal-
culations of the resonance parameters (see below)
demonstrate that the phase shift 𝛿𝑙𝑟 rapidly increases
by a multiple of 𝜋 near the energy 𝐸 = 𝐸𝑟.

As a rule, the method of detecting resonances by
analyzing the change rate of partial phase shifts is
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applied [44]. In the case of purely elastic scattering
and neglecting the contribution of nonresonant back-
ground, the change rate of phase shift (25) can be
found by calculating its derivative with respect to the
energy 𝐸,
d𝛿𝑙𝑟
d𝐸

=
Γ/2

(𝐸 − 𝐸𝑟)2 + (Γ/2)2
. (26)

Hence, this quantity is maximum at 𝐸 = 𝐸𝑟, which
means that a resonance should be searched for. Ac-
cording to formula (26), the resonance width Γ is re-
lated to the maximum value of the derivative d𝛿𝑙𝑟/d𝐸
as follows:

Γ = 2

(︂
d𝛿𝑙𝑟
d𝐸

|𝐸=𝐸𝑟

)︂−1

. (27)

Therefore, to make a conclusion about the exis-
tence or absence of resonant states with the angu-
lar momentum 𝑙𝑟, it is necessary to use the tests
described above. However, those tests can determine
the resonant state parameters easily and unambigu-
ously only in the very rare case where the resonances
are purely elastic and the nonresonant background is
absent. In the general case, resonances arise in the in-
elastic interaction interval and are superimposed on
a nonresonant background. Therefore, those tests do
not allow the resonance position and width to be de-
termined unambiguously. Hence, the tests based on
the properties of partial amplitudes of the Breit–
Wigner type can only provide information, albeit im-
portant, about a necessity to perform a more detailed
analysis of the energy dependence of partial cross-
sections to detect the resonant behavior.

In a real case, resonant interaction is accompanied
by a nonresonant background, which can be taken
into account by summing up the resonant part of the
phase shift 𝛿𝑙𝑟 (25) with a certain constant phase 𝛿0,

𝛿(𝐸) = 𝛿0 + 𝛿𝑙𝑟 = 𝛿0 + arctg

[︂
Γ

2(𝐸𝑟 − 𝐸)

]︂
. (28)

The quantity 𝛿𝑙𝑟 is called the background phase
shift. Assuming the energy independence of the back-
ground, the width Γ of an isolated resonance can be
determined by formula (27).

Thus, near the resonance energy 𝐸𝑟, the total phase
shift 𝛿(𝐸) = 𝛿0 + 𝛿𝑙𝑟 drastically increases from 𝛿0 to
𝛿0 +𝜋. We adopt such a rapid growth of the function
𝛿(𝐸) by 𝜋 as a definition of a resonance with the
angular momentum 𝑙𝑟.

Before passing to the general multichannel case,
note that the determination of the resonance position
𝐸𝑟 and width Γ by formulas (27) and (28) is, as a rule,
not difficult as far as the resonance is so narrow that
the background phase shift 𝛿0 can be considered con-
stant within the resonance level width in a vicinity of
the energy 𝐸𝑟. However, for a wider resonance with
a short life time, the unambiguous determination of
its parameters can become a difficult task. Actual-
ly, the background phase shift 𝛿0 is not constant but
changes (slowly) with the energy 𝐸. Therefore, the
exact determination of the parameters of wide reso-
nance requires the knowledge of the behavior of the
function 𝛿0(𝐸) in an energy interval about Γ in width
near the point 𝐸𝑟: 𝐸𝑟 − Γ/2 ≤ 𝐸 ≤ 𝐸𝑟 + Γ/2.

Note also that the simple resonance model consid-
ered above seemingly does not consider the inelastic
processes, i.e., processes at which the target becomes
excited or ionized. At the same time, most resonances
of negative A− ions emerge at energies where more
than one channel are open. Furthermore, those reso-
nances often overlap one another and are located near
the thresholds, which impose their own constraints on
the allowable behavior of phase shifts. As time went
by, it became clear that the interpretation of a wider
range of resonance phenomena requires the applica-
tion of a multichannel theory that would be applica-
ble, for example, to the analysis of e+A systems with
close (overlapping) resonances.

In the multichannel case, ithe nformation about
resonances can be obtained by analyzing the ana-
lytical properties of 𝑆-matrix in the complex energy
plane. This method is simple in principle, but it re-
quires a large amount of computation when consid-
ering a multi-channel system with a large number of
overlapping resonances. An alternative possibility of
resonance research is based on the multi-channel gen-
eralization of the expression [45]

Δ𝑡 = 2}
d𝛿

d𝐸
(29)

for the time delay Δ𝑡 at single-channel scattering in
comparison with the time spent on the free passage
of incident particles. It is known [44,45] that the time
delay Δ𝑡 is directly related to the 𝑆-matrix, namely,

Δ𝑡 = −𝑖}
d

d𝐸
ln𝑆. (30)
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This relationship can be generalized to the multichan-
nel case by introducing the lifetime matrix [27–30]

𝑄 = 𝑖}𝑆
d𝑆†

d𝐸
= −𝑖}

d𝑆

d𝐸
𝑆† = 𝑄†(𝐸), (31)

where the dag symbol denotes the Hermitian conjuga-
tion. It is easy to see that in the case of elastic scat-
tering, where 𝑆 = exp(2𝑖𝛿), relationships (29) and
(30) are equivalent. For multi-channel scattering, the
diagonal elements 𝑄𝑖𝑖 of the 𝑄-matrix are real-valued
and have the physical meaning of the time delay aver-
aged over all possible output channels, including the
input channel 𝑖.

The 𝑄-matrix was first introduced by Smith
[46]. In the literature, it is often referred to as the
time-delay matrix. From definition (31) of the 𝑄-
matrix, it is evident that the latter is Hermitian so
that its eigenvalues 𝑞𝑖 are real. The sum of eigenval-
ues, i.e., the trace Tr𝑄 of the matrix 𝑄, is related to
the sum of the intrinsic phases, 𝛿(𝐸), by the formula

2}
d𝛿

d𝐸
= Tr𝑄(𝐸) ≡

∑︁
𝑖

𝑄𝑖𝑖(𝐸) =
∑︁
𝑖

𝑞𝑖(𝐸). (32)

Below, the channels defined by the 𝑄-matrix eigen-
vectors will be called eigenchannels with respect to
the 𝑄-matrix or, briefly, 𝑄-eigenchannels. A distinc-
tive feature of the time-delay matrix 𝑄 consists in
that for an isolated resonance with a background 𝑆-
matrix independent of the energy 𝐸, only the non-
zero eigenvalue has the Lorentzian form 𝐿(𝐸) [28]. In
other words, only the 𝑄-eigenchannel corresponding
to this Lorentzian eigenvalue is associated with the
resonance, and all other 𝑄-eigenchannels are indepen-
dent of the resonance asymptotically.

