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INHOMOGENEITY OF THE IDEAL
GAS OF A FINITE NUMBER OF PARTICLES
WITH ANGULAR MOMENTUM CONSERVATION

We continue to study various aspects of the behavior of a classical ideal gas in a stationary
axisymmetric container. The symmetry of the vessel leads to the conservation of the gas’s
angular momentum and, hence, the state of gas rotation. We consider the case of a nonrotating
two-dimensional gas of a finite number of colliding particles. In this case, the gas statistical
distributions differ from the classical ones found in the nineteenth century. We will show that
the filling of the axisymmetric vessel with a nonrotating gas is not uniform and provide the
exact spatial distribution of gas particles. This previously unknown distribution depends on
all the particle masses and is found explicitly. The absence of a rotation in gas layers is
shown through the investigation of the distributions of the tangential components of particle
momenta. We also show that, for any number of particles in a container, the behavior of
a massive enough particle may be unusual. The analytic results are confirmed by simple
numerical experiments.
K e yw o r d s: ideal gas, finite number of particles, statistical distribution, angular momentum,
law of conservation, round vessel.

1. Introduction
An ideal gas of colliding particles inside a stationary
vessel is a classical nonlinear model system. Usual-
ly, the limiting case of an infinitely large number of
particles 𝑁 → ∞ and an infinitely large vessel vol-
ume 𝑉 → ∞ with the finite concentration of parti-
cles 𝑛 = 𝑁/𝑉 is considered. For the specific insulated
vessel with invariable shape, the gas’s total energy
is considered to be the only conserved quantity. The
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momentum and angular momentum are generally not
conserved upon collisions of the gas particles with the
walls of the container. A number of classical results
[1–5] are related to this case, such as the Boltzmann
energy distribution 𝑝(𝐸) ∼ 𝑒−

𝐸
𝑘𝑇 , the Maxwell dis-

tribution of particle velocities, etc. A theorem about
the uniform distribution of the energy over the de-
grees of freedom [6, 7] was proved under some as-
sumptions. The exact limits of its applicability are
still being debated [8,9]. This case is the most deeply
studied, but still there are new interesting results re-
lated to it [10, 11].

There are several factors that can lead to the es-
tablishment of distributions that differ from the stan-
dard ideal gas distributions. For example, the gas
may have other conserved quantities, not only the
energy. The distribution for the general case, when
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the total energy, momentum, and angular momen-
tum of particles are conserved upon all collisions, was
proposed by Maxwell in [12]. In the case of gas rota-
tion, this distribution contains coordinate-dependent
expressions added to the potential energy in order
to account for the effect of centrifugal forces. In the
general case, the logarithm of the distribution func-
tion is proportional not only to the energy, but to the
linear combination of all additive conserved quanti-
ties [13]. A gas with an infinite number of degrees
of freedom in the case of conservation of the angu-
lar momentum, as well as its generalizations to the
relativistic and quantum cases, was considered in pa-
pers [14–16]. The need to consider the conservation
of angular momentum may arise in a variety of areas
from giant rotating molecular clouds in astronomy
[17] to rotation and vortices in quantum gases [18],
which play an important role in macroscopic quan-
tum phenomena.

When an ideal gas is placed in a vessel, it is usu-
ally assumed that its statistical distributions are in-
dependent of the vessel’s shape. However, in contain-
ers with axial symmetry, a stationary circular gas
flow [19, 20] is possible. This is a consequence of the
fact that, due to the boundary symmetry, the con-
servation of angular momentum is not violated upon
collisions of the particles with the vessel walls. The
difference between the round vessel and all the oth-
ers for the gas of noncolliding particles was noticed
by Poincare [21]. Such a gas does not evenly fill the
round vessel. In the general case, the shape of the
vessel can significantly affect the equation of state of
the gas of noncolliding particles [22].

Another factor affecting the gas distributions is the
number of gas particles and, accordingly, the system’s
total number of degrees of freedom (DoF number). In
the usual limiting case of an infinite number of degrees
of freedom, the total energy of the system is infinitely
large, and there is a nonzero probability for a particle
or some subsystem to have any arbitrarily large en-
ergy. An essentially different possible case is an ideal
gas of a finite number of particles that has a finite
DoF number [23, 24]. In this case, the energy of an
entire system is finite, and a particle or a subsystem
cannot have its energy higher than the total system
energy. Therefore, their velocity and energy distribu-
tions proceed only to some finite value, and then they
are exactly equal to zero. For a two-dimensional gas
of a finite number of particles, Boltzmann, in his clas-

sical paper [2], obtained the particle energy distribu-
tion 𝑝(𝑁)(𝐸) = (𝑁 − 1) (𝐸tot−𝐸)𝑁−2

𝐸𝑁−1
tot

for 𝐸 ≤ 𝐸tot and

𝑝(𝑁)(𝐸) = 0 for 𝐸 > 𝐸tot, where 𝑁 is the number
of particles in the vessel, and 𝐸tot is their total en-
ergy. This distribution does not depend on the masses
or sizes of particles. All particles have the same dis-
tribution and the same average energy. By passing to
the limit 𝑁 → ∞ and 𝐸tot → ∞ at 𝐸tot/𝑁 = const,
this distribution transfers into the Boltzmann distri-
bution 𝑝Bol(𝐸) = 𝛽𝑒−𝛽𝐸 for an infinite number of
particles. During this limit transfer, the temperature
appears as the value of the ratio 𝐸tot/𝑁 = 1

𝛽 = 𝑘𝑇 . It
is worth to note that, although the concept of tem-
perature is old and well-established, it continues to be
of constant interest. Different ways of introducing the
temperature and new related questions can be found
in the review [25].

