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ENTANGLEMENT DYNAMICS
INDUCED BY A THREE-LEVEL LASER
COUPLED TO THE SQUEEZED VACUUM RESERVOIR

We have studied the squeezing and entanglement properties of the light induced by a three-level
laser coupled to the squeezed vacuum reservoir. Applying the pertinent master equation, we
have obtained the evolution equations for the cavity mode variables. Using the solutions of the
resulting equations, the squeezing properties, entanglement amplification, and the normalized
second-order correlation function of the cavity radiation are described. We have seen that the
light generated by a three-level laser is in a squeezed state, and the squeezing occurs in the
plus quadrature. In addition, we have also established that the effect of the squeezed parameter
increases the mean and variance of the photon number. It is found that the squeezing and
entanglement in the two-mode light are directly related. As a result, an increase in the degree
of squeezing directly leads to an increase in the degree of entanglement and vice versa. This
shows that, whenever there is squeezing in the two-mode light, there exists an entanglement in
the system.
K e yw o r d s: operator dynamics, photon statistics, quadrature squeezing, second-order cor-
relations, photon entanglement.

1. Introduction
Entanglement is one of the fundamental tools for
the quantum information processing and communi-
cation protocols. The generation and manipulation of
the entanglement has attracted a great deal of inter-
est with wide applications in quantum teleportation,
quantum dense coding, quantum computation, quan-
tum error correction, and quantum cryptography [1–
5]. Recently, much attention is given to the generation
of a continuous-variable entanglement to manipulate
the discrete counterparts and quantum bits and to
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perform the quantum the information processing. In
general, the degree of entanglement decreases, when
it interacts with the environment. But, the quantum
information processing efficiency highly depends on
the degree of entanglement. Therefore, it is necessary
to generate strongly entangled states which can sur-
vive under the external noise. In general, due to the
strong correlation between the cavity modes, a two-
mode squeezed state violates certain classical inequal-
ities and then can be used in preparing the Einstein–
Podolsky–Rosen-type (EPR) entanglement [6]. The
steady-state entanglement in a nondegenerate three-
level laser has been studied, when the atomic coher-
ence is induced by initially prepared atoms in a coher-
ent superposition of the top an bottom levels [7–15]
and when the top and bottom levels of three-level
atoms injected into a cavity are coupled by coher-
ent light [16–21]. In addition, the squeezed states of
light play a crucial role in the development of quan-
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tum physics. Squeezing is one of the nonclassical fea-
tures of light that has been extensively studied by
several authors [22–24]. In squeezed light, the noise
in one quadrature is below the vacuum-state level
at the expense of enhanced fluctuations in the other
quadrature, with the product of the uncertainties in
the two quadratures satisfying the uncertainty rela-
tion [10]. Squeezed light has potential applications in
the low-noise optical communication and the weak-
signal detection [4, 5]. Squeezed light can be gener-
ated by various quantum optical processes such as
subharmonic generations [1–5], four-wave mixing [25],
resonance fluorescence [9, 10], and second-harmonic
oscillator [26–28].

Moreover, Fesseha [9,10] studied the squeezing and
the statistical properties of the light produced by a
three-level laser with the atoms placed in a closed
cavity and pumped by the electron bombardment. It
was shown that the maximum quadrature squeezing
of the light generated by the laser, operating be-
low the threshold, is 50% below the vacuum-state
level. Moreover, Fesseha also found that the quadra-
ture squeezing of the output light is equal to that of
the cavity light. On the other hand, this study shows
that the local quadrature squeezing is greater than
the global quadrature squeezing. He also found that
a large part of the total mean photon number is con-
fined in a relatively small frequency interval. In addi-
tion, Fesseha [10] studied the squeezing and the statis-
tical properties of the light produced by a three-level
laser with the atoms placed in a closed cavity and
pumped by coherent light. He showed that the maxi-
mum quadrature squeezing is 43% below the vacuum-
state level, which is slightly less than the result found
with electron bombardment.

In this paper, we will analyze the squeezing and
entanglement properties of light emitted by three-
level atoms available in an open cavity coupled
to a squeezed vacuum reservoir via a single port-
mirror and pumped to the top level by the elec-
tron bombardment. Thus, considering the interac-
tion of three-level atoms with a resonant cavity light
and the damping of the cavity light by a vacuum
reservoir, we will obtain the photon statistics, the
quadrature variance, the quadrature squeezing, and
entanglement of the cavity light. Furthermore, ap-
plying the same solutions, we will also obtain the
normalized second-order correlation function for the
two-mode light.

2. Operator Dynamics

Now, we consider the case where 𝑁 three-level atoms
in a cascade configuration and available in an open
cavity. We denote the top, intermediate, and bottom
levels of these atoms by |𝑎⟩𝑘, |𝑏⟩𝑘, and |𝑐⟩𝑘, respec-
tively. We prefer to call the light emitted from the
top level as light mode 𝑎 and the one emitted from
the intermediate level as light mode 𝑏. We carry out
our analysis with light modes 𝑎 and 𝑏 having the
same or different frequencies. In addition, we assume
that light modes 𝑎 and 𝑏 to be at resonance with
the two transitions |𝑎⟩𝑘 → |𝑏⟩𝑘 and |𝑏⟩𝑘 → |𝑐⟩𝑘,
with the direct transition between |𝑎⟩𝑘 and |𝑐⟩𝑘 to be
electric-dipole forbidden. The interaction of a three-
level atoms with cavity modes 𝑎 and 𝑏 can be de-
scribed at resonance by the Hamiltonian [10]

�̂� = 𝑖𝑔
(︁
𝜎†𝑘
𝑎 �̂�− �̂�†�̂�𝑘

𝑎 + �̂�†𝑘
𝑏 �̂�− �̂�†�̂�𝑘

𝑏

)︁
, (1)

where

�̂�𝑘
𝑎 = |𝑏⟩𝑘𝑘⟨𝑎|, (2)

and

�̂�𝑘
𝑏 = |𝑐⟩𝑘𝑘⟨𝑏| (3)

are lowering atomic operators, �̂� and �̂� are the an-
nihilation operators for the cavity modes, 𝑔 is the
coupling constant between the atom and the cavity
modes. Equation (1) represents the quantum Hamil-
tonian describing the interaction between a three-
level atom and the cavity mode in the dipole and
rotating-wave approximations. This Hamiltonian is
used to obtain the quantum Langevin equations and
equations of evolution for the cavity mode opera-
tors. We assume that the cavity modes are coupled to
a two-mode squeezed vacuum reservoir via a single-
port mirror (Fig. 1).

The quantum Langevin equations for the operators
�̂� and �̂� are given by [9, 10]

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑖[�̂�, �̂�] + 𝐹𝑎(𝑡), (4)

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑖[�̂�, �̂�] + 𝐹𝑏(𝑡), (5)

where 𝜅 is the cavity damping constant, and 𝐹𝑎(𝑡)
and 𝐹𝑏(𝑡) are noise operators associated with the
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squeezed vacuum reservoir and having the following
correlation properties:

⟨𝐹𝑎(𝑡)⟩ = ⟨𝐹𝑏(𝑡)⟩ = 0, (6)

⟨𝐹 †
𝑎 (𝑡)𝐹𝑎(𝑡

′)⟩ = ⟨𝐹 †
𝑏 (𝑡)𝐹𝑏(𝑡

′)⟩ = 𝜅𝑁0𝛿(𝑡− 𝑡′), (7)

⟨𝐹𝑎(𝑡)𝐹
†
𝑎 (𝑡

′)⟩ = ⟨𝐹𝑏(𝑡)𝐹
†
𝑏 (𝑡

′)⟩ = 𝜅(𝑁0+1)𝛿(𝑡−𝑡′), (8)

⟨𝐹 †
𝑎 (𝑡)𝐹

†
𝑎 (𝑡

′)⟩ = ⟨𝐹 †
𝑏 (𝑡)𝐹

†
𝑏 (𝑡

′)⟩ = ⟨𝐹𝑎(𝑡)𝐹𝑎(𝑡
′)⟩ =

= ⟨𝐹𝑏(𝑡)𝐹𝑏(𝑡
′)⟩ = −𝜅𝑀0𝛿(𝑡− 𝑡′). (9)

