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THERMODYNAMIC RESPONSE
FUNCTIONS IN A CELL FLUID MODEL

Thermodynamic response functions, namely, the isothermal compressibility, the thermal pres-
sure coefficient, and the thermal expansion coefficient, are calculated for a many-particle sys-
tem interacting through a modified Morse potential. These calculations are based on an equa-
tion of state previously derived for a cell fluid model in the grand canonical ensemble. The
calculated quantities are presented graphically as functions of the density and the effective
chemical potential.
K e yw o r d s: cell model, Morse potential, thermodynamic response functions.

1. Introduction

Thermodynamic response functions play a crucial role
in understanding and characterizing the behavior of
physical systems. These functions describe how a sys-
tem responds to changes in its state variables, provid-
ing valuable insights into its thermodynamic prop-
erties. The most widely studied thermodynamic re-
sponse functions of fluids are isothermal and adia-
batic compressibilities, isobaric thermal expansion,
isochoric thermal pressure coefficient and heat ca-
pacities either at constant pressure or at constant
volume. Thermodynamic response functions are es-
sential tools for understanding, predicting, and con-
trolling the behavior of physical systems. They are
used in various scientific and engineering disciplines
to model, design, and optimize processes and to gain
insights into the fundamental principles governing
thermodynamic systems. Therefore, a key area of re-
search involves examining the thermodynamic prop-
erties of simple fluids and fluid models through theo-
retical approaches, computer simulations, and exper-
imental studies, covering both subcritical and super-
critical regions [1–4].
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In this work we continue our study of the thermo-
dynamic behavior of a cell fluid model, which was
defined in [5, 6]. This model was used with the Morse
potential in studies [7, 8] and with a modified Morse
potential in [9,10] as potentials describing the particle
interaction. In particular, the equation of state was
obtained in [9] in the zero-mode approximation. This
equation of state is used in the current work to calcu-
late thermodynamic response functions, namely the
isothermal compressibility, the thermal pressure co-
efficient, and the thermal expansion coefficient.

As the problem has been considered in the frame-
work of the grand canonical ensemble, the initial
equation of state is formulated in terms of pres-
sure 𝑃 , temperature 𝑇 and the chemical potential 𝜇,
𝑃 = 𝑃 (𝑇, 𝜇). To leverage this form of the equation
of state for calculation of the response functions, the
corresponding definitions should be transformed to
proper derivatives with respect to temperature and
chemical potential [11]. For each response function
considered in this paper, we present such transfor-
mation in a dedicated subsection. On the other hand,
within the approach applied here, the chemical poten-
tial can be explicitly expressed via the number parti-
cle density 𝜌 and temperature. This gives rise to the
equation of state in the form 𝑃 = 𝑃 (𝑇, 𝜌), in which
case it is suitable to re-express the response functions
in terms of derivatives with respect to temperature
and density.

In Section 2, we present the modified Morse po-
tential used in our work, and briefly compare it with
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other possible modifications. Section 3 is dedicated to
the explicit expressions for the equation of state. In
Section 4, the expressions for response functions are
derived in terms of thermodynamic derivatives suit-
able for different forms of the equation of state.

2. The Interaction Potential

The potential of interaction between particles is taken
in the form of a modified Morse potential

𝑈(𝑟) = 𝜀𝐶𝐻

[︁
𝐴e−𝑛0(𝑟−𝑅0)/𝛼 +

+ e−𝛾(𝑟−𝑅0)/𝛼 − 2e−(𝑟−𝑅0)/𝛼
]︁
, (1)

where 𝑅0 is the coordinate of the potential minimum,
𝛼 is an effective range of interaction, 𝛾 and 𝑛0 are pa-
rameters of the model. Other two constants 𝐶𝐻 and
𝐴 are expressed via 𝛾 and 𝑛0 as follows:

𝐶𝐻 =
𝑛0

𝑛0 + 𝛾 − 2
, 𝐴 =

2− 𝛾

𝑛0
, (2)

where 𝜀 is the depth of the potential well at 𝑟 =
= 𝑅0. This potential is reduced to the ordinary Morse
potential [12] at 𝛾 = 2. For a more detailed discussion
of such modified Morse potential, see Sections 1 and 2
in [9].

Modifications of the Morse potential have been
used in other works as well. For example, in [13] a
repulsive term in a form of a power of 𝑟−1 was added
to the ordinary Morse potential, and the influence of
the softness of such a term was investigated on the co-
ordinates of the critical point. The generalized form
of the Morse potential was suggested in [14]

𝑈(𝑟) = 𝐴1e
−𝜆1𝑟 +𝐴2e

−𝜆2𝑟, (3)

with application to silicon structural energies, and
was also considered in [15] as the potential for Be–S
and H–Na compounds.

