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EFFECTS OF NONLINEARITIES
IN PHYSICS AND DEMOGRAPHY

Nonlinearities appear in almost all systems. Earlier, we focused on those in plasmas, iono-
spheric scattering, and the world population. As turned out, the estimate of the population
growth made in 1974 is in astonishing agreement with the United Nations estimates and agrees
with our present data to within 2%. A particularly important role, both for the population evo-
lution and wave interaction in plasmas, is played by non-Markovian effects (effects depending
on the past time). For the population growth, this occurs due to a delay of one generation in
the set of population limiting actions, while, for plasmas, it is caused by nonlinear frequency
shifts.
K e yw o r d s: descriptive words, fundamental nonlinearities in nature, explosive instabilities,
fusion research, demographic research.

1. Introduction

We are here focusing on nonlinear effects in physics,
mainly plasmas, and demography, mainly popula-
tions. Such effects could be both of a periodic and
explosive nature [1]. In both contexts, it has turned
out that many authors leave out important nonlinear
effects, while we have looked at both general basic
equations fulfilling resonance conditions in both wave
vectors k1 = k2+k3 and frequency 𝜔1 = 𝜔2+𝜔3 with
unspecified coupling factors. We also derived coupling
factors for special cases, mainly for plasmas. An im-
portant nonlinear effect here can be a nonlinear fre-
quency shift, which may detune the resonance in fre-
quency. In the case of nonlinear (explosive) instabil-
ity, we also had to include cubic nonlinearities, giving
nonlinear frequency shifts (energy conserving) or cu-
bic nonlinear damping (dissipative). Of course, three-
wave interactions would, in a more general case, cou-
ple further in k-space, leading to a turbulent state
with many excited waves. Initially, we focused on ho-
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mogeneous plasmas, where, in general, the wave with
the largest mode number (the pump wave) gave en-
ergy to two waves with smaller wave numbers. Ho-
wever, when our activity after 1976 became more di-
rected toward the nuclear fusion [2–29], we started
to look at inhomogeneous systems, where, for drift
waves, the wave with an intermediate magnitude of
mode number became the pump wave [8]. This in-
troduces a problem for the wave dynamics, since we
are looking at a system which is finite in space, and
wave cascades toward larger wave lengths could cause
a pileup of the wave energy at wavelengths of the sys-
tem size. The transport, in the simplest case, could
be described by the formula:

𝜒 = 𝛾/𝑘2𝑥. (1)

Here, 𝛾 is the growth rate of the wave, and 𝑘𝑥 is
the radial propagation vector. Thus, waves with long
wavelengths give very large transport. To stop this
pileup at very long wavelengths, which would give
much larger transport than observed, we need a mech-
anism that absorbs the cascade toward longer wave-
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lengths. As we have found, the strongest candidate
for this is flowshear, which tears apart the largest
eddies [17]. The generation of flowshear is a nonlin-
ear effect. Our present concern is nonlinear effects in
physics and demography. In both these fields, authors
seem to forget important nonlinearities. These ques-
tions turn out to vary with the degree of detail we
need. A very important observation was that of “pro-
file consistency” or “profile resilience”, first pointed
out in Ref. 2. This observation was for density and
temperature profiles in tokamaks and means that
such profiles are often surprisingly insensitive to the
exact location of sources.

For the population evolution, we used the equation:

𝜕𝑛

𝜕𝑡
= 𝛼𝑛2 + 𝛽𝑛− 𝛾𝛼𝑛3(𝑡− 𝜏), (2)

where 𝑛 is the number of people, 𝑡 is time, and 𝜏 is
the time delay.

Since 𝛽 is ignorable at the levels of interest, we start
by taking 𝛾 = 0.1 corresponding to the saturation
level 10 billions (common estimate) in the absence of
time delay. The numerical values 𝛼 = 0.0048 and 𝛽 =
= −0.0003 were used to fit the evolution to the world
population up to the year 1974. This is the model
used in Ref. 3.

A way of interpreting the similarity between the
wave interaction in plasmas and the population
growth is in terms of profile resilience (or profile con-
sistency) [2]. This is a phenomenon seen in plasmas
[2] and shows that the density and temperature pro-
files are surprisingly insensitive to the exact location
of sources. Both the transport equations in plasmas
and the population growth are now described by first-
order differential equations. In plasmas, this is mainly
in space. But, for populations, it is rather in time.
However, of course, we generally have both space and
time variations in both cases. A discussion of this
was given in Ref. 9. An important point to observe
is that, in a typical fusion plasma, the particle ve-
locity is around 108 m/s, while the fluid velocity is
around 103 m/s. Thus, we need to include nonlin-
ear frequency shifts in kinetic theory [5, 12–15], but
we can safely use quasilinear theory to calculate the
transport in fluid theory [22–25, 27, 29]. We note that
particles and/or heat pinches can contribute to the
profile resilience in a plasma [18], while the fact that
the birth rates increase during wars may contribute
to the profile resilience in human populations.