In work [29], this result was extended to overlap-
ping resonances. If the energy intervals of two reso-
nances overlap and the background 𝑆-matrix is in-
dependent of 𝐸, two eigenvalues of the 𝑄-matrix,
{𝑞𝑖(𝐸), 𝑖 = 1, 2}, have Lorentzian profiles that avoid
each other only near their intersection points. Their
sum is a simple sum of two Lorentzians. All other
eigenvalues equal zero. This means that only two 𝑄-
eigenchannels are associated with those resonances,
and all other 𝑄-eigenchannels are not associated with
the resonances asymptotically.

Finally, the theorem proved in works [30, 31] gen-
eralizes this (latter) result on the case of 𝑁 over-
lapping resonances. Namely, only 𝑁 eigenvalues of

the 𝑄-matrix are different from nonzero and pos-
sess Lorentzian profiles that avoid each other near
their intersection points, thus proving that the back-
ground 𝑆-matrix is independent of the energy 𝐸. Any
of the overlapping resonances can only decay into 𝑁
𝑄-eigenchannels corresponding to those eigenvalues
but none of other 𝑄-eigenchannels. Thus, the set of
𝑄-eigenchannels can be divided into a “resonant chan-
nel space”, i.e., a subset of 𝑁 𝑄-eigenchannels asso-
ciated with the resonances, and its asymptotic com-
plement, which is not related to the resonances and
comprises a nonresonant background.

According to the theorem formulated above, in
the case of more than one overlapping resonance,
the single-channel Breit–Wigner formulas (26) and
(28) should be replaced by the corresponding multi-
channel formulas for the eigenphase sum 𝛿(𝐸) and
the 𝑄-matrix trace Tr𝑄,

𝛿(𝐸) =

𝑁∑︁
𝜈=1

arctg
Γ𝜈/2

𝐸𝜈 − 𝐸
+ 𝛿𝑏(𝐸), (33)

Tr𝑄(𝐸) =

𝑁∑︁
𝜈=1

𝐿𝜈(𝐸) + 2}
d𝛿𝑏(𝐸)

d𝐸
≡

≡
𝑁∑︁

𝜈=1

}Γ𝜈

(𝐸 − 𝐸𝜈)2 + (Γ𝜈/2)2
+ 2}

d𝛿𝑏(𝐸)

d𝐸
. (34)

Here, 𝐸𝜈 denotes the position and Γ𝜈 the width of the
𝜈-th resonance. Now, the contribution of overlapping
resonances is described by the sum of ̸𝑁 terms, each
of which has a typical resonance form [see formulas
(25) and (26)]. At the same time, the summand 𝛿𝑏(𝐸)
includes the sum of the background eigenphases. As
a result, the trace Tr𝑄(𝐸) of the 𝑄-matrix is a simple
superposition of the Lorentzian curves 𝐿𝜈(𝐸), except
for the usually small nonresonant background. Assu-
ming that only one eigenphase is important at ener-
gies in a vicinity of 𝐸𝜈 = 𝐸𝑟, i.e., the resonance is iso-
lated, we may neglect summation in relationship (33)
to obtain formula (28) for single-channel scattering.

If the above-described concept of the “space of reso-
nant channels” is applied to e+Ca collision processes,
the following points can be clearly distinguished.

1. Resonance states can decay into any open chan-
nel of common symmetry. They can also decay into
any of their eigenchannels determined by the 𝑆-
matrix diagonalization. However, it is known that an
isolated resonance can only decay into one (separate)
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of its eigenchannels, which is determined by the di-
agonalization of the time-delay matrix (31). This se-
lected 𝑄-eigenchannel is associated with an eigen-
value, the dependence of which on the energy 𝐸 has
the Lorentzian form 𝐿𝜈(𝐸).

Table 1. Possible terms of the odd
states of Ca− ion in the energy interval
up to about 4.3 eV

Configuration Possible terms
Number

a b

4𝑠4𝑝[3𝑃 ]3𝑑 4.2𝑃 , 4.2𝐷, 4.2𝐹 o 6 6
4𝑠3𝑑[3𝐷]4𝑝 4.2𝑃 , 4.2𝐷, 4.2𝐹 o 6 4
4𝑠3𝑑[1𝐷]4𝑝 2𝑃 , 2𝐷, 2𝐹 o 3 2
4𝑠4𝑝[1𝑃 ]3𝑑 2𝑃 , 2𝐷, 2𝐹 o 3 3
4𝑠4𝑝[1𝑃 ]4𝑑 2𝑃 , 2𝐷, 2𝐹 o 3 1
4𝑠5𝑠[3𝑆]5𝑝 4.2𝑃 o 2 2
4𝑠5𝑠[3𝑆]6𝑝 4.2𝑃 o 2 2
4𝑠5𝑠[3𝑆]4𝑓 4.2𝐹 o 2 2
4𝑠5𝑠[1𝑆]5𝑝 2𝑃 o 1 1
4𝑠5𝑠[1𝑆]4𝑓 2𝐹 o 1 1

Total 29 24

a – the number of possible terms of given configuration.
b – the number of identified terms of given configuration.

Table 2. Possible terms of the even
states of Ca− ion in the energy interval
up to about 4.3 eV

Configuration Possible terms
Number

a b

4𝑠23𝑑 2𝐷 1 1
4𝑠4𝑝2[3𝑃 ] 4.2𝑃 , 2𝐷, 2𝑆 4 4
4𝑠4𝑝[3𝑃 ]4𝑓 4.2𝐷, 4,2𝐹 , 4,2𝐺 6 5
4𝑠3𝑑[3𝐷]5𝑠 4.2𝐷 2 2
4𝑠3𝑑2 2𝑆, 4.2𝑃 , 2𝐷, 4.2𝐹 , 2𝐺 7 4
4𝑠4𝑝[1𝑃 ]4𝑓 2𝐷, 2𝐹 , 2𝐺 3 3
4𝑠3𝑑[3𝐷]4𝑑 4.2𝑆, 4.2𝑃 , 4.2𝐷, 4.2𝐹 , 4.2𝐺 10 4
4𝑠3𝑑[1𝐷]4𝑑 2𝑆, 2𝑃 , 2𝐷, 2𝐹 , 2𝐺 5 4
4𝑠5𝑠2[1𝑆] 2𝑆 1 1
4𝑠5𝑠[3𝑆]4𝑑 4.2𝐷 2 2
4𝑠5𝑠[1𝑆]6𝑠 2𝑆 1 1
4𝑠5𝑠[1𝑆]4𝑑 2𝐷 1 1

Total 43 32

a – the number of possible terms of given configuration.
b – the number of identified terms of given configuration.