Our modification contains an additional repulsive
term, similarly to [13], as well as introduces param-
eter 𝛾, which can vary as opposed to being strictly
equal to 2 in the Morse potential. Including the re-
pulsive term enables us to single out a reference sys-
tem (in the reciprocal space) and apply the method of
collective variables to calculating the grand partition
function [16].

3. The Equation of State

3.1. Pressure as a function of the
temperature and chemical potential

The equation of state obtained in [9] reads

𝑃𝑣𝛽 = 𝐸𝜇(𝑀,𝑇 ) +𝑀𝜌0 +
1

2
𝑑𝜌20 −

𝑎4
24

𝜌40. (4)

The quantities in the left-hand side of the equation
are 𝑃 , the pressure; 𝛽 = (𝑘B𝑇 )

−1, the inverse temper-
ature; 𝑘B, the Boltzmann constant; 𝑇 , the tempera-
ture; 𝑣, cell volume. The quantities in the right-hand
side are, in general, functions of the temperature 𝑇
and the chemical potential 𝜇. Let us present their ex-
pressions explicitly.

First, the quantity 𝑀 depends linearly on the
chemical potential

𝑀 =
�̃�

𝑊 (0)
+ 𝑔1 −

𝑔3
𝑔4

𝑑− 1

6

𝑔33
𝑔24

, (5)

�̃� = 𝜇− 𝜇0(1 + 𝜏), (6)

where 𝜇0 is some positive constant, 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐

is the relative temperature, 𝑇𝑐 is the critical tempera-
ture. We will call 𝑀 the effective chemical potential.

The quantity 𝑊 (0) is expressed via parameters of
the potential (1) as follows:

𝑊 (0) = Φ(𝑟)(0) [𝐵 − 1 + 𝜒0 + 𝜏(𝜒0 +𝐴𝛾)], (7)

where

𝐵 = 2𝛾3𝑒(1−𝛾)𝑅0/𝛼,

𝐴𝛾 = 𝐴𝑒(𝑛0−𝛾)𝑅0/𝛼 (𝛾/𝑛0)
3
,

and Φ(𝑟)(0) is the Fourier transform of the repulsive
part of the potential at |k| = 0

Φ(𝑟)(0) = 𝜀𝐶𝐻8𝜋e𝛾𝑅0/𝛼

(︂
𝛼

𝛾𝑅0

)︂3
.

The parameter 𝜒0 is used in [9] to single out a con-
tribution, in the Fourier transform, of the potential
that is treated as a reference system defined in the
reciprocal space, and is selected as 𝜒0 = 0.07 [9].

The coefficients 𝑔𝑛 are given by the formulas:

𝑔0 = ln𝑇0, 𝑔1 = 𝑇1/𝑇0, 𝑔2 = 𝑇2/𝑇0 − 𝑔21 ,

𝑔3 = 𝑇3/𝑇0 − 𝑔31 − 3𝑔1𝑔2,

𝑔4 = 𝑇4/𝑇0 − 𝑔41 − 6𝑔21𝑔2 − 4𝑔1𝑔3 − 3𝑔22 ,

𝑎4 = −𝑔4,

(8)
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where 𝑇𝑛(𝑝, 𝛼
*) are the following special functions:

𝑇𝑛(𝑝, 𝛼
*) =

∞∑︁
𝑚=0

(𝛼*)𝑚

𝑚!
𝑚𝑛e−𝑝𝑚2

. (9)

Here, 𝛼* = 𝑣𝑒𝛽𝑐𝜇0 , and the parameter 𝑝 has the form

𝑝 =
𝛽𝑐

2
Φ(𝑟)(0)[𝜒0 +𝐴𝛾 ]. (10)

The quantity 𝛽𝑐 denotes the critical value of the
inverse temperature. In [9] it was found that

𝜀𝛽𝑐 = 0.200,
𝑘B𝑇𝑐

𝜀
= 4.995.

We also use the reduced temperature defined as 𝑇 * =
= 𝑘B𝑇/𝜀, and, thus, its critical value 𝑇 *

𝑐 = 4.995.
Since 𝑝 is independent of the temperature, the coef-

ficients 𝑔𝑛 are also independent of temperature. The
numerical values for other coefficients used in this
paper are the same as those in [9, Eqs. (5), (23),
and (24)]:

𝜒0 = 0.07, 𝛾 = 1.65,

𝑛0 = 1.521, 𝑅0/𝛼 = 2.9544,

𝛼* = 5.0 𝑝 = 1.0.