The interest in issues related to the finiteness of
the number of degrees of freedom is associated with
an increase in the interest in objects of small or nano-
scale size. In particular, biological machines, such as
monomolecular motors [26,27], whose operating prin-
ciples are currently not fully understood. These indi-
vidual molecules are able to efficiently produce me-
chanical work, acting at the thermal energy level. The
effect of internal degrees of freedom on the transport
properties of molecules is also being actively stud-
ied [28, 29]. For example, the influence of the rota-
tional degrees of freedom of C60 molecules during
their stochastic motion over the surface of graphene
is discussed in paper [28]. Of course, these examples
consider systems with a finite number of degrees of
freedom in contact with the medium. However, for
their understanding, and not only for them, simple
model cases which determine the basic effects and the
main distributions are important. The new distribu-
tion of the energy in such a case was considered in
our paper [20]. Now, we continue to study it, demon-
strating other ideal gas distributions, and the key fea-
ture is the dependence on the masses of particles. De-
spite the fact that a usual nonrotating ideal gas in
a stationary container is considered, these distribu-
tions are new and differ from the well-known classical
results.

2. Gas in a Round Vessel

Let us consider the two-dimensional motion of a finite
number 𝑁 of colliding particles placed in a station-
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Fig. 1. A stationary round vessel of radius 𝑅 contains 𝑁

particles with masses 𝑚𝑖 and radii 𝑟𝑖. The angular momen-
tum of a particle 𝐿𝑖 remaines unchanged after the reflection
at any point of the vessel’s boundary 𝐿′

𝑖 = 𝐿𝑖, due to its
symmetry. Therefore, the total angular momentum of the gas
𝐿tot =

∑︀𝑁
𝑖=1(𝑝𝑦𝑖𝑥𝑖 − 𝑝𝑥𝑖𝑦𝑖) is the integral of motion, whose

presence distinguishes the round (axisymmetric) containers

ary circular container of radius 𝑅. All particles will
be of a round shape with radii 𝑟𝑖 and masses 𝑚𝑖,
generally different. The motion of particles between
collisions will be rectilinear and uniform, and all col-
lisions of particles between themselves and with the
vessel walls are absolutely elastic. Thus, we consider
the classical model of a gas of absolutely rigid disks
that do not interact at a distance, but collide with
each other. The general view of this system is shown
in Fig. 1. Both the case of negligibly small particles,
corresponding to an ordinary ideal gas, and some de-
viations from it, associated with the finiteness of par-
ticle sizes, will be considered. The size of the vessel
𝑅 will be finite since the concentration of particles
should be finite. In a vessel of infinite size, several
particles will forever scatter after a finite number of
collisions.

In elastic collisions of particles with the walls of
a stationary container, the energy of the particle af-
ter a reflection is equal to its energy before the col-
lision, but the momentum of the particle changes at
the reflection. The angular momentum of a particle is
also not conserved in the general case, but the round
vessel is special. The round boundary does not vio-
late the invariance of the system under the rotation
transformation, which is the origin of the angular mo-
mentum conservation. At each of its points, the circu-
lar boundary is locally perpendicular to the direction
to the center of the vessel. For this reason, not only
the momentum modulus, but also its shoulder do not
change upon a reflection (see Fig. 1). Consequently,
the particle’s angular momentum 𝐿′

𝑖 remains equal to
its initial angular momentum 𝐿𝑖 after the reflection at
any boundary point. When particles collide with each

other, the angular momentum is also conserved. As
a result, the quantity 𝐿tot =

∑︀𝑁
𝑖=1(𝑝𝑦𝑖𝑥𝑖 − 𝑝𝑥𝑖𝑦𝑖) re-

mains constant during the evolution, which means the
conservation of the initial state of gas rotation. This
distinguishes a round vessel (axisymmetric vessels in
the 3D case) from all other possible vessels.

Further, we will consider the statistical behavior of
the ideal gas in such a vessel. In order to unambigu-
ously and repeatably determine the gas distributions,
it is necessary to account for all the parameters on
which they depend. In addition to the system param-
eters such as the particle masses, the gas distributions
potentially depend on the values of all valid integrals
of motion. These values are fixed, when the initial
data are chosen. If, when choosing the initial data,
only the total gas energy is taken into account, then
the remaining integrals of motion will receive some
random values. In particular, the gas in a round ves-
sel will gain some random angular momentum. But
the state of gas rotation also affects the gas distri-
butions. Therefore, when choosing the initial data,
the total gas angular momentum 𝐿tot must be pre-
defined. Here, we will consider a nonrotating gas, by
choosing 𝐿tot = 0. Despite the absence of a circular
gas flow, the established gas distributions will still be
different from those in other vessels.

3. Theoretical Consideration

Now, we will describe the theoretical approach used
for the derivation of the required statistical distribu-
tions. We considered the system’s phase space Λ =
= (𝑥1, ..., 𝑥𝑁 , 𝑦1, ..., 𝑦𝑁 , 𝑝𝑥1...𝑝𝑥𝑁 , 𝑝𝑦1, ..., 𝑝𝑦𝑁 ), with
the phase variables being the coordinates and mo-
mentum components of all gas particles. The current
state of the system is represented by a point in this
space. During the evolution, this point fills some sur-
face in the phase space, which is called invariant. The
representing point does not fill all the phase space,
because the phase variables are bound by the laws of
conservation.