With the aid of Eqs. (1), (4), and (5), one can easily
establish that
𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑔�̂�𝑘

𝑎 + 𝐹𝑎(𝑡), (10)

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑔�̂�𝑘

𝑏 + 𝐹𝑏(𝑡). (11)

Furthermore, the master equation for a three-level
atom interacting with the squeezed vacuum reservoir
is given by [2]

𝑑𝜌

𝑑𝑡
= −𝑖[�̂�, 𝜌] + 𝛾

2

[︁
2�̂�𝑘

𝑎𝜌�̂�
†𝑘
𝑎 − �̂�†𝑘

𝑎 �̂�
𝑘
𝑎𝜌−

− 𝜌�̂�†𝑘
𝑎 �̂�

𝑘
𝑎 + 2�̂�𝑘

𝑏 𝜌�̂�
†𝑘
𝑏 − �̂�†𝑘

𝑏 �̂�
𝑘
𝑏 𝜌− 𝜌�̂�†𝑘

𝑏 �̂�
𝑘
𝑏

]︁
+

+
𝜅

2
(𝑁0 + 1)

[︁
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︁
+

+
𝜅

2
𝑁0

[︁
2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†

]︁
+

+
𝜅

2
𝑀0

[︁
2�̂�𝜌�̂�− �̂�2𝜌−𝜌�̂�2+2�̂�†𝜌�̂�†− �̂�†2𝜌−𝜌�̂�†2

]︁
, (12)

where

𝑁0 = sinh2(𝑟), (13)

in which 𝑟 is the squeezing parameter, is the mean
photon number of the two-mode squeezed vacuum
reservoir,

𝑀0 = sinh(𝑟) cosh(𝑟) =
√︀
𝑁0(𝑁0 + 1) (14)

is the intermodal correlations associated with the
reservoir, and 𝛾 is the spontaneous emission decay
constant. We can rewrite Eq. (12) as

𝑑𝜌

𝑑𝑡
= −𝑖[�̂�, 𝜌] + 𝛾

2

[︁
2�̂�𝑘

𝑎𝜌�̂�
†𝑘
𝑎 − 𝜂𝑘𝑎𝜌−

− 𝜌𝜂𝑘𝑎 + 2�̂�𝑘
𝑏 𝜌�̂�

†𝑘
𝑏 − 𝜂𝑘𝑏 𝜌− 𝜌𝜂𝑘𝑏

]︁
+

+
𝜅

2
(𝑁0 + 1)

[︁
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︁
+

✻

❄ ❄

❄❄

ra
γ γc

γ γc

|a〉

|b〉

|c〉

κ

Fig. 1. Schematic representation of a three-level laser coupled
to a two-mode squeezed vacuum reservoir

+
𝜅

2
𝑁0

[︁
2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†

]︁
+

+
𝜅

2
𝑀0

[︁
2�̂�𝜌�̂�− �̂�2𝜌−𝜌�̂�2+2�̂�†𝜌�̂�†− �̂�†2𝜌−𝜌�̂�†2

]︁
, (15)

where

𝜂𝑘𝑎 = |𝑎⟩𝑘𝑘⟨𝑎|, (16)

𝜂𝑘𝑏 = |𝑏⟩𝑘𝑘⟨𝑏|. (17)

Using Eq. (1), we can put Eq. (15) in the form

𝑑𝜌

𝑑𝑡
= 𝑔

[︁
�̂�†𝑘
𝑎 �̂�𝜌− 𝜌�̂�†𝑘

𝑎 �̂�+ �̂�†𝑘
𝑏 �̂�𝜌−

− 𝜌�̂�†𝑘
𝑏 �̂�− �̂�†�̂�𝑘

𝑎𝜌− �̂�†�̂�𝑘
𝑏 𝜌+ 𝜌�̂�†�̂�𝑘

𝑎 + 𝜌�̂�†�̂�𝑘
𝑏

]︁
+

+
𝛾

2

[︁
2�̂�𝑘

𝑎𝜌�̂�
†𝑘
𝑎 − 𝜂𝑘𝑎𝜌− 𝜌𝜂𝑘𝑎 + 2�̂�𝑘

𝑏 𝜌�̂�
†𝑘
𝑏 − 𝜂𝑘𝑏 𝜌− 𝜌𝜂𝑘𝑏

]︁
+

+
𝜅

2
(𝑁0 + 1)

[︁
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︁
+

+
𝜅

2
𝑁0

[︁
2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†

]︁
+

+
𝜅

2
𝑀0

[︁
2�̂�𝜌�̂�− �̂�2𝜌−𝜌�̂�2+2�̂�†𝜌�̂�†− �̂�†2𝜌−𝜌�̂�†2

]︁
. (18)

Applying the relation

𝑑

𝑑𝑡
⟨𝐴⟩ = Tr

(︂
𝑑𝜌

𝑑𝑡
𝐴

)︂
(19)

along with Eq. (18), we can easily establish that

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = −𝛾⟨�̂�𝑘
𝑎⟩+ 𝑔

[︁
⟨𝜂𝑘𝑏 �̂�⟩ − ⟨𝜂𝑘𝑎 �̂�⟩+ ⟨�̂�†�̂�𝑘

𝑐 ⟩
]︁
, (20)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑏 ⟩ = −𝛾
2
⟨�̂�𝑘

𝑏 ⟩+ 𝑔
[︁
⟨𝜂𝑘𝑐 �̂�⟩ − ⟨𝜂𝑘𝑏 �̂�⟩+ ⟨�̂�†�̂�𝑘

𝑐 ⟩
]︁
, (21)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑐 ⟩ = −𝛾
2
⟨�̂�𝑘

𝑐 ⟩+ 𝑔
[︁
⟨�̂�𝑘

𝑏 �̂�⟩ − ⟨�̂�𝑘
𝑎 �̂�⟩

]︁
, (22)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = −𝛾⟨𝜂𝑘𝑎⟩+ 𝑔

[︀
⟨�̂�†𝑘

𝑎 �̂�⟩+ ⟨�̂�†�̂�𝑘
𝑎⟩
]︀
, (23)
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𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = 𝛾

[︀
⟨𝜂𝑘𝑎⟩ − ⟨𝜂𝑘𝑏 ⟩

]︀
+

+ 𝑔
[︁
⟨�̂�†�̂�𝑘

𝑏 ⟩+ ⟨�̂�†𝑘
𝑏 �̂�⟩ − ⟨�̂�†𝑘

𝑎 �̂�⟩ − ⟨�̂�†�̂�𝑘
𝑎⟩
]︁
, (24)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑐 ⟩ = 𝛾⟨𝜂𝑘𝑏 ⟩ − 𝑔

[︁
⟨�̂�†�̂�𝑘

𝑏 ⟩+ ⟨�̂�†𝑘
𝑏 �̂�⟩

]︁
, (25)

where

�̂�𝑘
𝑐 = |𝑐⟩𝑘𝑘⟨𝑎|, (26)

and

𝜂𝑘𝑐 = |𝑐⟩𝑘𝑘⟨𝑐|. (27)

We see that Eqs. (20)–(25) are nonlinear differen-
tial equations. Hence, it is not possible to find exact
time-dependent solutions of these equations. We in-
tend to overcome this problem by applying the large-
time approximation [13]. Then using this approxima-
tion scheme, we get, from Eqs. (10) and (11), the
approximately valid relations

�̂� = −2𝑔

𝜅
�̂�𝑘
𝑎 +

2

𝜅
𝐹𝑎(𝑡), (28)

�̂� = −2𝑔

𝜅
�̂�𝑘
𝑏 +

2

𝜅
𝐹𝑏(𝑡). (29)

Evidently, these would turn out to be exact relations
at a steady state. Now, combining Eqs. (28) and (29)
with Eqs. (20)–(25), we get