(11)

The quantity 𝑑 entering equations (4) and (5) is a
function of the temperature

𝑑 = 𝑔2 −
1

2

𝑔23
𝑔4

− 1

𝛽𝑊 (0)
. (12)

The condition 𝑑 = 0 defines the critical tempera-
ture [9]

𝑘B𝑇𝑐 =

(︂
𝑔2 −

1

2

𝑔23
𝑔4

)︂
(𝐵 − 1 + 𝜒0)Φ

(𝑟)(0). (13)

The function 𝐸𝜇(𝑀,𝑇 ) from the equation (4) is
provided by

𝐸𝜇(𝑀,𝑇 ) = − ln(2𝜋𝛽𝑊 (0))

2𝑁𝑣
+𝑔0−

𝛽𝑊 (0)

2

(︂
�̃�

𝑊 (0)

)︂2
−

−𝑔3
𝑔4

𝑀 − 𝑔23
2𝑔24

𝑑− 1

24

𝑔43
𝑔34

. (14)

Here the quantity 𝑁𝑣 defines the number of cubic cells
in volume 𝑉 for the initial model. In the thermody-
namic limit, 𝑁𝑣 → ∞, and thus, the first term can
be neglected. The term �̃�/𝑊 (0) can be expressed in

terms of 𝑀 using (5). The temperature and the in-
verse temperature can always be expressed in terms of
the reduced temperature and a corresponding critical
value:

𝑇 = 𝑇𝑐(1 + 𝜏), 𝛽 = 𝛽𝑐(1 + 𝜏)−1.

The quantity 𝜌0 is a solution to the following cubic
equation:

𝑀 + 𝑑𝜌0 −
𝑎4
6

𝜌30 = 0. (15)

For any 𝜏 > 0, the latter equation has one real root

𝜌0 =

(︂
−3𝑀

𝑔4
+
√︀
𝑄𝑡

)︂1/3
−

(︂
3𝑀

𝑔4
+
√︀
𝑄𝑡

)︂1/3
, (16)

where

𝑄𝑡 =

(︂
2𝑑

𝑔4

)︂3
+

(︂
−3𝑀

𝑔4

)︂2
, 𝑔4 < 0. (17)

Thus, 𝜌0 is a function of the temperature and the
chemical potential.

Let us introduce the reduced pressure

𝑃 * ≡ 𝑃𝑣

𝜀
. (18)

Considering the equation of state (4), 𝑃 * is explicitly
written as

𝑃 * = (1 + 𝜏)𝑇 *
𝑐

[︂
𝐸𝜇(𝑀,𝑇 )+

+𝑀𝜌0 +
1

2
𝑑𝜌20 −

𝑎4
24

𝜌40

]︂
. (19)

This equation can be easily represented graphically.
Figure 1 illustrates the relationship between the re-
duced pressure 𝑃 * and the effective chemical poten-
tial 𝑀 for various values of the relative temperature
𝜏 , at and above the critical temperature. At the crit-
ical point 𝑀 = 0, 𝜏 = 0, 𝑃 *

𝑐 = 1.606.

3.2. Pressure as a function
of the temperature and density

In this work, by density, we mean the particle number
density 𝜌 = ⟨𝑁⟩/𝑉 . In the framework of the grand
canonical ensemble the average number of particles
⟨𝑁⟩ is found by

⟨𝑁⟩ =
(︂
𝜕 ln Ξ

𝜕𝛽𝜇

)︂
𝑇,𝑉

= 𝑉

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇,𝑉

.
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a

b
Fig. 1. Isotherms of the reduced pressure 𝑃 * as a function (a)
of the density 𝜌*, and (b) of the effective chemical potential 𝑀
at 𝑇 ≥ 𝑇𝑐 represented by black lines. Thick grey lines on both
figures correspond to isotherms of pressure at 𝑇 < 𝑇𝑐 based on
the results taken from [9]

From this equation it follows
⟨𝑁⟩
𝑉

=
⟨𝑁⟩
𝑣𝑁𝑣

=

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇,𝑉

and, thus,

𝜌* ≡ ⟨𝑁⟩
𝑉

𝑣 = 𝑣

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇,𝑉

=

(︂
𝜕(𝑃𝑣𝛽)

𝜕(𝛽𝜇)

)︂
𝑇,𝑉

. (20)

The quantity 𝜌*, on the one hand, is the reduced
particle number density, which is the notation com-
monly used in the literature on simple fluids [17]. In
the context of the cell model, on the other hand, it
is the average number of particles per cell 1. Taking
explicit derivatives, we arrive at

𝜌* = 𝜌*𝑐 −𝑀 +
𝜌0

𝛽𝑊 (0)
. (21)

The quantity 𝜌*𝑐 in the equation (21) is the critical
density [9]

𝜌*𝑐 = 𝑔1 −
𝑔3
𝑔4

(︂
𝑔2 −

1

2

𝑔23
𝑔4

)︂
− 1

6

𝑔33
𝑔24

=

= 𝑔1 −
𝑔2𝑔3
𝑔4

+
𝑔33
3𝑔24

. (22)

Its numerical value for parameters (11) is

𝜌*𝑐 = 0.978.

Equations (21) and (4) jointly define a parametric
relationship between pressure and density, with 𝑀
serving as the parameter. Figure 1 shows the depen-
dence of the reduced pressure 𝑃 * on the density 𝜌*

for various values of the reduced temperature 𝜏 , at
and above the critical temperature.