The general idea of our theoretical derivation of the
gas distributions is straightforward. We calculate the
filling density of the invariant surface, recalculate it
to another probability density that can be integrated
over the phase variables, and then do the integration
to obtain the distributions of interest. Since the cal-
culations are technically extremely cumbersome, we
will present the results of the key derivation steps,
omitting the details of the intermediate calculations.

28 ISSN 2071-0186. Ukr. J. Phys. 2024. Vol. 69, No. 1



Inhomogeneity of the Ideal Gas

For an insulated ideal gas of identical particles (if
the energy is the only conserved quantity), the filling
density of a constant energy surface is known to be
uniform. In a more general case of different-mass par-
ticles, the filling density is also uniform with respect
to the special measure. This measure is called gra-
dient or ergodic and defines the hypervolume of the
elementary surface part as 𝑑Ω = 𝑑Σ

|grad𝐸| , where 𝑑Σ

is the element’s hypervolume according to the usual
Euclidean measure. For the system under considera-
tion. The invariant surface is not the surface of con-
stant energy, but its intersection with the surface of
constant angular momentum. Its filling density can
be obtained in a similar way to the derivation of the
gradient measure, as follows:

𝑑𝜌Ω =
const 𝑑Σ√︀

|grad𝐸|2 |grad𝐿|2 − (grad𝐸 · grad𝐿)2
. (1)

This is the probability of finding a system in an
elementary hypervolume 𝑑Σ (Euclidean) of a curvi-
linear 2𝐷𝑁 − 2 – dimensional hypersurface. To ob-
tain the required gas distributions, it must be inte-
grated, which can be done in different ways. We rep-
resented the entire phase space as the direct product
of two spaces Λ = Λ1 × Λ2, where Λ1 = (𝑝𝑥𝑁 , 𝑝𝑦𝑁 )
and Λ2 = (𝑥1, ..., 𝑥𝑁 , 𝑦1, ..., 𝑦𝑁 , 𝑝𝑥1...𝑝𝑥𝑁−1,
𝑝𝑦1, ..., 𝑝𝑦𝑁−1). The equations of the invariant sur-
face can be written as 𝑝𝑥𝑁 = 𝑓1(𝑥1, ..., 𝑝𝑦𝑁−1),
𝑝𝑦𝑁 = 𝑓2(𝑥1, ..., 𝑝𝑦𝑁−1), thus expressing the momen-
tum components of the last particle from the laws of
conservation.

In principle, the invariant surface can be orthogo-
nally projected onto the space Λ2 = (𝑥1, ..., 𝑝𝑦𝑁−1),
whose the dimension is equal to the dimension of the
invariant surface. The corresponding projection fill-
ing density 𝑑𝜌4𝑁−2 = 𝑃 (𝑥1, ..., 𝑝𝑦𝑁−1)𝑑𝑥1, ..., 𝑑𝑝𝑦𝑁−1

can be further integrated directly over the phase
variables. To calculate this probability density, we
calculate how the elementary hypervolume of the
invariant surface 𝑑Σ is related to the correspon-
ding hypervolume of its projection onto the space
Λ2. Each of the set of 4𝑁 -dimensional vectors
{𝑑𝑥1, 0, ..., 0}, ..., {0, ..., 0, 𝑑𝑝𝑦𝑁−1, 0} that forms a Λ2

elementary hypervolume 𝑑𝑥1...𝑑𝑝𝑦𝑁−1 is a projec-
tion of the corresponding 4𝑁 vector lying on the in-
variant hypersurface v1 = {𝑑𝑥1, 0, ..., 0,

𝑑𝑓1
𝑑𝑥1

𝑑𝑥1, 0, ...,
𝑑𝑓2
𝑑𝑥1

𝑑𝑥1}, ..., v4𝑁−2 = {0, ..., 𝑑𝑓1
𝑑𝑝𝑦𝑁−1

𝑑𝑝𝑦𝑁−1, 0, ...,

𝑑𝑝𝑦𝑁−1,
𝑑𝑓2

𝑑𝑝𝑦𝑁−1
𝑑𝑝𝑦𝑁−1}. The volume of an elementa-

ry parallelepiped spanned by the vectors v1...v4𝑁−2

can be calculated as their vector product by adding,
to them, one more vector grad𝐸 normal to all the
others. We get

𝑃 (𝑥1, ..., 𝑝𝑦𝑁−1) =
|v1 × ...× v4𝑁−2 × grad𝐸|

|grad𝐸|
×

× const√︀
|grad𝐸|2 |grad𝐿|2 − (grad𝐸 · grad𝐿)2

. (2)

This is a general expression for the proba-
bility density that the coordinates of gas par-
ticles will be 𝑥1...𝑥𝑁 , 𝑦1, ..., 𝑦𝑁 , and the com-
ponents of the momenta of particles will be
𝑝𝑥1...𝑝𝑥𝑁−1, 𝑝𝑦1...𝑝𝑦𝑁−1. The last two components,
𝑝𝑥𝑁 and 𝑝𝑦𝑁 , are determined by the laws of conser-
vation. Let us substitute the explicit expressions for
the energy and angular momentum into this general
formula. After cumbersome calculations, we have ob-
tained the following explicit form for this probability
density:

𝑃 (𝑥1, .., 𝑝𝑦𝑁−1) =

= const√︃
𝑚𝑁 (𝑥2

𝑁+𝑦2
𝑁 )

(︁
2𝐸tot−

𝑁−1∑︀
𝑖=1

𝑝2
𝑥𝑖

+𝑝2
𝑦𝑖

𝑚𝑖

)︁
−
(︁
𝑁−1∑︀
𝑖=1

(𝑝𝑦𝑖𝑥𝑖−𝑝𝑥𝑖𝑦𝑖)

)︁2 .
(3)

Further, we will integrate this expression over the
phase variables within the appropriate limits to ob-
tain the desired coordinate and momentum distribu-
tions. All of the integration limits will be finite, since
both the gas energy and the vessel size are finite. The
integration limits also account for the conservation of
both integrals of motion, in particular, for the fact
that a particle with mass 𝑚1 and energy 𝐸 cannot be
found at any point inside the vessel. It can only be
located inside the strip of width

2

⎯⎸⎸⎸⎷ (𝐸tot − 𝐸)

(︂
𝑁∑︀
𝑖=2

𝑚𝑖(𝑥2
𝑖 + 𝑦2𝑖 )

)︂
𝑚1𝐸

,

oriented in the direction of the particle’s momen-
tum. Otherwise, the remaining energy will not be
enough for other particles to compensate for the an-
gular momentum of this particle.

4. Gas Distributions in a Round Vessel

Now, we will consider the distributions for an ideal
gas of a finite number of particles in a round ves-
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sel. First, we consider the spatial density of the ves-
sel filling with the gas. Since the gas under consider-
ation consists of different particles, every single par-
ticle possesses its own probability density for its loca-
tion at a distance 𝑟 from the center of the vessel. To
find this probability density for a particle with mass
𝑚1 (any particle may be named the first one), we have
to integrate distribution (3) over all the components
of momenta and the coordinates of all particles, but
the first one. After the integration over the compo-
nents of momenta, we have obtained:

𝑝(𝑟) =

𝑅∫︁
𝑅2=0

...

𝑅∫︁
𝑅𝑁=0

const
𝑁∏︀
𝑖=2

𝑅𝑖√︀
𝑚1𝑟2 + 𝐽(𝑅2, ..., 𝑅𝑁 )

𝑑𝑅2...𝑑𝑅𝑁 .

(4)

Here, 𝐽(𝑅2, ..., 𝑅𝑁 ) =
∑︀𝑁

𝑖=2 𝑚𝑖𝑅
2
𝑖 is the moment of

inertia of other particles, and 𝑅𝑖 =
√︀
𝑥2
𝑖 + 𝑦2𝑖 is the

distance to the center of the vessel; 𝑝(𝑟) is the proba-
bility density to find a particle 𝑚1 in the vessel’s ele-
mentary volume 𝑑𝑥𝑑𝑦 at a distance 𝑟 from the vessel
center. After the further integration over the particle
positions, we have explicitly obtained this probability
density as

𝑝(𝑟) = const

2𝑁−1∑︁
𝑖=1

(−1)𝑖+𝑁 (𝑚1𝑟
2 + 𝐽𝑖)

𝑁− 3
2 , (5)

where 𝐽𝑖 are all possible combinations of terms 𝑚𝑖𝑅
2

in the order of the growing number of such terms,
starting from the empty one. Let us write out the
first several distributions explicitly:

𝑝{𝑁=2}(𝑟) = const [−(𝑚1𝑟
2)

1
2 + (𝑚1𝑟

2 +𝑚2𝑅
2)

1
2 ];

𝑝{𝑁=3}(𝑟) = const [(𝑚1𝑟
2)

3
2 − (𝑚1𝑟

2 +𝑚2𝑅
2)

3
2 −

− (𝑚1𝑟
2 +𝑚3𝑅

2)
3
2 + (𝑚1𝑟

2 +𝑚2𝑅
2 +𝑚3𝑅

2)
3
2 ];

𝑝{𝑁=4}(𝑟) = const [−(𝑚1𝑟
2)

5
2 + (𝑚1𝑟

2 +𝑚2𝑅
2)

5
2 +

+(𝑚1𝑟
2 +𝑚3𝑅

2)
5
2 + (𝑚1𝑟

2 +𝑚4𝑅
2)

5
2 −

− (𝑚1𝑟
2 +𝑚2𝑅

2 +𝑚3𝑅
2)

5
2 −

− (𝑚1𝑟
2 +𝑚2𝑅

2 +𝑚4𝑅
2)

5
2 −

− (𝑚1𝑟
2 +𝑚3𝑅

2 +𝑚4𝑅
2)

5
2 +

+(𝑚1𝑟
2 +𝑚2𝑅

2 +𝑚3𝑅
2 +𝑚4𝑅

2)
5
2 ]. (6)

The plots of the spatial density distribution (5)
and their comparison with the results of the numer-
ical simulation of the particle motion are shown in
Fig. 2. The simulation results are shown by dots,
while continuous curves show theoretical distribu-
tions. It is evident that they are in good agree-
ment. Thus, the spatial distribution of gas particles
in a round vessel is found to be uneven. The most
probable location of a particle is near the center of
the vessel. The heavier the particle, the more uneven
its distribution over the vessel’s volume. In the case
of the gas of particles with the same mass, its spa-
tial distribution remains nonuniform. With the mass
share of a particle tending to zero, its spatial distri-
bution tends to be even. This can be explained the-
oretically, since 𝑝(𝑟) in distribution (5) actually de-
pends on 𝑚1𝑟

2, and, with 𝑚1 being set to zero, the
dependence on 𝑟 disappears. But, for a nonzero-mass
particle, its exact spatial distribution is uneven and
depends on the masses of all gas particles.