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨�̂�𝑘
𝑎⟩+

+
2𝑔

𝜅

[︁
⟨𝜂𝑘𝑏𝐹𝑎(𝑡)⟩ − ⟨𝜂𝑘𝑎𝐹𝑎(𝑡)⟩+ ⟨𝐹 †

𝑏 (𝑡)�̂�
𝑘
𝑐 ⟩
]︁
, (30)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑏 ⟩ = −
[︁𝛾
2
+
𝛾𝑐
2

]︁
⟨�̂�𝑘

𝑏 ⟩+

+
2𝑔

𝜅

[︁
⟨𝜂𝑘𝑐𝐹𝑏(𝑡)⟩ − ⟨𝜂𝑘𝑏𝐹𝑏(𝑡)⟩ − ⟨𝐹 †

𝑎 (𝑡)�̂�
𝑘
𝑐 ⟩
]︁
, (31)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑐 ⟩ = −
[︁𝛾
2
+
𝛾𝑐
2

]︁
⟨�̂�𝑘

𝑐 ⟩+

+
2𝑔

𝜅

[︁
⟨�̂�𝑘

𝑏𝐹𝑎(𝑡)⟩ − ⟨�̂�𝑘
𝑎𝐹𝑏(𝑡)⟩

]︁
, (32)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑎⟩+

+
2𝑔

𝜅

[︁
⟨�̂�†𝑘

𝑎 𝐹𝑎(𝑡)⟩+ ⟨𝐹 †
𝑎 (𝑡)�̂�

𝑘
𝑎⟩
]︁
, (33)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = − [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑏 ⟩+ [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑎⟩+

2𝑔

𝜅
×

×
[︁
⟨𝐹 †

𝑏 (𝑡)�̂�
𝑘
𝑏 ⟩+ ⟨�̂�†𝑘

𝑏 𝐹𝑏(𝑡)⟩−

− ⟨�̂�†𝑘
𝑎 𝐹𝑎(𝑡)⟩ − ⟨𝐹 †

𝑎 (𝑡)�̂�
𝑘
𝑎⟩
]︁
, (34)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑐 ⟩ = [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑏 ⟩−

− 2𝑔

𝜅

[︁
⟨𝐹 †

𝑏 (𝑡)�̂�
𝑘
𝑏 ⟩+ ⟨�̂�†𝑘

𝑏 𝐹𝑏(𝑡)⟩
]︁
, (35)

where

𝛾𝑐 =
4𝑔2

𝜅
(36)

is the stimulated emission decay constant.
We next proceed to find the expectation value of

the product involving a noise operator and an atomic
operator that appears in Eqs. (30)–(35). To this end,
after removing the angular brackets, Eq. (33) can be
rewritten as

𝑑

𝑑𝑡
𝜂𝑘𝑎 = − [𝛾 + 𝛾𝑐] 𝜂

𝑘
𝑎 +

+
2𝑔

𝜅

[︁
�̂�†𝑘
𝑎 𝐹𝑎(𝑡) + 𝐹 †

𝑎 (𝑡)�̂�
𝑘
𝑎

]︁
+ 𝑓𝑎(𝑡), (37)

where 𝑓𝑎(𝑡) is the noise operator associated with
𝜂𝑎. A formal solution of this equation can be writ-
ten as

𝜂𝑘𝑎(𝑡) = 𝜂𝑘𝑎(0)𝑒
−(𝛾+𝛾𝑐)𝑡 +

𝑡∫︁
0

𝑒−(𝛾+𝛾𝑐)(𝑡−𝑡′) ×

×
[︂
2𝑔

𝜅

[︁
�̂�†𝑘
𝑎 (𝑡′)𝐹𝑎(𝑡

′) + 𝐹 †
𝑎 (𝑡

′)�̂�𝑘
𝑎(𝑡

′)
]︁
+ 𝑓𝑎(𝑡

′)

]︂
𝑑𝑡′. (38)

Multiplying Eq. (38) on the right by 𝐹𝑎(𝑡) and taking
the expectation value of the resulting equation, we
have

⟨𝜂𝑘𝑎(𝑡)𝐹𝑎(𝑡)⟩ = ⟨𝜂𝑘𝑎(0)𝐹𝑎(𝑡)⟩𝑒−(𝛾+𝛾𝑐)𝑡 +

+

𝑡∫︁
0

𝑒−(𝛾+𝛾𝑐)(𝑡−𝑡′)

[︂
2𝑔

𝜅

[︁
⟨�̂�†𝑘

𝑎 (𝑡′)𝐹𝑎(𝑡
′)𝐹𝑎(𝑡)⟩+

+ ⟨𝐹 †
𝑎 (𝑡

′)�̂�𝑘
𝑎(𝑡

′)𝐹𝑎(𝑡)⟩
]︁
+ ⟨𝑓𝑎(𝑡′)𝐹𝑎(𝑡)⟩

]︂
𝑑𝑡′. (39)

Ignoring the noncommutativity of the atomic and
noise operators and neglecting the correlation be-
tween 𝐹𝑎(𝑡) and �̂�𝑘

𝑎(𝑡
′), assumed to be considerably

small [6], one can write the approximately valid rela-
tions

⟨�̂�†𝑘
𝑎 (𝑡′)𝐹𝑎(𝑡

′)𝐹𝑎(𝑡)⟩ = ⟨�̂�†𝑘
𝑎 (𝑡′)⟩⟨𝐹𝑎(𝑡

′)𝐹𝑎(𝑡)⟩ = 0, (40)
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⟨𝐹 †
𝑎 (𝑡

′)�̂�𝑘
𝑎(𝑡

′)𝐹𝑎(𝑡)⟩ = ⟨�̂�𝑘
𝑎(𝑡

′)⟩⟨𝐹 †
𝑎 (𝑡

′)𝐹𝑎(𝑡)⟩ = 0, (41)

⟨𝑓𝑎(𝑡′)𝐹𝑎(𝑡)⟩ = ⟨𝑓𝑎(𝑡′)⟩⟨𝐹𝑎(𝑡)⟩ = 0. (42)

Now, accounting for these approximately valid rela-
tions along with the fact that a noise operator 𝐹 at a
certain time should not affect the atomic variable at
earlier time, Eq. (39) takes the form

⟨𝜂𝑘𝑎(𝑡)𝐹𝑎(𝑡)⟩ = 0. (43)

Following a similar procedure, one can also check that

⟨𝜂𝑘𝑏 (𝑡)𝐹𝑎(𝑡)⟩ = 0, (44)

⟨𝜂𝑘𝑐 (𝑡)𝐹𝑏(𝑡)⟩ = 0, (45)

⟨𝜂𝑘𝑏 (𝑡)𝐹𝑏(𝑡)⟩ = 0, (46)

⟨𝐹 †
𝑎 (𝑡)�̂�

𝑘
𝑎(𝑡)⟩ = 0, (47)

⟨𝐹 †
𝑏 (𝑡)�̂�

𝑘
𝑏 (𝑡)⟩ = 0. (48)

We also take

⟨𝐹 †
𝑎 (𝑡)�̂�

𝑘
𝑐 (𝑡)⟩ = ⟨𝐹 †

𝑏 (𝑡)�̂�
𝑘
𝑐 (𝑡)⟩ = 0. (49)

With the aid of Eqs. (43)–(49), we rewrite Eqs. (30),
(31), (33), (34), and (35) as

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨�̂�𝑘
𝑎⟩, (50)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑏 ⟩ = −
[︁𝛾
2
+
𝛾𝑐
2

]︁
⟨�̂�𝑘

𝑏 ⟩. (51)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑎⟩, (52)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = − [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑏 ⟩+ [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑎⟩, (53)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑐 ⟩ = [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑏 ⟩. (54)

We note that Eqs. (50)–(54) represent the equation
of evolution for the atomic operators in the absence
of the pumping process. The pumping process must
surely affect the dynamics of ⟨𝜂𝑘𝑎⟩ and ⟨𝜂𝑘𝑐 ⟩. We seek
here to pump the atoms by the electron bombard-
ment. If 𝑟𝑎 represents the rate at which a single atom
is pumped from the bottom to the top level, then ⟨𝜂𝑘𝑎⟩
increases at the rate of 𝑟𝑎⟨𝜂𝑘𝑐 ⟩, and ⟨𝜂𝑘𝑐 ⟩ decreases at
the same rate. In view of this, we rewrite Eqs. (52)
and (54) as

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑎⟩+ 𝑟𝑎⟨𝜂𝑘𝑐 ⟩, (55)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑐 ⟩ = [𝛾 + 𝛾𝑐] ⟨𝜂𝑘𝑏 ⟩ − 𝑟𝑎⟨𝜂𝑐⟩. (56)

We next sum Eqs. (50), (51), (53), (55), and (56)
over the 𝑁 three-level atoms, so that

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨�̂�𝑎⟩, (57)

𝑑

𝑑𝑡
⟨�̂�𝑏⟩ = −

[︁𝛾
2
+
𝛾𝑐
2

]︁
⟨�̂�𝑏⟩, (58)

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = − [𝛾 + 𝛾𝑐] ⟨�̂�𝑎⟩+ 𝑟𝑎⟨�̂�𝑐⟩, (59)

𝑑

𝑑𝑡
⟨�̂�𝑏⟩ = − [𝛾 + 𝛾𝑐] ⟨�̂�𝑏⟩+ [𝛾 + 𝛾𝑐] ⟨�̂�𝑎⟩, (60)

𝑑

𝑑𝑡
⟨�̂�𝑐⟩ = [𝛾 + 𝛾𝑐] ⟨�̂�𝑏⟩ − 𝑟𝑎⟨�̂�𝑐⟩, (61)

in which

�̂�𝑎 =
𝑁∑︁

𝑘=1

�̂�𝑘
𝑎 , (62)

�̂�𝑏 =

𝑁∑︁
𝑘=1

�̂�𝑘
𝑏 , (63)

�̂�𝑎 =

𝑁∑︁
𝑘=1

𝜂𝑘𝑎 , (64)

�̂�𝑏 =

𝑁∑︁
𝑘=1

𝜂𝑘𝑏 , (65)

�̂�𝑐 =

𝑁∑︁
𝑘=1

𝜂𝑘𝑐 , (66)

with the operators �̂�𝑎, �̂�𝑏, and �̂�𝑐 representing the
number of atoms in the top, intermediate, and bot-
tom levels. In addition, employing the completeness
relation

𝜂𝑘𝑎 + 𝜂𝑘𝑏 + 𝜂𝑘𝑐 = 𝐼, (67)

we easily arrive at

⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩+ ⟨�̂�𝑐⟩ = 𝑁. (68)

Furthermore, applying the definition given by
Eq. (2) and setting, for any 𝑘,

�̂�𝑘
𝑎 = |𝑏⟩⟨𝑎|, (69)

we have

�̂�𝑎 = 𝑁 |𝑏⟩⟨𝑎|. (70)
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Following the same procedure, one can also check that

�̂�𝑏 = 𝑁 |𝑐⟩⟨𝑏|, (71)

�̂�𝑐 = 𝑁 |𝑐⟩⟨𝑎|, (72)

�̂�𝑎 = 𝑁 |𝑎⟩⟨𝑎|, (73)

�̂�𝑏 = 𝑁 |𝑏⟩⟨𝑏|, (74)

�̂�𝑐 = 𝑁 |𝑐⟩⟨𝑐|, (75)

where

�̂�𝑐 =

𝑁∑︁
𝑘=1

�̂�𝑘
𝑐 . (76)

Moreover, using the definition

�̂� = �̂�𝑎 + �̂�𝑏 (77)

and accounting for Eqs. (70)–(75), it can be readily
established that

�̂�†�̂� = 𝑁(�̂�𝑎 + �̂�𝑏), (78)

�̂��̂�† = 𝑁(�̂�𝑏 + �̂�𝑐), (79)

�̂�2 = 𝑁�̂�𝑐. (80)

With the aid of Eq. (68), one can put Eq. (59) in
the form

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = − [𝛾 + 𝛾𝑐 + 𝑟𝑎] ⟨�̂�𝑎⟩+ 𝑟𝑎[𝑁 − ⟨�̂�𝑏⟩]. (81)

Applying the large-time approximation scheme to
Eq. (60), we get

⟨�̂�𝑏⟩ = ⟨�̂�𝑎⟩. (82)

Thus, in view of this result, Eq. (81) can be written
as

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = − [𝛾 + 𝛾𝑐 + 2𝑟𝑎] ⟨�̂�𝑎⟩+𝑁𝑟𝑎. (83)

The steady-state solution of Eq. (83) is expressible as

⟨�̂�𝑎⟩ =
𝑟𝑎𝑁

𝛾 + 𝛾𝑐 + 2𝑟𝑎
. (84)

Using the steady-state solution of Eq. (61) along with
Eq. (82), we have

⟨�̂�𝑐⟩ =
𝛾 + 𝛾𝑐
𝑟𝑎

⟨�̂�𝑎⟩. (85)

With regard for Eq. (84), Eq. (85) takes the form

⟨�̂�𝑐⟩ =
(𝛾 + 𝛾𝑐)𝑁

𝛾 + 𝛾𝑐 + 2𝑟𝑎
. (86)

For 𝑟𝑎 = 0, we see that ⟨�̂�𝑎⟩ = ⟨�̂�𝑏⟩ = 0 and ⟨�̂�𝑐⟩ =
= 𝑁 . This result holds whether the atoms are initially
in the top or bottom level.

In the presence of 𝑁 three-level atoms, we rewrite
Eq. (10) as [10]

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�+ 𝜆�̂�𝑎 + 𝛽𝐹𝑎(𝑡), (87)

in which 𝜆 and 𝛽 are constants whose values remain
to be fixed. Applying Eq. (28), we get

[�̂�, �̂�†]𝑘 =
4𝑔2

𝜅2
(𝜂𝑘𝑏 − 𝜂𝑘𝑎) +

4

𝜅2
[𝐹𝑎, 𝐹

†
𝑎 ], (88)

and, on summing over all atoms, we have

[�̂�, �̂�†] =
4𝑔2

𝜅2
(�̂�𝑏 − �̂�𝑎) +

4𝑁

𝜅2
[𝐹𝑎, 𝐹

†
𝑎 ], (89)

where

[�̂�, �̂�†] =

𝑁∑︁
𝑘=1

[�̂�, �̂�†]𝑘 (90)

stands for the commutator of �̂� and �̂�†, when light
mode 𝑎 is interecting with all𝑁 three-level atoms. On
the other hand, applying the large-time approxima-
tion to Eq. (87), one can easily find

[�̂�, �̂�†] = 𝑁
4𝜆2

𝜅2
(�̂�𝑏 − �̂�𝑎) +

4𝛽2

𝜅2
[𝐹𝑎, 𝐹

†
𝑎 ]. (91)

Thus, accounting for Eqs. (89) and (91), we see that

𝜆 = ± 𝑔√
𝑁
, (92)

𝛽 = ±
√
𝑁. (93)

In view of Eqs. (92) and (93), Eq. (87) can be written
as

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�+

𝑔√
𝑁
�̂�𝑎 +

√
𝑁𝐹𝑎(𝑡). (94)

Following a similar procedure, one can also readily
establish that

[�̂�, �̂�†] =
4𝑔2

𝜅2
(�̂�𝑐 − �̂�𝑏) +

4𝑁

𝜅2
[𝐹𝑏, 𝐹

†
𝑏 ], (95)
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𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�+

𝑔√
𝑁
�̂�𝑏 +

√
𝑁𝐹𝑏(𝑡). (96)

Furthermore, in order to include the effect of pump-
ing, we rewrite Eqs. (57) and (58) as

𝑑

𝑑𝑡
�̂�𝑎 = −𝜇

2
�̂�𝑎 + �̂�𝑎(𝑡), (97)