This dependence can also be expressed explic-
itly. To achieve this, we combine the equations (21)
and (15) to express the effective chemical potential
𝑀 as a function of the density and temperature:

�̄� =
𝜌𝑛

𝛽𝑊 (0)
− (𝜌* − 𝜌*𝑐), (23)

where

𝜌𝑛 = −2

(︂
𝑔23 − 2𝑔2𝑔4

𝑔24

)︂1/2
cos

(︁𝛼𝑛

3
+

𝜋

3

)︁
,

𝛼𝑛 = arccos

[︂(︂
− 9𝑔44

(2𝑔2𝑔4 − 𝑔23)
3

)︂1/2
(𝜌*𝑐 − 𝜌*)

]︂
.

(24)

The notation �̄� represents the effective chemical po-
tential as a function of the temperature and density
𝜌*, while 𝑀 represents the effective chemical poten-
tial as a function of the temperature and chemical
potential 𝜇.

1 In our previous works, we denoted the reduced number den-
sity by �̄�. In the current work, we switch to more common
notation 𝜌*.
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At 𝑇 > 𝑇𝑐, the equation of state of a cell fluid
model in terms of the density and the temperature
has the following form:

𝑃𝑣𝛽 = 𝐸𝜌(𝜌
*, 𝑇 ) + �̄�𝜌𝑛 +

𝑑

2
𝜌2𝑛 − 𝑎4

24
𝜌4𝑛. (25)

The quantity 𝐸𝜌(𝜌
*, 𝑇 ) in (25) is the same as func-

tion 𝐸𝜇(𝑀,𝑇 ) (14) rewritten in terms of density and
temperature with regard for the expression (23)

𝐸𝜌(𝜌
*, 𝑇 ) = − ln(2𝜋𝛽𝑊 (0))

2𝑁𝑣
+ 𝑔0 −

− 𝛽𝑊 (0)

2

(︂
�̄� − 𝑔1 +

𝑔3
𝑔4

𝑑+
𝑔33
6𝑔24

)︂2
−

− 𝑔3
𝑔4

�̄� − 𝑔23
2𝑔24

𝑑− 1

24

𝑔43
𝑔34

. (26)

For the reduced pressure, we write

𝑃 * = (1 + 𝜏)𝑇 *
𝑐

[︂
𝐸𝜌(𝜌

*, 𝑇 )+

+ �̄�𝜌𝑛 +
𝑑

2
𝜌2𝑛 − 𝑎4

24
𝜌4𝑛

]︂
. (27)

The equations of state (4) and (25) are derived in
the zero-mode approximation of the 𝜌4-model, which
imposes limits on their applicability. Specifically, in
terms of density, the equations are applicable for
𝜌*min ≤ 𝜌* < 𝜌*max, where 𝜌*min and 𝜌*max are deter-
mined by the parameters 𝛼* and 𝑝. For parameters
given in (11), these values were estimated in [9] as
𝜌*min = 0.009 and 𝜌*max = 1.946.

Figure 1 shows the isotherms for the pressure 𝑃 *

as a function of the density 𝜌* (see Fig. 1, a) and the
effective chemical potential 𝑀 (see Fig. 1, b).

Thus, in this Section, we presented two forms of the
equation of state. The first one expresses the pres-
sure as a function of the temperature and chemical
potential, 𝑃 = 𝑃 (𝑇, 𝜇), and is represented by equiva-
lent Eqs. (4) and (19). The second one expresses the
pressure as a function of the temperature and den-
sity, 𝑃 = 𝑃 (𝑇, 𝜌*), and is represented by equivalent
Eqs. (25) and (27). These equations, together with
the explicit dependence of the density on the temper-
ature and chemical potential, 𝜌* = 𝜌*(𝑇, 𝜇), Eq. (21),
are the basis for the calculation of the thermodynamic
response functions in the next Section 4.

4. Thermodynamic Response Functions

4.1. Isothermal compressibility

The isothermal compressibility is defined by

𝜅𝑇 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇,𝑁

. (28)

Let us perform some transformations to rewrite 𝜅𝑇

into a form that is more suitable for the equation of
state 𝑃 = 𝑃 (𝑇, 𝜇), see (4) and (19):

𝜅𝑇 =
1

𝜌

(︂
𝜕𝜌

𝜕𝑃

)︂
𝑇,𝑁

=
1

𝜌

(𝜕𝜌/𝜕𝜇)𝑇
(𝜕𝑃/𝜕𝜇)𝑇

.