The slight difference between simulation and the-
oretical results in Fig. 2 is due to the finiteness of a
particle sizes. This difference is clearly visible in the
case of two enlarged particles in Fig. 2, a, b. The gas
of particles in a simulation is noideal due to their
finite sizes, while the ideal gas of particles of negli-
gible sizes was theoretically considered. But, such a
nonideal gas can also be considered theoretically in a
similar way. In order to account for the particle sizes,
it is only necessary to change the area of integration
in Eq. (4). All phase space regions corresponding to
the intersection of particles must be excluded. The
exact analytic description of such regions is compli-
cated. In the simplest case of two particles in a vessel,
for such spatial distribution corrected for the particle
size 𝑟𝑝, we have obtained:

𝑝{𝑁=2}
𝑟𝑝 (𝑟) = const

(︃ 𝑅−𝑟𝑝∫︁
𝑅2=0

2𝜋𝑅2𝑑𝑅2√︀
𝑚1𝑟2 +𝑚2𝑅2

2

−

−
min[𝑟+2𝑟𝑝,𝑅−𝑟𝑝]∫︁

𝑦2=𝑟−2𝑟𝑝

√
4𝑟2𝑝−(𝑦2−𝑟)2∫︁

𝑥2=−
√

4𝑟2𝑝−(𝑦2−𝑟)2

𝑑𝑥2𝑑𝑦2√︀
𝑚1𝑟2+𝑚2(𝑥2

2 + 𝑦22)

)︃
.

(7)

The first term repeats the all-area integration,
and the second term corrects it for the excluded re-
gion. The limits of integration in the second term are
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Fig. 2. The probability density distributions to find a particle with mass 𝑚 at a distance 𝑟 from the center of the round vessel
of radius 𝑅 = 40. Two particles of radius 𝑟𝑝 = 2.25 with masses (a, b) 𝑚1 = 0.7 (a) and 𝑚2 = 0.3 in the vessel (b). Dots show
the results of the numerical simulation of the particle motion. Continuous curves show distributions (4) (no particle size account
𝑟𝑝 = 0) and Eq. (7). Four particles with masses 𝑚𝑖 ∈ {0.01, 0.09, 0.3, 0.6} and size 𝑟𝑝 = 0.45 (c). Ten particles with masses
𝑚𝑖 ∈ {0.001, 0.004, 0.01, 0.015, 0.03, 0.06, 0.09, 0.14, 0.25, 0.4} and size 𝑟𝑝 = 0.45 (d). It is seen that the smaller the particle mass
share, the more uniformly it is distributed over the volume of the vessel

a bit simplified, which makes this expression not ab-
solutely accurate. But, it is accurate enough to well
agree with the results of a numerical simulation (see
Fig. 2, a, b). The distributions for three or more
finite-size particles can be obtained in a similar way,
with the same difficulty of a cumbersome mathemat-
ical description of the excluded regions.

Thus, the obtained distributions show that the fill-
ing of a round vessel with a gas is not uniform. The
probability of finding a particle in a unit volume de-
pends on all the particles masses and decreases with
the distance from the center of the vessel. For parti-
cles with almost zero mass share, this effect is min-
imal. With an increase in the number of particles in
the vessel, the mass share of each of them decreases,
tending to zero in the limit 𝑁 → ∞. Accordingly, if
there are no supermassive particles, and if the gas’s
angular momentum is zero, then, with an increase
in the number of particles, the gas will approach the
even filling of the round vessel.

Let us now consider the momentum distributions
of particles of the ideal gas in a round vessel. As with
the spatial distributions, the momentum distributions
of particles with different masses are different. The

momentum distribution appears to vary through the
vessel depending on the location of a particle. For this
reason, we will consider the distribution for a single
particle 𝑚1 located at some distance 𝑟 from the cen-
ter of the vessel. The momentum of the particle can
be decomposed into the radial and tangential compo-
nents. The tangential component is of the greatest in-
terest, since it allows one to judge the state of rotation
of the gas layer at a given distance from the center
of the vessel. To find the distribution of this compo-
nent, we calculated the distribution of the momen-
tum component 𝑝1𝑥 of the particle 𝑚1 at the point
𝑥1 = 0, 𝑦1 = 𝑟, integrating distribution (3) over all
the other variables. This distribution is also a distri-
bution of the tangential momentum component at the
given point. All other points at the same distance 𝑟
will share the same distribution due to the system’s
symmetry. In this way, for the tangential component
of the momentum of a particle 𝑚1 located at a dis-
tance 𝑟, we have obtained:

𝑝(𝑟, 𝑝𝜏 ) = 𝐴

𝑅∫︁
𝑅2=𝑅lim 2

...