𝑑

𝑑𝑡
�̂�𝑏 = −𝜇

2
�̂�𝑏 + �̂�𝑏(𝑡) (98)

in which �̂�𝑎(𝑡) and �̂�𝑏(𝑡) are noise operators with
vanishing mean, and 𝜇 is a parameter whose value
remains to be determined. Employing the relation

𝑑

𝑑𝑡

⟨
�̂�†

𝑎�̂�𝑎

⟩
=

⟨
𝑑�̂�†

𝑎

𝑑𝑡
�̂�𝑎

⟩
+

⟨
�̂�†

𝑎

𝑑�̂�𝑎

𝑑𝑡

⟩
(99)

along with Eq. (97), we easily find

𝑑

𝑑𝑡
⟨�̂�†

𝑎�̂�𝑎⟩ = −𝜇⟨�̂�†
𝑎�̂�𝑎⟩+

+ ⟨�̂�†
𝑎�̂�𝑎(𝑡)⟩+ ⟨�̂�†

𝑎(𝑡)�̂�𝑎⟩, (100)

which yields

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = −𝜇⟨�̂�𝑎⟩+

+
1

𝑁

[︁
⟨�̂�†

𝑎�̂�𝑎(𝑡)⟩+ ⟨�̂�†
𝑎(𝑡)�̂�𝑎⟩

]︁
. (101)

The comparison of Eqs. (83) and (101) shows that

𝜇 = 𝛾 + 𝛾𝑐 + 2𝑟𝑎 (102)

and⟨
�̂�†

𝑎�̂�𝑎(𝑡)
⟩
+
⟨
�̂�†

𝑎(𝑡)�̂�𝑎

⟩
= 𝑟𝑎𝑁

2. (103)

We observe that Eq. (103) is equivalent to⟨
�̂�†

𝑎(𝑡)�̂�𝑎(𝑡
′)
⟩
= 𝑟𝑎𝑁

2𝛿(𝑡− 𝑡′). (104)

One can also easily verify that⟨
�̂�𝑏(𝑡)�̂�

†
𝑏(𝑡

′)
⟩
= (𝛾 + 𝛾𝑐)𝑁

2𝛿(𝑡− 𝑡′). (105)

Furthermore, adding Eqs. (57) and (58), we have

𝑑

𝑑𝑡
⟨�̂�⟩ = −1

2
[𝛾 + 𝛾𝑐] ⟨�̂�⟩ − 1

2
[𝛾 + 𝛾𝑐] ⟨�̂�𝑎⟩, (106)

where �̂� is given by Eq. (77). Upon casting Eq. (106)
into the form
𝑑

𝑑𝑡
�̂� = −𝜇

2
�̂�− 𝜇

2
�̂�𝑎 + �̂�(𝑡), (107)

one can verify that 𝜇 has the value given by Eq. (102)
and⟨
�̂�†(𝑡)�̂�(𝑡′)

⟩
= 𝑟𝑎𝑁

2𝛿(𝑡− 𝑡′). (108)

On the other hand, assuming the atoms to be ini-
tially on the bottom level, the expectation value of
the solution of Eq. (97) happens to be

⟨�̂�𝑎(𝑡)⟩ = 0. (109)

Hence, the expectation value of the solution of
Eq. (94) turns out to be

⟨�̂�(𝑡)⟩ = 0. (110)

In view of Eqs. (94) and (110), we claim that �̂�(𝑡) is
a Gaussian variable with zero mean. One can verify
that

⟨�̂�(𝑡)⟩ = 0. (111)

Then, accounting for Eqs. (96) and (111), we realize
that �̂�(𝑡) is a Gaussian variable with zero mean.

Furthermore adding Eqs. (110) and (111), we ob-
tain

⟨𝑐⟩ = 0, (112)

where

𝑐 = �̂�+ �̂�. (113)

In addition, adding Eqs.((94) and (96), we get

𝑑𝑐

𝑑𝑡
= −𝜅

2
𝑐+

𝑔√
𝑁
�̂�+

√
𝑁𝐹𝑐(𝑡), (114)

where

𝐹𝑐(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑏(𝑡), (115)

and �̂� is given by Eq. (77). One can easily check that

⟨𝐹𝑐(𝑡)⟩ = 0, (116)

⟨𝐹 †
𝑐 (𝑡)𝐹𝑐(𝑡

′)⟩ = 2𝑁0𝜅𝛿(𝑡− 𝑡′), (117)

⟨𝐹 †
𝑐 (𝑡)𝐹

†
𝑐 (𝑡

′)⟩ = ⟨𝐹𝑐(𝑡)𝐹𝑐(𝑡)⟩ = −2𝜅𝑀0𝛿(𝑡−𝑡′), (118)

⟨𝐹𝑐(𝑡)𝐹
†
𝑐 (𝑡

′)⟩ = 2𝜅(𝑁0 + 1)𝛿(𝑡− 𝑡′). (119)

In view of Eqs. (112) and (114), we see that 𝑐 is a
Gaussian variable with zero mean.
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3. Photon Statistics

In this section, we will calculate the mean and vari-
ance of the photon number for the two-mode cavity
light at a steady state. To this end, using the relation

𝑑

𝑑𝑡

⟨̂
𝑐†(𝑡)𝑐(𝑡)

⟩
=

⟨
𝑑𝑐†(𝑡)

𝑑𝑡
𝑐(𝑡)

⟩
+

⟨̂
𝑐†(𝑡)

𝑑𝑐(𝑡)

𝑑𝑡

⟩
(120)

along with Eq. (114), we find

𝑑

𝑑𝑡
⟨𝑐†𝑡)𝑐(𝑡)⟩ = −𝜅⟨𝑐†(𝑡)𝑐(𝑡)⟩+ 𝑔√

𝑁

[︀
⟨𝑐†(𝑡)�̂�(𝑡)⟩+

+ ⟨�̂�†(𝑡)𝑐(𝑡)⟩
]︀
+
√
𝑁
[︁
⟨𝐹 †

𝑐 (𝑡)𝑐(𝑡)⟩+ ⟨𝑐†(𝑡)𝐹𝑐(𝑡)⟩
]︁
.(121)

Now, we will evaluate ⟨𝑐†(𝑡)�̂�(𝑡)⟩. Applying the
large-time approximation, we get, from Eq. (114), the
approximately valid relation

𝑐(𝑡) =
2𝑔

𝜅
√
𝑁
�̂�+

2
√
𝑁

𝜅
𝐹𝑐(𝑡). (122)

Multiplying the adjoint of Eq. (122) on the right by
�̂�(𝑡) and taking the expectation value of the resulting
expression, we get

⟨𝑐†(𝑡)�̂�(𝑡)⟩ = 2𝑔
√
𝑁

𝜅
[⟨�̂�𝑎(𝑡)⟩+ ⟨�̂�𝑏(𝑡)⟩] +

+
2
√
𝑁

𝜅
⟨𝐹 †

𝑐 (𝑡)�̂�(𝑡)⟩. (123)

We now proceed to evaluate ⟨𝐹 †
𝑐 (𝑡)�̂�(𝑡)⟩. To this end,

a formal solution of Eq. (107) can be written as

�̂�(𝑡) = �̂�(0)𝑒−
𝜇
2 𝑡 +

𝑡∫︁
0

𝑒−
𝜇
2 (𝑡−𝑡′) ×

×
[︂
− 𝜇

2
�̂�𝑎(𝑡

′) + �̂�(𝑡′)

]︂
𝑑𝑡′. (124)

Multiplying Eq. (124) on the left by 𝐹 †
𝑐 (𝑡) and taking

the expectation value of the resulting expression, we
have

⟨𝐹 †
𝑐 (𝑡)�̂�(𝑡)⟩ = ⟨𝐹 †

𝑐 (𝑡)�̂�(0)⟩𝑒−𝜇
2 𝑡 +

𝑡∫︁
0

𝑒−
𝜇
2 (𝑡−𝑡′) ×

×
[︂
− 𝜇

2
⟨𝐹 †

𝑐 (𝑡)�̂�𝑎(𝑡
′)⟩+ ⟨𝐹 †

𝑐 (𝑡)�̂�(𝑡
′)⟩

]︂
𝑑𝑡′. (125)