2. Since the incident electron can be captured by
the target into any possible ADS of the negative Ca−
ion, the resonances in the spectrum of e + Ca scat-
tering cross-sections are grouped within the energy
intervals located before the opening of the next in-
elastic channel. This behavior allows us to express
some general considerations about the decay of pos-
sible ADSs corresponding to a certain configuration
of the negative Ca− ion and approaching the excita-
tion threshold of one of the closely located states of a
Ca atom. Among other characteristics, each ADS of
the negative Ca− ion has a definite parity. The decay
of such states can occur via that or another chan-
nel, with the parity being conserved. Therefore, in
Tables 1 and 2, we systematized possible ADSs of the
negative Ca− ion in accordance with their parities.
Those states will be the objects of our further study.

3. The eigenphases 𝛿𝛼 defined in this section are,
in essence, the phases of the diagonal elements in the
𝑆-matrix (see work [31]). The latter is related to the
𝐾-matrix (the reactance matrix) by means of rela-
tionship (24). This relation allows the phases 𝛿𝛼 to
be calculated in the framework of the BSR version
of the 𝑅-matrix method, which was described in sec-
tion 1, with the help of the RESFIT software package
[47]. When analyzing the structure of resonances, this
package allows the Lorentzian profile of the derivative
in the interval of resonance energies to be correctly
reproduced at the quantitative level. In so doing, the
𝐾-matrix is fitted to an analytical form that contains
information about the resonance position and width,
as well as the background 𝐾-matrix. The results of
such calculations obtained for the sum 𝛿 of eigenval-
ues 𝛿𝛼 and its energy derivative d𝛿(𝐸)/d𝐸, as well
as the positions and widths of resonances in the in-
tegral cross-section (ICS) of e + Ca scattering, are
exhibited in Fig. 1 and Tables 3 to 5. Three aster-
isks (* * *) in Tables 3 and 4 mark the most proba-
ble, i.e., reliably established in our calculations, reso-
nances (see Table 5). For such resonances, the magni-
tude of the phase shift jump varies within the interval
0.65𝜋 ≤ 𝛿𝛼 ≤ 𝜋 when passing through the resonance
point 𝐸 = 𝐸𝑟. If the phase shift jump at the passage
through the resonance point lies within the interval
𝜋/2 < 𝛿𝛼 < 0.65𝜋, the corresponding possible (quite
probable) resonance state of Ca− is marked with two
asterisks (**). In this case, the existence of the Ca−
resonance states cannot be established without in-
volving additional information, for instance, about
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the resonant behavior of the scattering cross-section
near the energy 𝐸 = 𝐸𝑟. If the magnitude of the
phase shift jump is within the interval 0 < 𝛿𝛼 < 𝜋/2,
then the possible Ca− states are marked with a single
asterisk (*). In this case, there exist such states of the
negative Ca− ion that do not result in any observable
resonant (physical) effect. By comparing the data in
Tables 3 to 5, the conclusion can be drawn that 24
(i.e., 83%) of 29 possible (for selected configurations)
odd states and 32 (i.e., 74%) of 43 possible even ones
in the energy interval from the reaction threshold to
4.3 eV were confirmed in our calculations. It is the
multiple character of detected resonances that leads
to their noticeable contribution to the e + Ca scat-
tering cross-section, despite that the widths of most
resonances (see Tables 3 to 5) are rather small.

Table 3. Position 𝐸𝑟 and width Γ

of the possible resonances of odd states
in the integral cross sections of e + Ca scattering
in the energy interval up to about 4.3 eV

𝐸𝑟, eV Γ, MeV

The reliability
degree of

the detected
resonance
Ca− state

Probable
classification

1.893 0,2 ** 4𝑠4𝑝[3𝑃 ]3𝑑[2𝑃 o]

1.922 40 * 4𝑠4𝑝[3𝑃 ]3𝑑[2𝐷o]

1.93 39 * 4𝑠4𝑝[3𝑃 ]3𝑑[2𝐹 o]

2.121 59 *** 4𝑠4𝑝[3𝑃 ]3𝑑[4𝐹 o]

2.251 140 *** 4𝑠3𝑑[3𝐷]4𝑝[2𝐷o]

2.48 128 ** 4𝑠4𝑝[3𝑃 ]3𝑑[4𝑃 o]

2.523 13 *** 4𝑠4𝑝[3𝑃 ]3𝑑[4𝐷o]

2.532 14 ** 4𝑠3𝑑[1𝐷]4𝑝[2𝐷o]

2.533 16 * 4𝑠3𝑑[3𝐷]4𝑝[2𝐹 o]

2.533 18 * 4𝑠3𝑑[3𝐷]4𝑝[4𝐹 o]

2.534 24 * 4𝑠3𝑑[3𝐷]4𝑝[4𝑃 o]

2.719 16 ** 4𝑠4𝑝[1𝑃 ]3𝑑[2𝐷o]

2.723 18 ** 4𝑠3𝑑[1𝐷]4𝑝[2𝐹 o]

2.797 116 ** 4𝑠4𝑝[1𝑃 ]3𝑑[2𝐹 o]

2.93 1 * 4𝑠4𝑝[1𝑃 ]3𝑑[2𝑃 o]

2.967 45 * 4𝑠4𝑝[1𝑃 ]4𝑑[2𝐹 o]

3.826 16 *** 4𝑠5𝑠[3𝑆]5𝑝[4𝑃 o]

3.877 7 *** 4𝑠5𝑠[3𝑆]5𝑝[2𝑃 o]

3.914 5 ** 4𝑠5𝑠[3𝑆]6𝑝[4𝑃 o]

3.967 40 ** 4𝑠5𝑠[3𝑆]4𝑓 [2𝐹 o]

3.977 97 * 4𝑠5𝑠[3𝑆]4𝑓 [4𝐹 o]

4.059 42 * 4𝑠5𝑠[3𝑆]6𝑝[2𝑃 o]

4.132 4 * 4𝑠5𝑠[1𝑆]5𝑝[2𝑃 o]

4.201 56 ** 4𝑠5𝑠[1𝑆]4𝑓 [2𝐹 o]

Fig. 1. Example of overlapping resonances at e + Ca scatter-
ing. Partial contributions of 2𝐷e wave to the integral cross-
sections (ICSs) of elastic e + Ca scattering in the 4𝑠2 1𝑆 and
4𝑠4𝑝 3𝑃 o states of Ca atom and excitation of the 4𝑠2 1𝑆 −
4𝑠4𝑝 3𝑃 o transition (𝑎). Energy dependence of the eigenphase
sum 𝛿(𝐸) for the partial 2𝐷e wave (𝑏). Energy dependence
of the d𝛿(𝐸)/d𝐸 in the overlapping interval of the resonances
4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷 and 4𝑠4𝑝2 2𝐷 (𝑐). Lorentzian profiles of the en-
ergy derivatives of eigenphases (curves 1 ) and their sum (curve
2 ) in the case of two overlapping resonances 4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷 and
4𝑠4𝑝2 2𝐷 (𝑑)
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4. For multi-electron systems of the Ca type, an
essential role in e + Ca scattering is played by non-
central interaction among outer (bound) Ca electrons,
as well as their interaction with the incident elec-
tron. In such systems, a series of resonances with the
same total angular momentum and parity are ob-
served. They are grouped near the excitation thresh-
old of one of closely located states of Ca atom. This
is demonstrated in Tables 3 and 4, where the param-