𝑅∫︁
𝑅𝑁=𝑅lim 𝑁

𝑑𝑅2...𝑑𝑅𝑁×
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×
(︀
(2𝐸tot𝑚1−𝑝2𝜏 )𝐽(𝑅2, ..., 𝑅𝑁 )−𝑚1𝑝

2
𝜏𝑟

2
)︀𝑁−2

𝐽(𝑅2, ..., 𝑅𝑁 )𝑁−3/2

𝑁∏︁
𝑛=2

𝑅𝑛,

(8)

where 𝐴 is the normalization constant, and the inte-
gration limits are:

𝑅lim 𝑘 =

{︃√︁
𝑓(𝑟,𝑝𝜏 ,𝑘)

𝑚𝑘
, 𝑓(𝑟, 𝑝𝜏 , 𝑘) ≥ 0,

0, 𝑓(𝑟, 𝑝𝜏 , 𝑘) < 0
(9)

and 𝑓(𝑟, 𝑝𝜏 , 𝑘) is:

𝑓(𝑟, 𝑝𝜏 , 𝑘) =
𝑚1𝑝

2
𝜏𝑟

2

2𝐸tot𝑚1 − 𝑝2𝜏
−

𝑘−1∑︁
𝑖=2

𝑚𝑖𝑅
2
𝑖 −

𝑁∑︁
𝑗=𝑘+1

𝑚𝑖𝑅
2.

(10)

Due to the structure of the limits of integration, the
resulting function consists of a number of branches
corresponding to the fulfillment of the conditions
within the limits of integration. Its explicit form in
the general case is complicated.

The range of possible values of the particle’s tan-
gential momentum component 𝑝𝜏 is limited by:

𝑝2𝜏 ≤ 2𝐸tot 𝑚1

𝑁∑︀
𝑖=2

𝑚𝑖𝑅
2

𝑚1𝑟2+
𝑁∑︀
𝑖=2

𝑚𝑖𝑅2

. (11)

It depends not only on the total energy 𝐸tot and
particle mass 𝑚1, but it also decreases with the dis-
tance 𝑟 from the center of the vessel. The compar-
ison of distribution (8) with the results of the nu-
merical simulation of the particle motion is shown
at Fig. 3. The theoretical distribution (8) is in good
agreement with the simulation results. It is also seen
that all the distributions of the tangential momentum
component for all particles are symmetric. A parti-
cle with any mass and at any place inside the ves-
sel moves clockwise or counterclockwise with equal
probability. This immediately follows from the prob-
ability density distribution (8), since it depends on
the 𝑝2𝜏 . Hence, the probabilities for 𝑝𝜏 and −𝑝𝜏 are
always equal. Figures 3, a–e show how the three and
ten particle distributions change with the distance
from the center of the vessel. Figure 3, f shows sepa-
rately the distribution of a heavy particle at different
distances. In all cases, the tangential momentum dis-
tributions became narrower with the distance. This

effect is more pronounced for heavy particles and min-
imal for particles with lower masses.

Thus, there is no preferred direction of motion for
each individual gas particle at any place inside the
round vessel. The zero total angular momentum of
the gas corresponds to the total absence of the gas’s
rotation. Nevertheless, the distribution of the tangen-
tial momentum component depends on the position of
the particle, unlike the other vessels. The further the
particle is from the center of the vessel, the narrower
the range of possible values of its tangential momen-
tum. This effect is most pronounced for massive par-
ticles. The closer such a particle is to the boundary,
the smaller its maximum possible tangential momen-
tum. In other words, a heavy particle will never move
along the round boundary at a high speed. Although
such motion is allowed by the law of energy conserva-
tion, it is forbidden for massive particles by the law
of conservation of angular momentum. For particles
with a mass fraction close to zero, this effect is practi-
cally absent. They have almost identical distributions
throughout the vessel.

The energy distributions and mean energies of ideal
gas particles in a round vessel were considered in our
paper [20]. Here, we will consider, in more details,
how the particle energy distributions change with the
growth of the number of particles in the vessel. For a
particle of mass 𝑚1, we have the previously obtained
energy distribution:

𝑃 {𝑁}
𝑚1

(𝐸) = 𝐴

∫︁ ∫︁
Λ

𝑑𝑦*1𝑑𝑅2...𝑑𝑅𝑁

√︁
𝑅2 − 𝑦*21 ×

×
(︀
(𝐸tot − 𝐸)𝐽(𝑅2, ..., 𝑅𝑁 )− 𝐸𝑚1𝑦

*2
1

)︀𝑁− 5
2

𝐽(𝑅2, ..., 𝑅𝑁 )𝑁−2

𝑁∏︁
𝑛=2

𝑅𝑛.

(12)

This energy distribution differs from the corre-
sponding Boltzmann distribution 𝑝

{𝑁}
Bol (𝐸) = (𝑁 −

− 1) (𝐸tot−𝐸)𝑁−2

𝐸𝑁−1
tot

at 𝐸 ≤ 𝐸tot, and 𝑝
{𝑁}
Bol (𝐸) = 0 at

𝐸 > 𝐸tot, where 𝑁 is the number of particles, and
𝐸tot is their total energy. The Boltzmann distribution
does not depend on particle masses. Distribution (12)
depends on all the particle masses and corresponds
to the uneven mean energies of particles. Most essen-
tially, the energy distribution of a particle depends
on the mass share of this particle. If the mass of a
particle 𝑚1 allows the term 𝐸𝑚1𝑦

*2
1 to be neglected
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Fig. 3. Distributions of the tangential component 𝑝𝜏 of the momentum of a particle located at a distance 𝑟 = (5, 20, 38) from the
center of a round vessel of radius 𝑅 = 40. The continuous curves show the theoretical distribution (8), dots show the simulation
results. The case of three particles with masses 𝑚𝑖 ∈ {0.05, 0.15, 0.8}, launched into the vessel (a–c). Ten particles with masses
𝑚𝑖 ∈ {0.001, 0.004, 0.01, 0.015, 0.03, 0.06, 0.09, 0.14, 0.25, 0.4} in the vessel. All distributions are symmetric, showing the absence
of a rotation in the gas layers (d–f). The change of the distribution of a massive particle with the distance from the center of the
vessel (f)

compared to (𝐸tot−𝐸)𝐽(𝑅2, ..., 𝑅𝑁 ), the limit of dis-
tribution (12) coincides with the limit of the Boltz-
mann distribution at 𝑁 → ∞. This will be the case
where the number of particles 𝑁 is large, and the par-
ticle 𝑚1 is not massive, so that its mass share can be
considered close to zero. But if the particle is heavy
enough, it is unclear from Eq. (12) what will be the
result of its integration.