Taking into account that the noise operator 𝐹 at a
certain time should not affect the atomic variable at

earlier times and assuming that the cavity mode and
atomic mode operators are not correlated, we get

⟨𝐹 †
𝑐 (𝑡)�̂�(𝑡)⟩ = 0. (126)

In view of this result, Eq. (123) takes the form

⟨𝑐†(𝑡)�̂�(𝑡)⟩ = 2𝑔
√
𝑁

𝜅
[⟨�̂�𝑎(𝑡)⟩+ ⟨�̂�𝑏(𝑡)⟩]. (127)

Now, we evaluate ⟨𝐹 †
𝑐 (𝑡)𝑐(𝑡)⟩. To this end, a formal

solution of Eq. (114) can be written as

𝑐(𝑡) = 𝑐(0)𝑒−
𝜅
2 𝑡 +

+

𝑡∫︁
0

𝑒−
𝜅
2 (𝑡−𝑡′)

[︂
𝑔√
𝑁
�̂�(𝑡′) +

√
𝑁𝐹𝑐(𝑡

′)

]︂
𝑑𝑡′. (128)

Multiplying Eq. (128) on the left by 𝐹 †
𝑐 (𝑡) and taking

the expectation value of the resulting expression, we
get

⟨𝐹 †
𝑐 (𝑡)𝑐(𝑡)⟩ = ⟨𝐹 †

𝑐 (𝑡)𝑐(0)⟩𝑒−
𝜅
2 𝑡 +

𝑡∫︁
0

𝑒−
𝜅
2 (𝑡−𝑡′) ×

×
[︂
𝑔√
𝑁

⟨𝐹 †
𝑐 (𝑡)�̂�(𝑡′)⟩+

√
𝑁⟨𝐹 †

𝑐 (𝑡)𝐹𝑐(𝑡
′)⟩

]︂
𝑑𝑡′. (129)

In view of Eqs. (117) and (126) along with the fact
that the noise operator 𝐹 at a certain time should not
affect the atomic variable at earlier times, Eq. (129)
becomes

⟨𝐹 †
𝑐 (𝑡)𝑐(𝑡)⟩ =

√
𝑁𝑁0𝜅. (130)

Now, with regard for Eqs. (127) and (130) along with
their complex conjugates, we can rewrite Eq. (121) as

𝑑

𝑑𝑡

⟨︀
𝑐†(𝑡)𝑐(𝑡)

⟩︀
= −𝜅

⟨︀
𝑐†(𝑡)𝑐(𝑡)

⟩︀
+

+
4𝑔2

𝜅

[︂
⟨�̂�𝑎(𝑡)⟩+ ⟨�̂�𝑏(𝑡)⟩

]︂
+ 2

√
𝑁𝑁0𝜅. (131)

The steady-state solution of this equation is express-
ible as

⟨𝑐†𝑐⟩ = 𝛾𝑐
𝜅

[︀
⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩

]︀
+ 2𝑁𝑁0. (132)

Following a similar procedure, one can establish
that

⟨𝑐𝑐†⟩ = 𝛾𝑐
𝜅

[︀
⟨�̂�𝑐⟩+ ⟨�̂�𝑏⟩

]︀
+ 2𝑁(𝑁0 + 1), (133)
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⟨𝑐2⟩ = 𝛾𝑐
𝜅
⟨�̂�𝑐⟩ − 2𝑀0𝑁. (134)

In view of Eqs. (82), (84), and (86), Eqs. (132) and
(133) can be rewritten as

⟨𝑐†𝑐⟩ = 𝛾𝑐
𝜅

[︂
2𝑁𝑟𝑎

𝛾 + 𝛾𝑐 + 2𝑟𝑎

]︂
+ 2𝑁𝑁0, (135)

⟨𝑐𝑐†⟩ = 𝛾𝑐
𝜅

[︂
𝛾 + 𝛾𝑐 + 𝑟𝑎
𝛾 + 𝛾𝑐 + 2𝑟𝑎

]︂
𝑁 + 2𝑁(𝑁0 + 1). (136)

In the absence of a squeezed parameter (𝑟 = 0), the
mean photon number of the two-mode cavity light
has the form

�̄�𝑐 =
𝛾𝑐
𝜅

(︂
2𝑁𝑟𝑎

𝛾 + 𝛾𝑐 + 2𝑟𝑎

)︂
. (137)

It can be seen from the plots in Figs. 2 and 3 that
the mean photon number of two- mode cavity light
is greater in the presence of a squeezed parameter
than in its absence. In other words, the effect of the
squeezed parameter is to increase the mean photon
number. In addition, the plots in Figs. 2 and 3 indi-
cate that the maximum mean photon number is 44.51
for 𝛾 = 0 and 𝑟𝑎 = 10.

Furthermore, the variance of the photon number
for the two-mode cavity light is expressible as

(Δ𝑛)2 = ⟨(𝑐†𝑐)2⟩ − ⟨𝑐†𝑐⟩2. (138)

Using the fact that 𝑐 is a Gaussian variable with zero
mean, we readily get

(Δ𝑛)2 = ⟨𝑐†𝑐⟩⟨𝑐𝑐†⟩+ ⟨𝑐2†⟩⟨𝑐2⟩. (139)

We now proceed to calculate the expectation value of
the atomic operator �̂�𝑐 following the approach pre-
sented in [10]. To this end, applying the identity given
by Eq. (67), the state vector of a three-level atom can
be put in the form

|𝜓𝑘⟩ = 𝑐𝑎|𝑎𝑘⟩+ 𝑐𝑏|𝑏𝑘⟩+ 𝑐𝑐|𝑐𝑘⟩, (140)

in which

𝑐𝑎 = ⟨𝑎𝑘|𝜓𝑘⟩, (141)
𝑐𝑏 = ⟨𝑏𝑘|𝜓𝑘⟩, (142)
𝑐𝑐 = ⟨𝑐𝑘|𝜓𝑘⟩. (143)

The state vector described by Eq. (140) can be used
to determine the expectation value of an atomic op-
erator formed by a pair of identical energy levels or

Fig. 2. Plots of the mean photon number for the two-mode
cavity light at the steady state [Eq. (135)] for 𝜅 = 0.8, 𝛾𝑐 = 0.4,
𝛾 = 0.2, 𝑁0 = 0.2 (solid curve), 𝑁0 = 0 (dashed curve), and
𝑁 = 50

Fig. 3. Plots of the mean photon number for the two-mode
cavity light at the steady state [Eq. (135)] for 𝜅 = 0.8, 𝛾𝑐 = 0.4,
𝑁0 = 0.2, and 𝑁 = 50 vs 𝛾 and 𝑟𝑎

by two distinct energy levels between which the tran-
sition with the emission of a photon is dipole forbid-
den. One can readily establish that

⟨𝜂𝑘𝑎⟩ = 𝑐𝑎𝑐
*
𝑎, (144)

⟨𝜂𝑘𝑐 ⟩ = 𝑐𝑐𝑐
*
𝑐 , (145)

and

⟨�̂�𝑘
𝑐 ⟩ = 𝑐𝑎𝑐

*
𝑐 . (146)

We see that

|⟨�̂�𝑘
𝑐 ⟩|2 = ⟨𝜂𝑘𝑎⟩⟨𝜂𝑘𝑐 ⟩, (147)

and, taking |⟨�̂�𝑘
𝑐 ⟩| to be real, we get

|⟨�̂�𝑘
𝑐 ⟩| =

√︁
⟨𝜂𝑘𝑎⟩⟨𝜂𝑘𝑐.⟩ (148)

So, by summing over 𝑘 from 1 up to 𝑁 , we get

⟨�̂�𝑐⟩ =
√︁
⟨�̂�𝑎⟩⟨�̂�𝑐⟩. (149)