Table 4. Position 𝐸𝑟 and width Γ

of the possible resonances of even states
in the integral cross sections of e + Ca scattering
in the energy interval up to about 4.3 eV

𝐸𝑟, eV Γ, MeV

The reliability
degree of

the detected
resonance
Ca− state

Probable
classification

1.193 700 *** 4𝑠23𝑑[2𝐷]

1.899 12 ** 4𝑠4𝑝2[3𝑃 ][4𝑃 ]

1.899 12 ** 4𝑠4𝑝2[3𝑃 ][2𝑃 ]

1.901 14 ** 4𝑠4𝑝[3𝑃 ]4𝑓 [2𝐷]

1.903 17 ** 4𝑠4𝑝[3𝑃 ]4𝑓 [4𝐷]

1.957 97 * 4𝑠4𝑝[3𝑃 ]4𝑓 [4𝐹 ]

1.966 113 * 4𝑠4𝑝[3𝑃 ]4𝑓 [2𝐹 ]

1.975 65 * 4𝑠4𝑝[3𝑃 ]4𝑓 [2𝐺]

2.004 122 ** 4𝑠4𝑝2[2𝐷]

2.075 246 ** 4𝑠4𝑝2[2𝑆]

2.524 1 * 4𝑠3𝑑[3𝐷]5𝑠[2𝐷]

2.524 0,3 * 4𝑠3𝑑[3𝐷]5𝑠[4𝐷]

2.556 39 * 4𝑠3𝑑2[3𝐹 ][4𝐹 ]

2.558 53 * 4𝑠3𝑑2[3𝐹 ][2𝐹 ]

2.559 40 * 4𝑠3𝑑2[3𝑃 ][2𝑃 ]

2.56 44 * 4𝑠3𝑑2[1𝐺][2𝐺]

2.718 126 * 4𝑠4𝑝[1𝑃 ]4𝑓 [2𝐷]

2.743 33 * 4𝑠4𝑝[1𝑃 ]4𝑓 [2𝐹 ]

2.75 45 * 4𝑠4𝑝[1𝑃 ]4𝑓 [2𝐺]

2.833 256 * 4𝑠3𝑑[3𝐷]4𝑑[2𝑃 ]

2.938 12 ** 4𝑠3𝑑[1𝐷]4𝑑[2𝑃 ]

3.018 141 * 4𝑠3𝑑[3𝐷]4𝑑[2𝐺]

3.019 102 ** 4𝑠3𝑑[3𝐷]4𝑑[2𝐹 ]

3.208 1029 * 4𝑠3𝑑[3𝐷]4𝑑[4𝐹 ]

3.386 369 ** 4𝑠3𝑑[1𝐷]4𝑑[2𝐺]

3.414 1462 ** 4𝑠3𝑑[1𝐷]4𝑑[2𝐹 ]

3.659 101 *** 4𝑠3𝑑2[1𝑆][2𝑆]

3.875 3 *** 4𝑠5𝑠2[1𝑆][2𝑆]

3.917 4 *** 4𝑠5𝑠[3𝑆]4𝑑[2𝐷]

3.928 15 ** 4𝑠5𝑠[3𝑆]4𝑑[4𝐷]

4.099 3 *** 4𝑠5𝑠[1𝑆]6𝑠[2𝑆]

4.143 11 *** 4𝑠5𝑠[1𝑆]4𝑑[2𝐷]

eters (the position 𝐸𝑟 and the width Γ) of resonances
in the ICS of e +Ca scattering are quoted separately
for even and odd ADSs of the negative Ca− ion. The
last column of Tables 3 to 5 contains the illustrative
scheme of the classification proposed by us for the de-
tected resonances in the interval of incident-electron
energies from 1.893 to 4.3 eV. As one can see from
Tables 3 to 5, the resonances are arranged very close
to one another in the indicated energy interval and
most of them are rather narrow.

5. Detailed calculations of 𝑄-matrix eigenvalues
determine the number 𝑁 of Lorentzian profiles 𝐿𝜈(𝐸)
that must be included into formula (34) in order
to accurately calculate the trace of 𝑄-matrix. In the
case of an isolated narrow resonance with a long life-
time, the sum 𝛿(𝐸) of all eigenphases is well de-
scribed by the one-level Breit–Wigner formula (28)
and drastically increases by almost 𝜋 in a narrow
vicinity of the resonance energy 𝐸 = 𝐸𝑟. Recently,
the method of detecting resonances by measuring
the change rate of partial phase shifts has been of-
ten applied [31]. It was found that the derivative
d𝛿(𝐸)/d𝐸 turned out more informative for the anal-
ysis of resonance features than the eigenvalue sum
𝛿(𝐸) itself. This fact has both practical and physical
aspects. On the one hand, resonances can be more
clearly distinguished in the derivative d𝛿(𝐸)/d𝐸 than
in the eigenvalue sum𝛿(𝐸). On the other hand, the
derivative d𝛿(𝐸)/d𝐸 is directly related to the lifetime
of resonance state, which allows a transparent physi-
cal interpretation to be made. In addition, the trace

Table 5. Position 𝐸𝑟 and width Γ

of the reliably established resonances
in the integral cross-sections of e + Ca scattering
in the energy interval up to about 4.3 eV

Energy Width Phase Classification
𝐸𝑟, eV Γ, MeV shift, 𝜋

1.193 700 0.83 4𝑠23𝑑 2𝐷

2.121 59 0,83 4𝑠4𝑝[3𝑃 ]3𝑑4𝐹 o

2.251 140 0.84 4𝑠3𝑑[3𝐷]4𝑝2𝐷o

2.523 13 0.85 4𝑠4𝑝[3𝑃 ]3𝑑4𝐷o

3.659 101 0.72 4𝑠3𝑑[1𝐷]4𝑑2𝑆

3.826 16 0,9 4𝑠5𝑠[3𝑆]5𝑝4𝑃 o

3.875 3 0.98 4𝑠5𝑠2 2𝑆

3.877 7 0.96 4𝑠5𝑠[3𝑆]5𝑝2𝑃 o

3.917 4 0.77 4𝑠5𝑠[3𝑆]4𝑑2𝐷

4.099 3 0.86 4𝑠5𝑠[1𝑆]6𝑠2𝑆

4.143 11 0.67 4𝑠5𝑠[1𝑆]4𝑑2𝐷

174 ISSN 2071-0186. Ukr. J. Phys. 2022. Vol. 67, No. 3



Resonance Structure of Cross-Sections

of 𝑄-matrix, as well as the derivative d𝛿(𝐸)/d𝐸, has
a Lorentzian profile in the interval of resonance ener-
gies, and this profile can be reproduced quantitatively
by means of the OriginPro 7.0 tools. A graphic illus-
tration of the aforesaid is presented in Fig. 1, where
the main stages of the procedure aimed at analyz-
ing the structure of resonance features in the ICS of
e+Ca scattering for the 2𝐷e wave at energies of 1.901
and 2.004 eV are presented. The resonance param-
eters (the position 𝐸𝜈 and the width Γ𝜈) obtained
from the analysis of the energy dependence of the
derivative d𝛿(𝐸)/d𝐸 near the excitation thresholds
of atomic levels are quoted in Table 3 for the odd
states and in Table 4 for the even ones.