To account for the case of a gas with a massive par-
ticle, we have launched 𝑁 = 100 particles in the ves-
sel, all but one with a random absolute mass within
the range 𝑚𝑖 ∈ (0, 0.01), 𝑖 = 2, ..., 𝑁 , and one heavy
particle with an absolute mass 𝑚1 = 50. Thus, the
mass of the first heavy particle is approximately equal

to the total mass of all the other particles. The size
of this particle 𝑟1 = 5 was also greater than the size
of other particles 𝑟𝑖 = 1. For comparison, the same
system of particles was launched into a rectangular
vessel.

The experimentally obtained energy distributions
for 𝑁 = 100 particles are shown in Fig. 4. The en-
ergy distributions of all particles in the rectangular
vessel, including the massive one, completely coin-
cided with the corresponding Boltzmann distribution
(see Fig. 4, b). In the round vessel, the distributions
of all particles, except for the heavy one, also prac-
tically coincide with the Boltzmann distribution, de-
spite the difference in masses of these particles. At the
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Fig. 4. Distributions of the particle energy in round and rectangular vessels with 𝑁 = 100 particles. The masses of all, but one,
particles were random in the interval 𝑚𝑖 ∈ (0, 0.01), their size was 𝑟𝑖 = 1, 𝑖 = 2, ..., 𝑁 . One more particle had a mass 𝑚1 = 0.5,
approximately equal to the total mass of all the other particles. The radius of this massive particle was 𝑟1 = 5. The distribution
of the energy of such a massive particle in a round vessel is different from the corresponding Boltzmann distribution (shown with
a shifted dotted line), while the distributions of all the other particles practically coincide with it

same time, it is clearly visible that the distribution of
the energy of a heavy particle in a round vessel is
still different from the Boltzmann distribution. This
result confirms the fact that the behavior of a particle
depends on its mass share for any number of gas par-
ticles. If all particles are of comparable masses, then,
with an increase in their number, the mass shares of
all particles will become practically equal to zero. As
a result, particles with equal mass shares have equal
energy distributions and, hence, equal average ener-
gies. They will also fill the round vessel evenly. But,
the behavior of a particle, sufficiently massive to have
a nonzero mass share, will still be different even with
a large number of particles in the vessel.

Thus, as the number of particles increases, the be-
havior of the ideal gas in a round vessel generally
ceases to differ from its behavior in other vessels (only
in the case of nonrotating gas 𝐿tot = 0). Particles
tend to fill the vessel evenly, their momentum com-
ponent distributions cease to depend on their loca-
tion, and their energy distributions tend to the clas-
sical Boltzmann distribution. However, the behavior
of a heavy and possibly large Brownian particle in a
round vessel will still be unusual. The average energy
of such a particle will be below the equipartition level,
and its location will most probably be at the center
of the vessel.

5. Exchange of Energy between Particles

Let us now consider, in more details, the energy
exchange between particles whose average energies
are at unequal levels. When the equilibrium is es-
tablished, the long-time average energy of a particle
does not change in time. Therefore, the amount of

the energy received by a particle in collisions with all
the other particles must, on average, be equal to the
amount lost by each single particle. Usually, such a
balance is achieved with the mean energies of all par-
ticles being equal. But, in a round vessel, the mean
energies of particles are generally different. They are
also spatially distributed unevenly throughout the
vessel. Therefore, it is interesting to find out how
the energy is exchanged during particle collisions in
a round vessel.

At each collision of two particles, some energy Δ𝐸
is transferred from one particle to another one. From
a theoretical point of view, this energy exchange is
related to the subset of the invariant surface corre-
sponding to the tangency of two particles (finite par-
ticle sizes are required). Its theoretical consideration
is complicated; so, we will consider the distributions
of the transferred energy Δ𝐸 numerically. Let, for
example, three particles with masses (𝑚𝑖: 0.5, 0.35,
0.15) be launched into a round vessel. The distribu-
tions of the energy transferred in collisions of the first
particle with the second and third ones are shown
in Fig. 5. Each of these distributions is symmetric,
which means the probability of receiving some energy
in a collision is equal to the probability of giving that
energy away. This also holds true for any pair of par-
ticles in a gas of a larger number of particles. Thus,
there is a detailed equilibrium in the sense that what
energy a particle receives on average from any other
particle, it gives back to it. At the same time, the av-
erage energies of the gas particles may be significantly
different.