Now, Eq. (134) takes the form

⟨𝑐2⟩ = 𝛾𝑐
𝜅

√︁
⟨�̂�𝑎⟩⟨�̂�𝑐⟩ − 2𝑀0𝑁. (150)
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Fig. 4. Plot of the quadrature squeezing at the steady state,
[Eq. (168)] versus 𝑟𝑎 for 𝜅 = 0.8, 𝛾𝑐 = 0.4, 𝛾 = 0.2, 𝑀0 = 0.59,
and for 𝑁0 = 0.27

Fig. 5. Plot of the quadrature squeezing at the steady state,
[Eq. (168)] versus 𝑟𝑎 and 𝛾 for 𝜅 = 0.8, 𝛾𝑐 = 0.4, 𝑀0 = 0.59,
and 𝑁0 = 0.27

By using Eq. (85), we have

⟨𝑐2⟩ = 𝛾𝑐
𝜅

√︂
𝛾 + 𝛾𝑐
𝑟𝑎

⟨�̂�𝑎⟩ − 2𝑀0𝑁. (151)

In view of Eqs. (132), (133), and (151), Eq. (139)
becomes

(Δ𝑛)2 =

(︂
𝛾𝑐
𝜅

(︁
⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩

)︁
+ 2𝑁𝑁0

)︂
×

×
(︂
𝛾𝑐
𝜅

(︁
⟨�̂�𝑏⟩+ ⟨�̂�𝑐⟩

)︁
+ 2𝑁(𝑁0 + 1)

)︂
+

+

(︂
𝛾𝑐
𝜅

√︂
𝛾 + 𝛾𝑐
𝑟𝑎

⟨�̂�𝑎⟩ − 2𝑁𝑀0

)︂2
. (152)

Finally, with regard for Eqs. (82), (84), (85), and (86)
along with Eq. (152), we arrive at

(Δ𝑛)2 =
1

4
�̄�2

(︂
3(𝛾 + 𝛾𝑐)

𝑟𝑎
+ 2

)︂
+

+2�̄�𝑁

(︂
1−𝑁0 −

𝛾 + 𝛾𝑐
𝑟𝑎

𝑁0 −
√︂
𝛾 + 𝛾𝑐
𝑟𝑎

𝑀0

)︂
+

+𝑁2

(︂
𝛾 + 𝛾𝑐
𝑟𝑎

𝑁2
0 − 2

√︂
𝛾 + 𝛾𝑐
𝑟𝑎

𝑁0𝑀0 + 4𝑀2
0

)︂
. (153)

In the absence of a squeezed parameter (𝑟 = 0), we
readily find

(Δ𝑛)2 =
1

4
�̄�2 (3𝜂 + 2) + 2𝑁�̄�, (154)

where

𝜂 =
𝛾 + 𝛾𝑐
𝑟𝑎

. (155)

Now, the inspection of Eq. (153) indicates that
(Δ𝑛)2 > �̄�. Hence, the photon statistics of the
two-mode cavity light is super-Poissonian. Our result
shows that the photon number variance of the two-
mode cavity light is greater than the one obtained by
Menisha [17]. This must be due to the reservoir noise
operators.

4. Quadrature Squeezing

We proceed to calculate the quadrature squeezing of
the two-mode cavity light in the entire frequency in-
terval. To this end, the squeezing properties of the
two-mode cavity light are described by two quadra-
ture operators defined by

𝑐+ = 𝑐† + 𝑐 (156)

and

𝑐− = 𝑖(𝑐† − 𝑐). (157)

It can be readily established that [15]

[𝑐−, 𝑐+] = 2𝑖
𝛾𝑐
𝜅
(⟨�̂�𝑎⟩ − ⟨�̂�𝑐⟩)− 4𝑁𝑖. (158)

It follows that [16]

Δ𝑐+Δ𝑐− ≥ 𝛾𝑐
𝜅
(⟨�̂�𝑐⟩ − ⟨�̂�𝑎⟩) + 2𝑁. (159)

Setting 𝑟𝑎 = 0, we see that

Δ𝑐+Δ𝑐− ≥ 𝛾𝑐
𝜅
𝑁 + 2𝑁. (160)

This represents the quadrature variance for two-mode
vacuum state. The variance of the quadrature opera-
tor is expressible as

(Δ𝑐±)
2 = ±⟨(𝑐† ± 𝑐)2⟩ ∓ [⟨𝑐† + 𝑐⟩]2. (161)

Accounting for Eq. (112), we have

(Δ𝑐±)
2 = ⟨𝑐†𝑐⟩+ ⟨𝑐𝑐†⟩ ± ⟨𝑐†2⟩ ± ⟨𝑐2⟩. (162)
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Now, employing Eqs. (68), (132), (133), and (151),
we arrive at

(Δ𝑐+)
2 =

𝛾𝑐
𝜅

(︂
𝑁 + ⟨�̂�𝑎⟩+ 2

√︂
𝛾 + 𝛾𝑐
𝑟𝑎

⟨�̂�𝑎⟩
)︂
+

+4𝑁𝑁0 + 2𝑁 − 4𝑀0𝑁, (163)

(Δ𝑐−)
2 =

𝛾𝑐
𝜅

(︂
𝑁 + ⟨�̂�𝑎⟩ − 2

√︂
𝛾 + 𝛾𝑐
𝑟𝑎

⟨�̂�𝑎⟩
)︂
+

+4𝑁𝑁0 + 2𝑁 + 4𝑀0𝑁. (164)

Moreover, by setting 𝑟𝑎 and 𝑁0 = 𝑀0 = 0 in
Eqs. (163) and (164), we get

(Δ𝑐+)
2
𝑣 = (Δ𝑐−)

2
𝑣 =

𝛾𝑐
𝜅
𝑁 + 2𝑁. (165)

This represents the quadrature variance of a two-
mode vacuum state. We seek to calculate the quadra-
ture squeezing of the two-mode cavity light relative
to the quadrature variance of the two-mode cavity
vacuum state. We define the quadrature squeezing of
the two-mode cavity light by

𝑆 =
(Δ𝑐+)

2
𝑣 − (Δ𝑐+)

2

(Δ𝑐+)2𝑣
. (166)

Now, employing Eqs. (163) and (165), one can put
Eq. (166) in the form

𝑆 =
4𝜅(𝑀0 −𝑁0)

(𝛾𝑐 + 2𝜅)
−

𝛾𝑐

𝜅

(︁
2
√︁

𝛾+𝛾𝑐

𝑟𝑎
⟨�̂�𝑎⟩+ ⟨�̂�𝑎⟩

)︁
𝛾𝑐

𝜅 𝑁 + 2𝑁
. (167)

In view of Eq. (84), Eq. (167) takes the form

𝑆 =
4𝜅(𝑀0 −𝑁0)

𝛾𝑐 + 2𝜅
− 𝛾𝑐
𝛾𝑐 + 2𝜅

(︂
2
√
𝜂 + 1

𝜂 + 2

)︂
. (168)

We note that, unlike the mean photon number, the
quadrature squeezing does not depend on the number
of atoms. This implies that the quadrature squeez-
ing of the cavity light is independent of the num-
ber of photons. The plot in Fig. 4 indicates that the
maximum quadrature squeezing is 45.88% below the
vacuum-state level, and this occurs, when the three-
level laser is operating below the threshold. The plots
in Figs. 4 and 5 indicate that the quadrature squeez-
ing is greater for 𝛾 = 0.2 than that for 𝛾 = 0 for
0.01 < 𝑟𝑎 < 0.49 and is smaller for 𝛾 = 0.2 than that
for 𝛾 = 0 for 0.49 < 𝑟𝑎 < 1. In addition, from the
plots, we see that the maximum quadrature squeez-
ing is 45.88% for 𝛾 = 0.2 and 44.7% for 𝛾 = 0. This
occurs, when the three-level laser is operating at
𝑟𝑎 = 0.01.