A practical conclusion from the above is as fol-
lows: early indications for the existence of resonances
should be sought in the energy dependences of not
only the scattering cross-sections but also the eigen-
phase sum 𝛿(𝐸) in the vicinity of resonance energy
𝐸𝑟. In the general case of multi-channel scattering,
more complete information concerning the resonance
parameters (𝐸𝜈 , Γ𝜈) can be obtained by analyzing
the derivative d𝛿(𝐸)/d𝐸 of the eigenphase sum 𝛿(𝐸)
with respect to the energy 𝐸. When analyzing such
resonances, instead of “single-channel” Breit–Wigner
formulas (26) and (28), the corresponding “multi-
channel” formulas (33) and (34) should be used.

To illustrate the general provisions formulated
above, we also give an example of two possible over-
lapping resonances located at energies of 1.901 and
2.004 eV (see Fig. 1). In particular, Fig. 1, 𝑏 demon-
strates the energy dependence of the eigenphase sum
𝛿 (in 𝜋 units) in the 2𝐷e wave for elastic e+Ca scatter-
ing in the 4𝑠2 1𝑆 and 4𝑠4𝑝 3𝑃 o states and excitation of
the 4𝑠2 1𝑆− 4𝑠4𝑝 3𝑃 o transition. In the course of col-
lision at energies of 1.901 and 2.004 eV, the incident
electron and the Ca atom can form a quasi-bound
Ca− system in the 4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷 and 4𝑠4𝑝2 2𝐷 states,
respectively.

The Lorentzian profiles corresponding to the
4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷 and 4𝑠4𝑝2 2𝐷 resonances, which are
depicted in Fig. 1, 𝑑 by red curves, were obtained
by carrying out the Lorentzian fitting of the eigen-
phase derivatives in the partial 2𝐷e wave. The reso-
nance peaks observed in those curves at energies of
1.901 and 2.004 eV (see Fig. 1, 𝑑) are spaced ap-
preciably apart. The resulting dependence was ob-
tained using the Lorentzian fitting of the energy de-
pendence of the derivative d𝛿(𝐸)/d𝐸 of the sum of

eigenphases of two indicated resonances and is shown
in Fig. 1, 𝑑 as a blue curve. The positions and widths
of the fitted Lorentzians correspond to the positions
and widths of the corresponding resonances in the
ICS of e+Ca scattering, which were calculated in the
BSR39 approximation and are shown in Figs. 1, 𝑎–𝑑
by squares.

The RESFIT software package [47] was used to
calculate the eigenphases 𝛿𝛼. The energies of the
4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷 and 4𝑠4𝑝2 2𝐷 eigenstates were calcu-
lated by diagonalizing the Hamiltonian of the e + Ca
system. In the interval of collision energies from 1.892
to 2.075 eV, the eigenphase sum drastically increases,
as is shown in Fig. 1, 𝑏. The corresponding partial 2𝐷
cross-sections of elastic electron scattering by the Ca
atom in the metastable 4𝑠4𝑝 3𝑃 𝑜 state and excita-
tion of the 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o transition reach their
maximum values at energies of 1.901 and 2.004 eV,
respectively (see Fig. 1, 𝑎) . Note that in the reso-
nance interval, the eigenphase of the 4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷
state passes the point 𝛿 = 𝜋/2 with a larger en-
ergy derivative d𝛿(𝐸)/d𝐸 than the eigenphase of
the 4𝑠4𝑝2 2𝐷 state does, which is clearly seen from
Figs. 1, 𝑐 and 𝑑.

4. Partial and Integral Cross-Sections
of Electron Scattering at Calcium Atom
in the Energy Interval Below 4.3 eV

In principle, the results of sections 2 and 3 give ev-
erything necessary for a detailed analysis of the pro-
cesses of slow-electron scattering (elastic and inelas-
tic) by the Ca atom. The results of calculations ob-
tained in the BSR approximation for the ICSs of elas-
tic e + Ca scattering and electron-impact excitation
of the 4𝑠4𝑝 3𝑃 o, 3𝑑4𝑠 3𝐷e, 3𝑑4𝑠 1𝐷e, 4𝑠4𝑝 1𝑃 o, and
4𝑠5𝑠 3𝑆e states of the Ca atom in the interval of
collision energies up to 4.3 eV are shown in Figs. 2
and 3. The corresponding panels also demonstrate
the contributions of the partial 2𝑆e, 2𝑃 o, 2𝐷e, and
2𝐹 o waves to the ICS in the indicated processes. The
vertical thin lines in the figures mark the excita-
tion thresholds of the Ca atomic states. One can see
that peculiarities of the sharpening-point type are ob-
served near those thresholds.

As can be seen from Figs. 2, 𝑏 and 𝑐 and Figs. 3, 𝑎–𝑐,
the excitation of the 4𝑠4𝑝 3𝑃 o state gives the main in-
elastic contribution to the total cross-section of e+Ca
scattering at energies of 2–2.4 eV. At energies higher
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a

b

c
Fig. 2. The ICSs of elastic e + Ca scattering and excitation
of the 4𝑠4𝑝 3𝑃 o and 3𝑑4𝑠 3𝐷e states of Ca atom (bold solid
curve). Contributions to the ICS of e+Ca scattering from the
partial waves 2𝑆e (dotted curve), 2𝑃 o (thin solid curve), 2𝐷e

(dash-double-dotted curve), and 2𝐹 o (dashed curve). Vertical
thin lines mark the excitation thresholds of Ca atom

than 2.5 eV, the contribution to the ICS induced
by the excitation of the 3𝑑4𝑠 3𝐷e state dominates,
whereas the contributions from the excitation of the
levels 3𝑑4𝑠 1𝐷e and 4𝑠5𝑠 3𝑆e are relatively small. Fi-
nally, at even higher energies (𝐸 > 4.3 eV) – they
are not shown in Figs. 2 and 3 – the main inelastic

a

b

c
Fig. 3. The same as in Fig. 2 but for the ICSs of the 3𝑑4𝑠 1𝐷e,
4𝑠4𝑝 1𝑃 o, and 4𝑠5𝑠 3𝑆e states of Ca atom

contribution to the total cross-section is provided by
strong dipole excitation of the 4𝑠4𝑝 1𝑃 o level.