We have omitted the condition of constant 𝑁 in the
last line of the above equation, since we have explicit
dependencies on the temperature and chemical po-
tential for both pressure 𝑃 = 𝑃 (𝑇, 𝜇), Eq. (4), and
density 𝜌 = 𝜌(𝑇, 𝜇), Eq. (21). Applying the Gibbs–
Duhem equation

𝑁d𝜇 = −𝑆d𝑇 + 𝑉 d𝑃, (29)

at 𝑇 = const one has

d𝑃 = 𝜌d𝜇,

or
𝜌 =

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇

. (30)

Substituting this into the last expression for 𝜅𝑇 , one
gets
𝜅𝑇 =

1

𝜌2

(︂
𝜕𝜌

𝜕𝜇

)︂
𝑇

. (31)

Finally, from (30) it follows that(︂
𝜕𝜌

𝜕𝜇

)︂
𝑇

=

(︂
𝜕2𝑃

𝜕𝜇2

)︂
𝑇

, (32)

and ultimately we arrive at the very useful expression
for the isothermal compressibility

𝜅𝑇 =
1

𝜌2

(︂
𝜕2𝑃

𝜕𝜇2

)︂
𝑇

. (33)

Let us introduce the reduced isothermal compres-
sibility
𝜅*
𝑇 ≡ 𝜀𝜅𝑇

𝑣
. (34)

The quantity 𝜅*
𝑇 is dimensionless and is of order unity,

except at the critical point itself, where it is diver-
gent. It is expressed in terms of the reduced quanti-
ties 𝑃 * and 𝜌* as follows:

𝜅*
𝑇 =

𝜀

𝜌*2

(︂
𝜕𝜌*

𝜕𝜇

)︂
𝑇

, (35)
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Fig. 2. The reduced isothermal compressibility 𝜅*
𝑇 as a func-

tion of the density 𝜌* at different values of reduced temperature
𝜏 > 0 (𝑇 > 𝑇𝑐)

𝜅*
𝑇 =

𝜀2

𝜌*2

(︂
𝜕2𝑃 *

𝜕𝜇2

)︂
𝑇

. (36)

Now, either Eq. (19) or Eq. (21) can be used to explic-
itly calculate 𝜅*

𝑇 , with the result expressed as a func-
tion of the temperature and chemical potential. In
Appendix A, we provide the derivation of the explicit
expression for the isothermal compressibility based
on (35).

If it is preferable to use the equation of state in the
form 𝑃 = 𝑃 (𝑇, 𝜌*), see (25) and (27), then the most
suitable expressions for the isothermal compressibility
are
𝜅𝑇 =

1

𝜌*

(︂
𝜕𝑃

𝜕𝜌*

)︂−1

𝑇

, (37)

and
𝜅*
𝑇 =

1

𝜌*

(︂
𝜕𝑃 *

𝜕𝜌*

)︂−1

𝑇

. (38)

Figure 2 illustrates the dependence of the com-
pressibility 𝜅*

𝑇 on the density 𝜌* for various values of
temperature above the critical one. The dependence
of 𝜅*

𝑇 on the effective chemical potential 𝑀 is dis-
played in Fig. 3.

4.2. Thermal pressure coefficient

The thermal pressure coefficient is defined by

𝛽𝑉 =

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉,𝑁

. (39)

We rewrite 𝛽𝑉 in a form that is suitable for the equa-
tion of state 𝑃 = 𝑃 (𝑇, 𝜇), see (4) and (19),

𝛽𝑉 =

(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

+

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇

(︂
𝜕𝜇

𝜕𝑇

)︂
𝑉,𝑁

. (40)

Applying the cyclic relation(︂
𝜕𝜇

𝜕𝑇

)︂
𝑉,𝑁

(︂
𝜕𝑇

𝜕𝑉

)︂
𝜇,𝑁

(︂
𝜕𝑉

𝜕𝜇

)︂
𝑇,𝑁

= −1,

we obtain(︂
𝜕𝜇

𝜕𝑇

)︂
𝑉,𝑁

= −
(︂
𝜕𝑉

𝜕𝑇

)︂
𝜇,𝑁

(︂
𝜕𝑉

𝜕𝜇

)︂−1

𝑇,𝑁

=

= −
(︂
𝜕𝜌*

𝜕𝑇

)︂
𝜇

(︂
𝜕𝜌*

𝜕𝜇

)︂−1

𝑇

.

Substituting this result into the formula for 𝛽𝑉 , we
arrive at the final expression for the thermal pressure
coefficient

𝛽𝑉 =

(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

−
(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇

(︂
𝜕𝜌*

𝜕𝑇

)︂
𝜇

(︂
𝜕𝜌*

𝜕𝜇

)︂−1

𝑇

, (41)

which 2 is easily calculated based on Eqs. (4) and
(21). It is also worth noting that the first contribution
to 𝛽𝑉 is essentially the entropy per volume, 𝑆/𝑉 =
= (𝜕𝑃/𝜕𝑇 )𝜇.