5. Entanglement Properties
of the Two-Mode Light

Here, we proceed to study the entanglement condi-
tion of the two modes in the cavity. A pair of par-
ticles is taken to be entangled in quantum theory, if
its states cannot be expressed as a product of the
states of its individual constituents. The preparation
and manipulation of these entangled states that have
nonclassical and nonlocal properties lead to a better
understanding of the basic quantum principles [16]-
[20]. If the density operator for the combined state
cannot be described as a combination of the product
of density operators of the constituents,

𝜌 ̸=
∑︁
𝑗

𝑃𝑗𝜌
1
𝑗

⨂︁
𝜌2𝑗 , (169)

where 𝑃𝑗 ≥ 0, and
∑︀

𝑗 𝑃𝑗 = 1 is set to ensure the
normalization of the combined density of states. No-
wadays, a lot of criteria have been developed to mea-
sure, detect, and manipulate the entanglement gen-
erated by various quantum optical devices. According
to DGCZ, the quantum state of a system is said to be
entangled, if the sum of the variances of the EPR-like
quadrature operators, �̂� and 𝑣, satisfy the inequality

(Δ�̂�)2 + (Δ𝑣)2 < 2𝑁, (170)

where

�̂� = �̂�𝑎 − �̂�𝑏, (171)

𝑣 = 𝑝𝑎 + 𝑝𝑏, (172)

where �̂�𝑎 = (�̂�†+�̂�)/
√
2, �̂�𝑏 = (�̂�†+ �̂�)/

√
2 𝑝𝑎 = 𝑖(�̂�† −

− �̂�)/
√
2, 𝑝𝑏 = 𝑖(�̂�†− �̂�)/

√
2, are quadrature operators

for modes �̂� and �̂�. Accounting for (171) and (172),
(170) yields

(Δ�̂�)2 + (Δ𝑣)2 = 2
𝛾𝑐
𝜅
[𝑁 + ⟨�̂�𝑏⟩ − ⟨�̂�𝑐⟩]. (173)

Thus, in view of Eq. (173) together with (163) and
(164), the sum of the variances of �̂� and 𝑣 can be
expressed as

(Δ�̂�)2 + (Δ𝑣)2 = 2Δ𝑐2+, (174)

where Δ𝑐2+ is given by (163). One can readily see from
this result that the degree of entanglement is directly
proportional to the degree of squeezing of the two-
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Fig. 6. Plots of Δ𝑢2+Δ𝑣2 of the two-mode cavity light versus
𝑟𝑎 for 𝛾𝑐 = 0.4 and for different values of 𝛾

Fig. 7. Plots of Δ𝑢2+Δ𝑣2 of the two-mode cavity light versus
𝑟𝑎 and 𝛾 for 𝛾𝑐 = 0.4

Fig. 8. Plots of 𝑔(2)
(𝑎,𝑏)

(0) of the two-mode cavity light versus
𝑟𝑎 and for 𝛾𝑐 = 0.4 and different values of 𝛾

Fig. 9. Plots of 𝑔(2)
(𝑎,𝑏)

(0) of the two-mode cavity light versus
𝑟𝑎 and 𝛾 for 𝛾𝑐 = 0.4

mode light. One can immediately notice that this par-
ticular entanglement measure is directly related to the
two-mode squeezing. This direct relationship shows
that, whenever there is a two-mode squeezing in the
system, there will be the entanglement in the sys-
tem as well. It is worth to note that the entanglement
disappears, when the squeezing vanishes. This is due
to the fact that the entanglement is directly related

to the squeezing, as given by (163). It also follows
that, like the mean photon number and quadrature
variance, the degree of entanglement depends on the
number of atoms. With the help of criterion (170), we
get that a significant entanglement occurs between
the states of the light generated in the cavity. This
is due to the strong correlation between the radiation
emitted, when the atoms decay from the upper energy
level to the lower one via the intermediate level. In
the following, the sum of the variances of a pair of
EPR-type operators Δ�̂�2+Δ𝑣2 is plotted against the
pumping rate, so that the available entanglement is
clearly evident for various values of the spontaneous
emission rate, 𝛾.

6. Normalized Second-Order
Correlation Functions

The second-order correlation function for a superposi-
tion of the two modes of the cavity radiation at equal
times can also be investigated, by using [18–21]:

𝑔
(2)
(𝑎,𝑏)(0) =

⟨�̂�†�̂��̂�†�̂�⟩
⟨�̂�†�̂�⟩⟨�̂�†�̂�⟩

. (175)

Since �̂� and �̂� are Gaussian variables with vanishing
means, the normalized second-order correlation func-
tion for the two-mode light takes, at the steady-state,
the form

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

⟨�̂��̂�⟩⟨�̂�†�̂�†⟩
⟨�̂�†�̂�⟩⟨�̂�†�̂�⟩

. (176)

It follows that

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

⟨�̂�𝑐⟩2
⟨�̂�𝑎⟩⟨�̂�𝑏⟩

. (177)

In view of (82), (85), and (149), we obtain

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

𝛾𝑐 + 𝛾

𝑟𝑎
. (178)

It can be seen from this result that the second-order
correlation function of the two-mode light does not
depend on the number of atoms.

Figures 8 and 9 show that the second-order corre-
lation function for the two-mode light versus 𝑟𝑎 in the
presence (𝛾 ̸= 0) and the absence (𝛾 = 0) of the spon-
taneous emission. One can see from these figures that
𝑔
(2)
𝑎,𝑏(0) decreases, as 𝑟𝑎 increases in both cases. It can

be observed from Fig. 8 that the second-order cor-
relation function vanishes for 𝑟𝑎 < 0.01. Moreover,
the effect of the spontaneous emission increases the
second-order correlation function.
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7. Conclusion

In this paper we have studied the squeezing and en-
tanglement properties of the light generated by three-
level atoms available in an open cavity and pumped
to the top level by the electron bombardment at a
constant rate. Applying the large-time approxima-
tion scheme, we have obtained the steady-state so-
lutions of the equations of evolution for the expecta-
tion values of the atomic operators and the quantum
Langevin equations for the cavity mode operators.

Making the use of the steady-state solutions of
atomic and cavity mode operators, the quadrature
variance, quadrature squeezing, and entanglement for
the two-mode cavity light, at the steady state, are
determined. In addition, the normalized second-order
correlation function is obtained for a superposition of
the two modes. It is found that the squeezing and en-
tanglement in the two-mode light are directly related
to each other. As a result, an increase in the degree
of squeezing directly leads to an increase in the de-
gree of entanglement and vice versa. This shows that,
whenever there is the squeezing in the two-mode light,
there exists an entanglement in the system. In addi-
tion, it is shown that the photons in the laser cavity
are highly correlated, and the degree of photon num-
ber correlation increases with the spontaneous emis-
sion decay constant, 𝛾. Therefore, the presence of the
spontaneous emission leads to an increase in the pho-
ton number correlation.
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М.Алему

ДИНАМIКА ПЕРЕПЛУТУВАННЯ,
IНДУКОВАНА ТРИРIВНЕВИМ ЛАЗЕРОМ,
ЩО ВЗАЄМОДIЄ З КВАНТОВИМ
РЕЗЕРВУАРОМ В УМОВАХ СТИСКАННЯ

Вивчаються властивостi стискання та переплутування свi-
тла, iндукованого трирiвневим лазером, що взаємодiє з ва-

куумним резервуаром в умовах стискання. Отримано рiв-
няння еволюцiї змiнних, якi характеризують моди випромi-
нювання iз порожнини лазера, та розраховано кореляцiйну
функцiю другого порядку для цього випромiнювання. До-
ведено, що свiтло лазера знаходиться у стиснутому станi,
i стискання вiдбувається з позитивною квадратурою. Зна-
йдено, що стискання визначає зростання середнього значе-
ння i дисперсiї числа фотонiв. Показано, що стискання i
переплутування для двомодового свiтла взаємозалежнi.

Ключ о в i с л о в а: динамiка операторiв, статистика фото-
нiв, квадратурне стискання, кореляцiї другого порядку, пе-
реплутування фотонiв.
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