The partial 2𝑆e, 2𝑃 o, 2𝐷e, and 2𝐹 o cross-sections
shown in Fig. 2, 𝑎 make it possible to find the ori-
gin of characteristic structures in the cross-section of
elastic e + Ca scattering. The smooth maxima in the
2𝑆e and 2𝑃 o symmetries cannot be identified with res-
onances. Instead they appear due to rapid changes
in the phase shifts in the 𝑠- and 𝑝-waves at low en-
ergies. The combined action of short-range exchange
repulsion and long-range attraction (proportional to
𝑟−4 and emerging owing to the polarization of the Ca
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atom in the field of incident electron) brings about
the Ramsauer–Townsend effect, which has long been
of interest for a number of spectroscopic applica-
tions [34, 48] and leads to a strongly nonmonotonic
(i.e., irregular) dependence of the e + Ca scattering
cross-section on the collision energy 𝐸. As a result,
the phase shift for the 𝑠-wave passes through zero
at 𝐸 = 0.07 eV, where just the partial 2𝑆 cross-
section becomes responsible for the appearance of the
Ramsauer–Townsend minimum. in the total cross-
section of elastic e+Ca scattering. However, the dom-
inant 1.193-eV peak is obviously a result of the res-
onance in the partial 2𝐷 cross-section, which can be
unambiguously identified as the 4𝑠23𝑑 2𝐷 shape reso-
nance. The phase shift in this energy interval changes
by almost 0.83𝜋. In Fig. 2, 𝑎, one can also observe a
small peak at higher energies between the 4𝑠4𝑝 3𝑃 o

and 3𝑑4𝑠 3𝐷 excitation thresholds. Yuan and Lin [40]
identified this peak in the framework of the stan-
dard 𝑅-matrix method as the 4𝑠4𝑝2 2𝐷 resonance. On
the other hand, our results do not point to a dis-
tinct correspondence between this peak and the res-
onance. The phase shift in the 𝑑-wave really begins
to increase in this energy interval, as it would be for
a real resonance, but the 𝑑-phase begins to rapidly
decrease at the 3𝑑4𝑠 3𝐷 threshold, thus giving a to-
tal growth of only 𝜋/4 in the region of maximum. It
seems that this possible (hypothetical) resonance is
destroyed owing to the opening of new decay chan-
nels. This conclusion make us suppose the existence
of another resonance in the 𝑠-wave with the 4𝑠4𝑝2 2𝑆
configuration and the parameters 𝐸𝑟 = 2.075 eV and
Γ = 246 meV (see Table 4).

Kazakov and Khristoforov [49] measured the elas-
tic scattering differential cross-sections and the exci-
tation functions of the 4𝑠4𝑝 3𝑃 o and 4𝑠3𝑑 3𝐷 states
of the Ca atom at an angle of 90∘ in the energy
interval of 0–7 eV. They observed a wide resonance
(maximum) in the elastic scattering cross-section near
1.25 eV, which was attributed to the 2𝐷 shape reso-
nance. A narrower 𝑝-wave resonance lies at very low
energies and, at an observation angle of 90∘, looks
like a minimum centered at 𝐸𝑜 = 0.1 eV. Besides the
resonant features indicated above, they also found
a relatively sharp feature at the 4𝑠4𝑝 3𝑃 o thresh-
old, which manifested itself in both the elastic cross-
section and the excitation function of the 4𝑠4𝑝 3𝑃 o

level. They supposed the latter to be a result of a res-
onance. Their data demonstrated a broad feature at

about 3 eV, which may be related to the 4𝑠4𝑝2 2𝐷 res-
onance. The cited authors also commented the avail-
ability of another structure in the cross-section near
the 4𝑠5𝑠 3,1𝑆 and 4𝑠5𝑝 3𝑃 o thresholds, but the data
presented in their work [49] cannot be analyzed in
detail.

A series of measurements aimed at studying the
optical-excitation functions of the calcium atomic
states by means of electron impact was also performed
at higher energies (𝐸 > 3 eV). Ehlers and Gallagher
[50] measured the absolute excitation cross-sections
for 4𝑝 1𝑃 o emission at a wavelength of 422.7 nm
with an energy resolution of about 0.3 eV. The struc-
ture observed by them in both the excitation cross-
section and the linear polarization fraction adjacent
to the threshold region for higher excited states was
attributed to cascade transitions from some of those
states. One cannot rule out that some part of this
structure is induced by resonances. Garga et al. [51]
measured the optical-excitation functions for more
than 25 excited calcium states with an energy res-
olution of 1.0–1.2 eV. They observed a large number
of structures and noted that some of them can be
associated with the decay of ADSs of the negative
Ca− ion. Given the resolution of those experiments
and the lack of detailed information concerning the
observed structures, they are not worth commenting
on here.

Figure 4 illustrates the energy dependence of the
ICS of elastic electron scattering at the Ca atom
in the metastable state 4𝑠4𝑝 3𝑃 o. This figure also
demonstrates the contributions to the ICS from the
partial 4,2𝑆e, 4,2𝑃 e, 4,2𝐷e, 4,2𝐹 e, 4,2𝑃 o, 4,2𝐷o, and
4,2𝐹 o waves. Above the excitation threshold of the
4𝑠4𝑝 3𝑃 o level, the main contribution to this ICS is
given by the partial 4,2𝑃 e and 4𝐷e waves. As can be
seen from Fig. 4, distinctly pronounced structures,
which could be interpreted as resonances, are ob-
served in the energy dependence of ICS. In particular,
the sharp maximum in the 4𝐹 o symmetry is associ-
ated with the 4𝑠4𝑝[3𝑃 ]3𝑑 4𝐹 o shape resonance (see
Tables 3 and 5). This conclusion will be confirmed
below while analyzing the energy dependence of the
eigenphase sum.