We introduce the reduced thermal pressure coeffi-
cient by

𝛽*
𝑉 =

𝑣

𝑘B
𝛽𝑉 . (42)

It is expressed in terms of reduced quantities as fol-
lows:

𝛽*
𝑉 =

1

𝑇 *
𝑐

[︃(︂
𝜕𝑃 *

𝜕𝜏

)︂
𝜇

−
(︂
𝜕𝑃 *

𝜕𝜇

)︂
𝑇

(︂
𝜕𝜌*

𝜕𝜏

)︂
𝜇

(︂
𝜕𝜌*

𝜕𝜇

)︂−1

𝑇

]︃
. (43)

If it is preferable to use the equation of state in the
form 𝑃 = 𝑃 (𝑇, 𝜌*), see (25) and (27), then the most
suitable expressions for the thermal pressure coeffi-
cient follow immediately from the definition (39)

𝛽𝑉 =

(︂
𝜕𝑃

𝜕𝑇

)︂
𝜌

(44)

and
𝛽*
𝑉 =

1

𝑇 *
𝑐

(︂
𝜕𝑃 *

𝜕𝜏

)︂
𝜌

. (45)

2 Compare this equation for 𝛽𝑉 with Eq. (17) from [11]
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a b
Fig. 3. The reduced isothermal compressibility 𝜅*

𝑇 as a function of the effective chemical potential 𝑀 for different
temperatures 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐 at 𝑇 > 𝑇𝑐. The two figures differ in the scale of 𝑀 . Part (a) covers a wider range of
𝑀 . Part (b) focuses on a range of 𝑀 around its critical value 0

Explicit calculation for 𝛽*
𝑉 is presented in Ap-

pendix A.
Figure 4 shows the dependence of the pressure co-

efficient 𝛽*
𝑉 on the density 𝜌* for various values of

the temperature above the critical one. It is worth to
note that the temperature dependence is very weak
in this case, and multiple isotherms collapse onto the
same line and are indistinguishable on the scale of the
figure. This is not a surprised behavior, as similar one
is observed for the thermal pressure coefficient of the
Lennard-Jones fluid [2] as well. The dependence of 𝛽*

𝑉

on the effective chemical potential 𝑀 is displayed in
Fig. 5. The dependence of 𝛽*

𝑉 on the relative temper-
ature 𝜏 is displayed in Fig. 6 for a few values of the
density.

4.3. Thermal expansion coefficient

The thermal expansion coefficient is defined by

𝛼𝑃 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃,𝑁

. (46)

We rewrite 𝛼𝑃 into a form suitable for the equation
of state 𝑃 = 𝑃 (𝑇, 𝜇), see (4) and (19)

𝛼𝑃 = −1

𝜌

(︂
𝜕𝜌

𝜕𝑇

)︂
𝑃,𝑁

, (47)

Fig. 4. The reduced thermal pressure coefficient 𝛽*
𝑉 as a func-

tion of the density 𝜌* at different values of relative temperature
𝜏 > 0 (𝑇 > 𝑇𝑐). Multiple isotherms collapsing onto the same
line, making them indistinguishable at the scale of the figure

𝛼𝑃 = −1

𝜌

(︂
𝜕𝜌

𝜕𝑇

)︂
𝜇

− 1

𝜌

(︂
𝜕𝜌

𝜕𝜇

)︂
𝑇

(︂
𝜕𝜇

𝜕𝑇

)︂
𝑃,𝑁

. (48)

Applying the cyclic relation(︂
𝜕𝜇

𝜕𝑇

)︂
𝑃,𝑁

(︂
𝜕𝑇

𝜕𝑃

)︂
𝜇,𝑁

(︂
𝜕𝑃

𝜕𝜇

)︂
𝑇,𝑁

= −1,

ISSN 2071-0186. Ukr. J. Phys. 2024. Vol. 69, No. 12 925



O.A. Dobush, M.P. Kozlovskii, R.V. Romanik et al.

Fig. 5. The reduced thermal pressure coefficient 𝛽*
𝑉 as a func-

tion of the effective chemical potential 𝑀 at different values of
relative temperature 𝜏 > 0 (𝑇 > 𝑇𝑐)

Fig. 6. The reduced thermal pressure coefficient 𝛽*
𝑉 as a func-

tion of the relative temperature 𝜏 at different values of the
density 𝜌*

we get

(︂
𝜕𝜇

𝜕𝑇

)︂
𝑃,𝑁

= −
(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

(︂
𝜕𝑃

𝜕𝜇

)︂−1

𝑇

.

Fig. 7. The reduced thermal expansion coefficient 𝛼*
𝑃 as a

function of the density 𝜌* at different values of relative tem-
perature 𝜏 > 0 (𝑇 > 𝑇𝑐)

Substituting the result into the expression for 𝛼𝑃 , we
arrive at the final formula for the thermal expansion
coefficient

𝛼𝑃 = −1

𝜌

(︂
𝜕𝜌

𝜕𝑇

)︂
𝜇

+
1

𝜌

(︂
𝜕𝜌

𝜕𝜇

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

(︂
𝜕𝑃

𝜕𝜇

)︂−1

𝑇

, (49)

which 3 is readily calculated based on Eqs. (4)
and (21).