To explain how this happens, we note that if any of
the particles has some angular momentum 𝐿, then the
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remaining particles, in the case of a nonrotating gas,
must have a −𝐿 total angular momentum. Hence,
each of the particles moves against some counter-
flow, since the gas of the remaining particles ro-
tates in the opposite direction with respect to the se-
lected particle. This leads to an increase in the share
of frontal collisions for every particle. It leads to a
change in the statistical relationship between the en-
ergy transferred in collisions and the energies of col-
liding particles. Due to a different distribution of col-
lision angles, in a round vessel, the balance of en-
ergy exchange is achieved with the mean particle
energies being different. In this way, it is explained
on a microscopical level how the angular momen-
tum conservation leads to the violation of the energy
equipartition.

6. Discussion

Usually, it is considered that the behavior of an ideal
gas in the vessel does not depend on its shape. The co-
ordinates and momentum components of all gas par-
ticles are considered to be possibly constrained only
by the law of energy conservation. In this paper, we
continue to study the special case of an ideal gas of
particles, whose number is finite, with an additional
quantity being conserved. The conservation of the an-
gular momentum in a circular (axisymmetric) vessels
leads to the gas distributions being different from the
classical ideal gas distributions. These new distribu-
tions can be easily achieved in simple numerical ex-
periments.

Thus, the existence of an additional conserved
quantity may lead to a radical change in the behavior
of a system, especially with a finite DoF number. It is
obvious in the case of a gas with the angular momen-
tum conservation, since it means the conservation of
the state of gas rotation. Regardless of the number of
particles, once the gas inside an axisymmetric vessel
is rotated, it will never stop rotating. In other ves-
sels, such a stationary circular gas flow is impossible.
Even if the angular momentum is zero, the statis-
tical gas distributions are still unusual. The spatial
distribution of particles is uneven, the distributions
of momentum components depend on the particle lo-
cation, and the mean energies of different mass par-
ticles are different. For the same reason, for possible
additional conserved quantities, deviations from the
classical statistical distributions are possible in any

Fig. 5. Exchange of the energy between three particles with
masses (𝑚𝑖: 0.15, 0.35, 0.5). Shown are the distributions of
the energy Δ𝐸 transferred during collisions of the first particle
𝑚1 = 0.15 with the second and third particles. The proba-
bilities of receiving and losing some energy Δ𝐸 appear to be
equal. The mean energies of the particles were (⟨𝐸𝑖⟩: 0.364,
0.328, 0.308)

first-principles simulation. Such simulations are held
in biophysics, physical chemistry, and many other
fields.

7. Results

In this paper, the new statistical distributions are ob-
tained for a nonrotating ideal gas of a finite num-
ber of particles placed inside a stationary round con-
tainer. The spatial distribution of gas particles is
found explicitly as Eq. (5). This distribution depends
on all the masses of gas particles and corresponds to
the uneven filling of the vessel with gas. The prob-
ability of finding a particle in a unit volume inside
the vessel decreases with the distance from its cen-
ter. With an increase in the number of particles, the
vessel filling tends to be even, provided that the mass
shares of all particles tend to be zero.

The distribution of the tangential momentum com-
ponent of a gas particle is found in the form of a defi-
nite integral, Eq. (8). This exact distribution depends
on all masses and on the position of the particle. It
is always symmetric, which corresponds to the total
absence of a gas rotation. For particles with a mass
share close to zero, the spatial dependence of this
momentum distribution practically disappears. Their
energy distributions tend to follow the Boltzmann
one, while particles with nonzero mass will have a
significantly different energy distribution.

Thus, the exact ideal gas distributions in a round
vessel differs from the known classical distributions.
They depend on all the masses of the gas parti-

ISSN 2071-0186. Ukr. J. Phys. 2024. Vol. 69, No. 1 35



D.M. Naplekov, V.V. Yanovsky

cles. With an increase in the number of particles, the
behavior of a gas in a round vessel approaches that
in other vessels, but only in the case of a nonrotating
gas of particles with comparable masses.
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НЕКЛАСИЧНI РОЗПОДIЛИ
IДЕАЛЬНОГО ГАЗУ СКIНЧЕННОЇ
КIЛЬКОСТI ЧАСТИНОК
IЗ ЗБЕРЕЖЕННЯМ МОМЕНТУ IМПУЛЬСУ

У цiй статтi ми продовжуємо вивчати рiзнi аспекти пове-
дiнки класичного iдеального газу в стацiонарному осесиме-
тричному контейнерi. Симетрiя контейнера приводить до
збереження моменту iмпульсу газу, а отже, стану його обер-
тання. Ми розглядаємо випадок двовимiрного газу з нульо-
вим моментом iмпульсу зi скiнченною кiлькiстю частинок.
У цьому випадку статистичнi розподiли газу вiдрiзняються
вiд класичних, знайдених у XIX сторiччi. У роботi показа-
но, що заповнення осесиметричного контейнера таким га-
зом не є рiвномiрним, i отримано у явному виглядi точний
просторовий розподiл частинок газу. Цей ранiше невiдомий
розподiл залежить вiд усiх мас частинок. Вiдсутнiсть обер-
тання шарiв газу показано шляхом дослiдження розподiлу
тангенцiальних компонент iмпульсiв частинок. Також по-
казано, що для будь-якої кiлькостi частинок у контейне-
рi поведiнка досить масивної частинки може бути незви-
чною. Отриманi аналiтичнi результати пiдтверджено про-
стими чисельними експериментами.

Ключ о в i с л о в а: iдеальний газ, скiнченна кiлькiсть ча-
стинок, статистичний розподiл, кутовий момент iмпульсу,
закон збереження, круглий контейнер.
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