The dominant process at 𝐸 < 1.892 eV is the elas-
tic electron scattering by the Ca atom in the ground
state. As one can see from Fig. 5, 𝑎 (left panel),
three resonance-like structures in the vicinity of en-
ergies of 1.15, 1.9, and 2.004 eV can be clearly distin-
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Fig. 4. The ICSs of elastic electron scattering by the calcium
atom in the 4𝑠4𝑝 3𝑃 o metastable state (bold solid curve). The
contributions of various partial waves to the ICS of elastic e +
+ Ca scattering are shown in the graphical panels. Vertical
thin lines mark the excitation thresholds of Ca atom

guished in the energy dependences of the partial 2𝐷e

cross-sections of elastic electron scattering at the Ca
atom in the ground 4𝑠2 1𝑆 and metastable 4𝑠4𝑝 3𝑃 o

states and the 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o transition excita-
tion, respectively. The distances between the reso-
nance peaks (with identical 𝐿 = 𝐷) in those energy
dependences are quite small and approximately equal
to 0.1 and 0.75 eV. The behavior of the energy depen-
dences of the sum of partial 2𝐷 phases (Fig. 5, 𝑏) and
its energy derivative (Fig. 5, 𝑐) also demonstrates that
three resonance features (4𝑠23𝑑 2𝐷, 4𝑠4𝑝[3𝑃 ]4𝑓 2𝐷,
and 4𝑠4𝑝2 2𝐷) overlap in a narrow energy interval
of 1.1–2.0 eV, which stimulates a purely destruc-
tive picture of interference in the vicinity of those
resonances.

Inelastic electron scattering by Ca atoms be-
comes appreciable at energies exceeding 1.892 eV. Fi-
gure 5, 𝑎 (right panel) demonstrates the results of
BSR39 calculations of the partial 𝐷e excitation cross-
sections for the 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o, 4𝑠2 1𝑆 − 3𝑑4𝑠 1𝐷e,
4𝑠2 1𝑆 − 4𝑠4𝑝 1𝑃o, 4𝑠2 1𝑆 − 4𝑠5𝑠 3𝑆e, 4𝑠4𝑝 3𝑃 o −

Fig. 5. Left panel: contributions of the partial 2𝐷e wave
to the cross-sections of elastic electron scattering by the Ca
atom in the ground 4𝑠2 1𝑆 and metastable 4𝑠4𝑝 3𝑃 o states and
excitation of various transitions (𝑎): 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o (left
panel); 4𝑠2 1𝑆−4𝑠4𝑝 3𝑃 o, 4𝑠2 1𝑆−3𝑑4𝑠 1𝐷e, 4𝑠2 1𝑆−4𝑠4𝑝 1𝑃o,
4𝑠2 1𝑆−4𝑠5𝑠 3𝑆e, 4𝑠4𝑝 3𝑃 o−3𝑑4𝑠 3𝐷e, and 4𝑠4𝑝 3𝑃 o−3𝑑4𝑠 1𝐷e

(right panel). Energy dependence of the sum of partial 2𝐷e

phases 𝛿 (𝑏). Energy dependence of the derivative d𝛿/d𝐸 (𝑐)

3𝑑4𝑠 3𝐷e, and 4𝑠4𝑝 3𝑃 o−3𝑑4𝑠 1𝐷e transitions. As one
can see from this figure, the inelastic contribution of
the partial 2𝐷 wave to the excitation cross-sections
of the energy levels of the Ca atom is essential only
for the 4𝑠4𝑝 3𝑃 o − 3𝑑4𝑠 3𝐷e, 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o, and
4𝑠2 1𝑆 − 3𝑑4𝑠 1𝐷e transitions, whereas this contri-
bution is relatively small for other transitions (see
Fig. 5, 𝑎).

At low collision energies, only a few partial phases
are essentially different from zero. They can be cal-
culated by numerically integrating the system of
integro-differential equations (9) over 𝑟 from the co-
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a

b
Fig. 6. Partial phases of electron scattering by the calcium
atom for even (a) and odd (b) terms

ordinate origin to a distance 𝑟 > 𝑎 and equating the
resulting solution to asymptotic expression (22). The
partial phases of e+Ca scattering, which were deter-
mined in this way using the software package [32], are
presented in Fig. 6 for both even (upper panel) and
odd (lower panel) terms The behavior of these partial
phases in the vicinity of the corresponding resonance
energies confirms the data quoted in Tables 3 to 5
for the resonance structure of the partial and integral
cross-sections of e + Ca scattering.

The energy dependences of the total-cross-section
derivative d𝜎(𝐸)/d𝐸 measured experimentally [18,
19] and calculated by us in the BSR approximation
are compared in Fig. 7. As can be seen from this fig-
ure, the structure of the resonance features in the
d𝜎(𝐸)/d𝐸 dependence can be traced more clearly
than in the energy dependence of the cross-section
itself, 𝜎(𝐸). The irregularities observed in these en-

Fig. 7. Energy derivatives d𝜎/d𝐸 of the total cross-sections
of electron scattering by the calcium atom: our BSR39 calcula-
tion (1 ), calculated according to experimental data by Johnson
et al. [18] (2 ), calculated according to experimental data by
Romaniuk et al. [19] (3 )

ergy dependences (drastic jumps, as well as smooth
maxima and minima) arise from the existence of reso-
nances in some partial waves and from the threshold
features in the cross-section itself. In particular, in
the behavior of the energy dependences of the deriva-
tive d𝜎(𝐸)/d𝐸, three distinctly pronounced features
are observed in the form of broad powerful structures
in the vicinity of energies of 1.15, 1.9, and 2.004 eB,
which could be interpreted as the above-threshold
shape resonances, with characteristic narrow peaks
of Feschbach resonances being superimposed on two
gentle protrusions at 1.9 and 2.6 eV.

At even higher energies (𝐸 > 2.6 eV), there arise
a substantial number of narrow resonance peaks,
which cannot yet be identified experimentally. Note
also that the energy positions of the features in the
energy dependences of the derivative d𝜎(𝐸)/d𝐸 ob-
tained experimentally [19] and calculated by us in
the BSR39 approximation correlate well if the exper-
imental curve is shifted to the right by 0.35 eV. At the
same time, the experimental results of work [18] seem
to be unreliable because the measured signal is pro-
portional to the derivative of the transmission current
only at low pressures, which was not maintained in
the experiment [18]. Therefore, when elucidating the
resonance structure of the ICS of e + Ca scattering,
it is more acceptable to use the results obtained in
work [19] and corrected in work [6] rather than the
experimental data of work [18].
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5. Conclusions

The performed research makes it possible to conclude
that the BSR version of the 𝑅-matrix method, which
was developed in our works [6–13, 21–26], is a uni-
versal and very efficient method to study elementary
processes of interaction between slow electrons and
complex multielectron atoms and ions. In comparison
with the standard 𝑅-matrix method [16, 17], the pro-
posed BSR version has three undeniable advantages:

1) the application of term-dependent nonorthogo-
nal orbitals is the most advantageous way to take into
account resonance effects without involving any cor-
relation functions and without enlarging the system
of integro-differential strong-coupling equations (9);

2) the relevant quantum-mechanical operators, af-
ter their discretization in the 𝐵-spline basis, are rep-
resented by sparse band finite-rank matrices, which
significantly simplifies the solution of the corre-
sponding systems of algebraic and integro-differential
equations;

3) the local properties and the completeness of the
finite system of basis splines guarantee the conver-
gence of the 𝑅-matrix expansion, which allows us to
exclude the necessity to introduce the Buttle correc-
tions to the diagonal elements of the 𝑅-matrix [35].