We introduce the reduced thermal expansion coef-
ficient by

𝛼*
𝑃 =

𝜀

𝑘B
𝛼𝑃 . (50)

It is expressed in terms of reduced quantities as fol-
lows:

𝛼*
𝑃 =

1

𝑇 *
𝑐 𝜌

*

[︃
−
(︂
𝜕𝜌*

𝜕𝜏

)︂
𝜇

+

+

(︂
𝜕𝜌*

𝜕𝜇

)︂
𝑇

(︂
𝜕𝑃 *

𝜕𝜏

)︂
𝜇

(︂
𝜕𝑃 *

𝜕𝜇

)︂−1

𝑇

]︃
. (51)

If it is preferable to use the equation of state in the
form 𝑃 = 𝑃 (𝑇, 𝜌*), see (25) and (27), then we need

3 Compare this equation for 𝛼𝑃 with Eqs.(57)-(58) from [11].
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a b
Fig. 8. The reduced thermal expansion coefficient 𝛼*

𝑃 as a function of the effective chemical potential 𝑀 for different
temperatures 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐 at 𝑇 > 𝑇𝑐. The two figures differ on the scale of 𝑀 . Part (a) covers a wider range of 𝑀 .
Part (b) focuses on a range of 𝑀 around its critical value 0

to rewrite the definition for 𝛼𝑃 accordingly. We start
with (47) and apply the cyclic relation(︂
𝜕𝜌

𝜕𝑇

)︂
𝑃

= −
(︂
𝜕𝑃

𝜕𝑇

)︂
𝜌

(︂
𝜕𝑃

𝜕𝜌

)︂−1

𝑇

(52)

to get, for 𝛼𝑃 ,

𝛼𝑃 =
1

𝜌

(︂
𝜕𝑃

𝜕𝑇

)︂
𝜌

(︂
𝜕𝑃

𝜕𝜌

)︂−1

𝑇

, (53)

or, for 𝛼*
𝑃 ,

𝛼*
𝑃 =

1

𝜌*𝑇 *
𝑐

(︂
𝜕𝑃 *

𝜕𝜏

)︂
𝜌

(︂
𝜕𝑃 *

𝜕𝜌*

)︂−1

𝑇

. (54)

Figure 7 shows the dependence of the reduced ther-
mal expansion coefficient 𝛼*

𝑃 on the density 𝜌* for
various values of the temperature above the critical
one. The dependence of 𝛼*

𝑃 on the effective chemical
potential 𝑀 is displayed in Fig. 8.

4.4. Relation between response functions

The following thermodynamic identity holds between
the calculated response functions:

𝛼𝑃

𝜅𝑇𝛽𝑉
=

𝛼*
𝑃

𝜅*
𝑇𝛽

*
𝑉

= 1, (55)

which is easily derived from the cyclic relation be-
tween 𝑃 , 𝑉 and 𝑇 . In our case, this equality is ex-
actly reproduced by substituting explicit expressions
for 𝜅𝑇 , 𝛼𝑃 , and 𝛽𝑉 obtained from the equation of
state (4) (or (25)).

5. Conclusions

Thermodynamic response functions, namely the
isothermal compressibility, the thermal pressure co-
efficient, and the thermal expansion coefficient, are
calculated for a many-particle system interacting
through a modified Morse potential. The starting
point for these calculations are the equation of state
obtained for the cell fluid model within the frame-
work of the grand canonical ensemble in our previous
work [9]. The dependencies of the calculated response
functions on the density and the effective chemical
potential are illustrated graphically. The thermody-
namic identity (55) among these quantities is veri-
fied to confirm the self-consistency of the performed
calculations.

This work was supported by the National Re-
search Foundation of Ukraine under the project
No. 2023.03/0201.
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APPENDIX A.
Explicit Expressions for Derivatives

This Appendix contains two examples of explicit derivation of
response functions.

First, we provide an explicit example of differentiating the
equation of state, namely (27), by deriving the expression for
the thermal pressure coefficient 𝛽*

𝑉 from (45). For the quantity
�̄� from Eq. (23) one has(︂
𝜕�̄�

𝜕𝜏

)︂
𝜌*

=
𝑘B𝑇𝑐𝜌𝑛

𝑊 (0)

1− 𝜔0

1 + 𝜏𝜔0
, (A.1)

where

𝜔0 =
𝜒0 +𝐴𝛾

𝐵 − 1 + 𝜒0
.