2. Basic Wave Interaction

Despite the fact that the population growth is de-
scribed by a single equation [3], its variation is eas-
ily described in terms of three-wave interactions. One
way to do this is to take a case where two waves are
equal. However, the three-wave interaction can also
be described as the dynamics of a nonlinear pendu-
lum [7].

In our work on the transport due to drift waves,
the basic equations for 𝜂𝑖 modes are:

𝑑𝑛

𝑑𝑡
+ ve · ∇𝑛+ 𝑛∇ · ve +∇ · (𝑛v*) = 0, (3)

where ve is the E×B drift, and v* is the diamagnetic
drift including the full pressure gradient and

3

2
𝑛

(︂
𝑑

𝑑𝑡
+ ve · ∇

)︂
𝑇𝑖 + 𝑃𝑖∇ · v𝑖 = −∇q*𝑖, (4a)

q*𝑖 =
5

2

𝑃𝑖

𝑚Ω𝑐𝑖
(e‖ ×∇𝑇𝑖). (4b)

A new and fundamental feature of system (3) and
(4) is that all curvature and magnetic drift effects are
kept. Because of this, the linear density perturbation
includes both adiabatic and isothermal limits. The
only nonlinear effect kept is the convective nonlin-
earity due to the E ×B drift. It occurs in both (4a)
and (4b). There are several fundamental similarities
between the developments in Figs. 1 and 2. In both
cases, we have destabilizing quadratic nonlinearities
and stabilizing cubic nonlinearities. The periodicity
is in the case of population evolution due to a delay
of action, while that for the wave interaction is due to
the nonlinear phase dependence (nonlinear frequency
shift) of the wave interaction. Both of these are non-
Markovian effects. We also note that the delay of 25
years for the cubic nonlinear stabilization is instru-
mental in describing the actual population growth,
which was not known when this work was done. The
fact that the systems in Refs. 12 and 13 experience a
nonlinear growth at small amplitudes can be seen by
the fact that the growth rate in Ref. 12 gets larger,
when the nonlinear effects are added. The system in
Ref. 13 is actually the same as in Ref. 12, but with
damping due to the turbulent diffusion added. In par-
ticular, we note the strong similarity between Fig. 2
in Ref. 13 and our Fig. 2.
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3. Nonlinear Stabilization

There are many examples of similar nonlinear sys-
tems which we may discuss. An important point is
the level of stabilization of a simple stable three-wave
interaction with a linear growth. This has been dis-
cussed in several cases. The case that we are mainly
interested in for the drift wave transport is that which
occurs, when the instability is stabilized by the non-
linear E × B convection. The growth and damping

Fig. 1. The evolution of the world population as predicted
in Ref. 3 in 1974 and the population according to the United
Nations up to now and the extrapolation to 2150 (circles). In
the calculated prediction, the full line corresponds to stabilizing
terms calculated at present time (Markovian), while the dotted
line includes a delay of one generation (25 years) before cubic
effects start (non-Markovian)

Fig. 2. Explosively unstable three-wave interaction stabilized
by periodic nonlinear frequency shifts and nonlinear dissipation
(From Ref. 1)

can then be expressed as:

𝜕

𝜕𝑡
= 𝜈E · ∇. (5)

When we operate with Eq. (5) on the density or
temperature, replacing 𝜕

𝜕𝑡 with the growth rate 𝛾 and
expressing the E×B drift (𝜈E) in the potential 𝜙, we
obtain the saturation level:

𝑒𝜙

𝑇
=

1

𝑘𝑥𝜌𝑠

𝛾

𝑘𝑦𝑐𝑠
. (6)

Here, 𝑒 is the electronic charge, 𝑇 is the tempera-
ture, 𝑘𝑦 is the poloidal wave propagation vector, 𝜌𝑠
is the Larmor radius, and 𝑐𝑠 is the sound speed. It
is important to note that, due to the similarity of
the continuity and energy equations, Eq. (6) is valid
both in Refs. 16–19 (from the energy equation) and
in Ref. 23. The energy equation was first found in
Ref. 25. But, in Ref. 23, it was called the “improved
mixing-length level”.

Using the saturation level in Eq. (6), we arrive at
the improved mixing length transport:

𝐷 =
𝛾3/𝑘2𝑥
𝜔2
𝑟 + 𝛾2

. (7)

The result, Eq. (7), can also be obtained for the
temperature diffusion, where 𝐷 is replaced by 𝜒. The
similarity between the temperature diffusion and the
particle diffusion is due to the similarity between the
continuity and energy equations [24]. Equation (4)
represents the “kernel” of the transport coefficient. In
a quasilinear treatment of transport, we obtain an ad-
ditional factor representing compressional effects like
pinch effects for the temperature or density [25].