A large body of detailed results of BSR calcula-
tions was obtained for the total and partial cross-
sections (integrated over the scattering angle) of
elastic electron scattering by the Ca atom in the
ground 4𝑠2 1𝑆 and metastable 4𝑠4𝑝 3𝑃 o states and
the excitation of the transitions 4𝑠2 1𝑆 − 4𝑠4𝑝 3𝑃 o,
4𝑠2 1𝑆 − 3𝑑4𝑠 3𝐷, 4𝑠2 1𝑆 − 3𝑑4𝑠 1𝐷, 4𝑠2 1𝑆 −
4𝑠4𝑝 1𝑃o and 4𝑠2 1𝑆 − 4𝑠5𝑠 3𝑆. This enabled us
to carefully analyze the influence of various physi-
cal factors – such as multi-electron correlations, reso-
nance effects, interaction of discrete states with con-
tinuous spectrum, and the relaxation of the quan-
tum orbit of excited electron – on the parame-
ters of electron interaction with Ca atoms. The con-
tributions of the partial 2𝑆e, 2𝑃 o, 2𝐷e, and 2𝐹 o

waves to the angle-integrated total cross-sections
of elastic scattering and excitation of most impor-
tant electronic transitions in the Ca atom were cal-
culated. This allowed us to unambiguously identify
the origin of the characteristic structures in the en-
ergy dependences of the elastic scattering and ex-
citation cross-sections for five lowest levels of the
Ca atom.

To identify and classify resonances, the energy de-
pendences of the e+Ca scattering cross-sections 𝜎(𝐸)
and their energy derivatives d𝜎(𝐸)/d𝐸 were analyzed
in detail for every fixed 𝐿 and parity. It was found
that resonances are observed more pronounced in the
derivatives than in the cross-section itself. It occurs
because a large number of resonances with different
symmetries overlap by energy and strongly interfere
with one another in the total cross-section.

The role of autodetachment states of the negative
Ca− ion in the electron scattering by Ca atoms was
studied and it was shown that the contribution of
resonance processes to the cross-sections of elastic
e+Ca scattering and Ca excitation is rather substan-
tial at the quantitative level. In order to unambigu-
ously identify the resonances at e+Ca scattering and
obtain relevant information, we used the method of
“complete separation of resonance and non-resonance
channel spaces” [31]. The application of this method
to e + Ca scattering made it possible to detect and
identify 56 possible resonance states of the negative
Ca− ion and each of them was assigned a certain
configuration (see Tables 3 to 5). The positions and
widths of detected resonances were determined and
their spectroscopic classification was performed. The
existence of 11 resonances for which the phase jump
in the vicinity of the resonance energy is close to 𝜋
(see Table 5) was confirmed by other authors both
experimentally [18–20] and theoretically [39–41].

The positions of reliably established resonances
(see Table 5) are as follows:

∙ the resonance 4𝑠23𝑑 2𝐷 is located below the exci-
tation threshold of the level 3𝑃 o;

∙ the resonances 4𝑠4𝑝[3𝑃 ]3𝑑 4𝐹 o, 4𝑠3𝑑[3𝐷]4𝑝 2𝐷o,
and 4𝑠4𝑝[3𝑃 ]3𝑑 4𝐷o are located between the 3𝑃 o and
3𝐷 thresholds;

∙ the resonances 4𝑠3𝑑[1𝐷]4𝑑 2𝑆, 4𝑠5𝑠[3𝑆]5𝑝 2𝑃 o,
4𝑠5𝑠2 2𝑆, and 4𝑠5𝑠[3𝑆]5𝑝 2𝑃 o are located between the
1𝑃 o and 3𝑆 thresholds;

∙ the resonances 4𝑠5𝑠[3𝑆]4𝑑 2𝐷 and 4𝑠5𝑠[1𝑆]6𝑠 2𝑆
are located between the 3𝑆 and 1𝑆 thresholds;

∙ the resonance 4𝑠5𝑠[1𝑆]4𝑑 2𝐷 is located above the
1𝑆 threshold.

As one can see from Tables 3 to 5, in the case of
e + Ca scattering, the resonances are arranged very
close to each other and most of them are rather nar-
row. Therefore, for their experimental confirmation,
high-resolution equipment is required. Experimental
results obtained for monoenergetic electron beams
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and Ca atoms in the resonance energy interval will
also be very valuable.

The authors express their gratitude to Prof.
O. Zatsarinny and Prof. K. Bartschat (Drake Uni-
versity, Des Moines, Iowa, USA) for their help in
calculations and fruitful discussion.
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cium 4227-Å resonance line. Phys. Rev. A 7, 1573 (1973).

51. I.I. Garga, I.S. Aleksakhin, V.P. Starodub, I.P. Zape-
sochnyi. Excitation of alkaline-earth atoms by the electron
impact. Opt. Spektrosk. 37, 843 (1974) (in Russian).

Received 25.02.22.
Translated from Ukrainian by O.I. Voitenko

В.Ф. Гедеон, В.Ю.Лазур,
С.В. Гедеон, О.В.Єгiазарян

РЕЗОНАНСНА СТРУКТУРА
ПЕРЕРIЗIВ РОЗСIЯННЯ ПОВIЛЬНИХ
ЕЛЕКТРОНIВ НА АТОМI КАЛЬЦIЮ

З використанням розширеної БСР-версiї 𝑅-матричного ме-
тоду проведено систематичне дослiдження розсiяння еле-
ктронiв на нейтральному атомi кальцiю в дiапазонi енергiй
зiткнення до 4,3 еВ. Для точного представлення хвильових
функцiй мiшенi використовується метод сильного зв’язку
з наборами залежних вiд терму неортогональних орбiта-
лей та сплайн-представленнями для базисних функцiй. Роз-
клад для сильного зв’язку включає 39 зв’язаних станiв ней-
трального кальцiю, що охоплюють усi стани вiд основного
до 4𝑠8𝑠1𝑆. Детально дослiджено складну резонансну стру-
ктуру проiнтегрованих за кутом повних перерiзiв пружно-
го е+Са-розсiяння та збудження станiв 4𝑠4𝑝3𝑃 o, 3𝑑4𝑠3𝐷e,
3𝑑4𝑠1𝐷e, 4𝑠4𝑝1𝑃 o i 4𝑠5𝑠3𝑆e атома Ca електронним ударом.
Спостережуванi структури пов’язано з конкретними авто-
вiдривними станами системи налiтаючий електрон+ атом
Ca. Визначено положення i ширини виявлених резонансiв
та проведено їхню спектроскопiчну класифiкацiю.

Ключовi слова: електрон, атом кальцiю, розсiяння, збудже-
ння, iонiзацiя, метод 𝑅-матрицi з 𝐵-сплайнами, неортого-
нальнi орбiталi, резонанси.
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