For 𝑑 from (12) one has

𝜕𝑑

𝜕𝜏
= −

𝑘B𝑇𝑐

𝑊 (0)

1− 𝜔0

1 + 𝜏𝜔0
. (A.2)

While calculating both derivatives, we take into account

𝜕

𝜕𝜏
[𝛽𝑊 (0)] = −

𝛽𝑐Φ(𝑟)(0)

(1 + 𝜏)2
(𝐵 − 1−𝐴𝛾). (A.3)

The derivative of the quantity 𝐸𝜌 from (26) with respect to
temperature 𝜏 is

𝜕𝐸𝜌

𝜕𝜏
= −

1

2

(︂
�̄� − 𝑔1 +

𝑔3

𝑔4
𝑑+

𝑔33
6𝑔24

)︂2
𝜕𝛽𝑊 (0)

𝜕𝜏
−

−𝛽𝑊 (0)

(︂
�̄� − 𝑔1 +

𝑔3

𝑔4
𝑑+

𝑔33
6𝑔24

)︂
×

×
(︂
𝜕�̄�

𝜕𝜏
+

𝑔3

𝑔4

𝜕𝑑

𝜕𝜏

)︂
−

𝑔3

𝑔4

𝜕�̄�

𝜕𝜏
−

𝑔23
2𝑔24

𝜕𝑑

𝜕𝜏
. (A.4)

Collecting these all formulas together, we can explicitly calcu-
late 𝛽*

𝑉 from (45)

𝛽*
𝑉 = 𝐸𝜌(𝜌

*, 𝑇 ) + �̄�𝜌𝑛 +
𝑑

2
𝜌2𝑛 −

𝑎4

24
𝜌4𝑛 +

+(1 + 𝜏)

(︂
𝜕𝐸𝜌

𝜕𝜏
+

𝜕�̄�

𝜕𝜏
𝜌𝑛 +

𝜌2𝑛
2

𝜕𝑑

𝜕𝜏

)︂
. (A.5)

Substituting the expressions for derivatives and grouping sim-
ilar terms, one finally arrives at

𝛽*
𝑉 = 𝐸𝜌(𝜌

*, 𝑇 ) + �̄�𝜌𝑛 +
𝑑

2
𝜌2𝑛 −

𝑎4

24
𝜌4𝑛 +

+

{︂
𝛽

2
Φ(𝑟)(0)[𝐵 − 1−𝐴𝛾 ]𝐺

2
𝑀 +

+
1

𝛽𝑊 (0)

1− 𝜔0

1 + 𝜏𝜔0

[︂
𝑔23
2𝑔24

+
𝜌2𝑛
2

−
𝑔3

𝑔4
𝜌𝑛 +

+ 𝛽𝑊 (0)𝐺𝑀

(︂
𝑔3

𝑔4
− 𝜌𝑛

)︂]︂}︂
, (A.6)

where we introduced notation

𝐺𝑀 = �̄� − 𝑔1 +
𝑔3

𝑔4
𝑑+

1

6

𝑔33
𝑔24

.

Second, we derive the explicit expression for the isothermal
compressibility 𝜅*

𝑇 using (36), taking the density 𝜌* from (21).
For the effective chemical potential 𝑀 from (5) one has(︂
𝜕𝑀

𝜕𝜇

)︂
𝑇

=
1

𝑊 (0)
. (A.7)

For the quantity 𝜌0 from (16) one has(︂
𝜕𝜌0

𝜕𝜇

)︂
𝑇

=
1

𝑔4𝑊 (0)
√
𝑄𝑡

[︃
𝜌0 − 2

(︂
−
3𝑀

𝑔4
+

√︀
𝑄𝑡

)︂1
3

]︃
. (A.8)

Using these two formulas we obtain the isothermal compress-
ibility in explicit form

𝜅*
𝑇 =

𝜖

𝜌*2𝑊 (0)

{︃
− 1 +

𝑄
−1/2
𝑡

𝛽𝑊 (0)𝑔4
×

×
[︃
𝜌0 − 2

(︂
−
3𝑀

𝑔4
+

√︀
𝑄𝑡

)︂1
3

]︃}︃
. (A.9)
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ТЕРМОДИНАМIЧНI ФУНКЦIЇ
ВIДГУКУ КОМIРКОВОЇ МОДЕЛI ПЛИНУ

В роботi проведено розрахунки термодинамiчних функцiй
вiдгуку – iзотермiчної стисливостi, термiчного коефiцiєнта
тиску та термiчного коефiцiєнта розширення – для систе-
ми частинок, якi взаємодiють через модифiкований потен-
цiал Морзе. Цi розрахунки проводились виходячи з рiвня-
ння стану, отриманого в попереднiй роботi для комiркової
моделi плину в формалiзмi великого канонiчного ансамблю.
Залежностi отриманих величин вiд густини i ефективного
хiмiчного потенцiалу представлено графiчно.

Ключ о в i с л о в а: комiркова модель, потенцiал Морзе,
термодинамiчнi функцiї вiдгуку.
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