We note that the real frequency (non-Markovian)
reduces the transport. Thus, we expect more trans-
port from low-frequency modes than from high-
frequency modes.

Of course, when nonlinear effects have a destabiliz-
ing influence at low amplitudes, such as in Ref. 21
for toroidal modes and in Refs. 12, 13 for slab
modes, we have to consider the total effect of linear,
quadratic, and cubic nonlinearities. However, since
nonlinear frequency shifts act as a part of the reso-
nance condition for frequencies, it will change the sign
of the quadratic nonlinearities, just like it changes
the sign of the wave energy [1]. This means that, at
higher amplitudes, the quadratic nonlinear terms will
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be stabilizing, thus making our saturation level in
Eq. (3) correct on the average in developments as
that seen in Fig. 2. This explains why the saturation
level has been so successful in comparisons with ex-
periments. However, this is true only when the E×B
drift is entirely stabilizing, i.e., we are looking at the
correlation length in the k-space, and we have effects
which absorb the inverse cascade, thus avoiding re-
flections at the system size. One effect that does this
is flowshear [28]. According to the Waltz rule [28], we
can subtract the flowshear rate from the growth rate
in Eq. (4). This is similar to a stabilizing effect of
the imaginary contribution from the cubic nonlieari-
ties [1]. The full model from this approach, which in-
cludes the electron trapping, electromagnetic effects
that give MHD, and kinetic ballooning modes and
peeling modes, was recently used to predict ITER
performance [29].

4. Analogy between Growth
of Population and Nonlinear
Wave Interaction

It is worth comparing the saturation mechanisms for
the population growth and nonlinearly unstable in-
teracting waves in some details. In both cases, it is
due to nonlinearities which cause the periodic behav-
ior. Although, for the population growth, this hap-
pens already in the first period. Nevertheless, we
can see that the agreement with the actual pop-
ulation is strongly improved by the time delay of
the cubic term. As it seems, one nonlinearity which
simplifies the population growth is that the birth
rate increases in times of a war. One can imagine
that a similar effect occurs at times of strong epi-
demies. The surprising insensitivity to the exact lo-
cation of sources for the wave interaction is partly
due to the strong sensitivity to growthrates on the
deviation of gradients in the temperature and den-
sity from linear thresholds. However also particle or
heat pinch effects can contribute here [18, 19]. An im-
portant aspect for wave interactions is that the non-
linear three-wave systems in Refs. 12 and 13 were
generalized to the turbulent case in Ref. 16. Here,
the use was made of Ref 15, where a Fokker–Planck
equation for turbulent collisions was derived. This
is applicable to a turbulent situation, where non-
Markovian effects were required for deriving the
transport coefficient in Eq. (7).

5. Summary

We have here pointed out the importance of nonlin-
earities in both turbulent plasmas and in the popula-
tion explosion. Such nonlinearities often lead to non-
Markovian effects. In a plasma, we have looked at
both the coherence limit represented by Refs. 12 and
13 and the turbulence case considered in Refs. 10, 15,
and 16. For the turbulence kinetics, we need to go
beyond quasilinear theory (strongly nonlinear case);
while, for the fluids, it is sufficient to use a quasi-
linear approach. Although many other effects can oc-
cur both in the population growth and the nonlinear
wave interaction, we note that the agreement with
our predictions of the world population actually jus-
tifies the very simple model used here. For the wave
interactions, we refer to Ref 1 for a wider picture. Our
purpose was just to point out the most essential simi-
larities and to motivate researchers to take more non-
linear effects into account.
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tment of Energy, Office of Science, under Award
No.DE-SC0013977. The authors are grateful to Aca-
demician A.G. Zagorodny for the fruitful discussions.
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НЕЛIНIЙНI ЕФЕКТИ У ФIЗИЦI ТА ДЕМОГРАФIЇ

Нелiнiйностi з’являються майже в усiх системах. Ранiше ми
розглядали нелiнiйностi в плазмi, розсiюваннi в iоносферi,
свiтовiй популяцiї. З’ясувалося, що оцiнка приросту насе-
лення, яка була зроблена в 1974 роцi, чудово узгоджується
з оцiнками ООН i спiвпадає з нашими даними з точнiстю
2%. Особливо важливими для еволюцiї населення та взає-
модiї хвиль у плазмi є немарковськi ефекти (вони залежать
вiд минулих часiв). Для приросту населення це пов’язано
iз затримкою на одне поколiння впливу факторiв, що обме-
жують популяцiю, тодi як для плазми це викликано нелi-
нiйними зсувами частоти.

Ключ о в i с л о в а: фундаментальнi нелiнiйностi в приро-
дi, вибуховi нестiйкостi, дослiдження синтезу, демографiчнi
дослiдження.
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