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DEGREES OF FREEDOM
IN MODIFIED TELEPARALLEL GRAVITY 1

I discuss the issue of degrees of freedom in modified teleparallel gravity. These theories do
have an extra structure on top of the usual (pseudo)Riemannian manifold, that of a flat par-
allel transport. This structure is absolutely abstract and unpredictable (pure gauge) in GR-
equivalent models, however, it becomes physical upon modifications. The problem is that, in
the most popular models, this local symmetry is broken but not stably So, hence the infamous
strong coupling issues. The Hamiltonian analyses become complicated and with contradictory
results. A funny point is that what we see in available linear perturbation treatments of 𝑓(𝑇 )
gravity is much closer to the analysis with less dynamical degrees of freedom which has got a
well-known mistake in it, while the more accurate work predicts much more of dynamics than
what has ever been seen till now. I discuss possible reasons behind this puzzle, and also argue
in favor of studying the most general New GR models which are commonly ignored due to
suspicion of ghosts.
K e yw o r d s: modified teleparallel gravity, (pseudo)Riemannian manifold, New General Rel-
ativity (New GR) models, quantum-field-theory.

1. Introduction

These days, modified gravity is very popular due to a
variety of reasons ranging from purely phenomenolog-
ical troubles to deep theoretical issues. None of these
motivations to modify it are unquestionable. Howe-
ver, the current situation is puzzling enough for a
big flow of modified gravity papers to go on. An in-
teresting point about this business is that it turns
out very difficult to non-trivially modify general
relativity (GR) without creating a catastrophe, of
one sort or another, which unfortunately very of-
ten goes unaddressed for the sake of producing more
papers.

Among the interesting options on the market, there
is an old idea of radically changing the geometry of
a spacetime through adding, on top of the metric,
else another connection which is flat. These telepar-
allel approaches can safely start from simply repro-
ducing GR in a very unnatural language. Specifying
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the notion of a flat connection to two extreme cases
of the torsion only and non-metricity only, one can
talk about the trinity of gravity [1]. Since, in the real
world, all the test particle trajectories do correspond
to the Riemannian geodesics of the observable met-
ric, I would not go for this point of view. In any other
theory, one can also introduce some new hidden struc-
tures and use them for constructing another version
of the known physics.

Going even much farther in employing unobserv-
able artificial structures, one can claim having solved
the problem of energy in gravity [2, 3]. I strongly dis-
agree with that [4], unless we introduce a substan-
tially modified teleparallel model instead of a GR-
equivalent one. In the case of simply reproducing GR,
the flat connection is completely esoteric for a mun-
dane observer, and one could, indeed, do many dif-
ferent constructions for the same goal, such as intro-
ducing a fixed Minkowski space and treating the real-
world metric as a dynamical field on top of that. It
is a clear way of having well-defined conservations
laws, though in relation to artificial pillars built by

1 This work is based on the results presented at the XII
Bolyai–Gauss–Lobachevskii (BGL-2024) Conference: Non-
Euclidean Geometry in Modern Physics and Mathematics.
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nothing but our imagination. I prefer to admit that
generically there are no objective notions of conserved
energy and the like.

I would also say that the teleparallel descrip-
tions of gravity have no clear relation to the real
world. In GR-equivalent models, just every flat con-
nection goes, modulo constraints which might be im-
posed by the very definition of the model at hand,
e.g. vanishing non-metricity for metric teleparallel or
vanishing torsion for symmetric teleparallel. Howe-
ver, they provide us with novel ways of modifying
the theory of gravitational interactions. This is in-
teresting in its own right, let alone giving us ways of
better understanding GR and its place in the theory
landscape.

In Section 2, I briefly describe the general concept
of teleparallel geometry, then the zero non-metricity
condition will be imposed for the rest of the paper. In
Sections 3 and 4, I discuss the most general (though
parity-preserving) New General Relativity (New GR)
models. Usually such options are disregarded due to
the fear of ghosts [5]. My claim [6] is that this ques-
tion should be investigated in much better details. If
anything in metric teleparallel gravity, it is this case
which can meaningfully help us with conservation
laws, for the full structure of the flat parallel trans-
port becomes physical. Then, in Sections 5 and 6,
I will consider probably the most popular modified
teleparallel gravity, the 𝑓(T) one [7]. This is a sim-
ple modification of the GR-equivalent case, and the
choice of the teleparallel geometry is no longer free in
it, but it is not fully fixed either, leading to the intri-
cate zoo of remnant symmetries [8], ubiquitous strong
coupling issues [9], and, therefore, an ill-defined num-
ber of degrees of freedom. Despite being a total theo-
retical disaster, it is still very actively used for (naive)
phenomenology. Finally, in Section 7, I conclude.

2. Teleparallel Geometry

Let me start from the basic notion of teleparallel
structures. Namely, I assume that, on the spacetime
manifold, there exists an independent connection of
vanishing curvature tensor. Since the curvature ten-
sor describes a change in a vector field upon parallelly
transporting it over an infinitesimal closed contour, it
means that if one transports a vector from one point
to another one over two different smooth trajecto-
ries, the result is the same as long as those paths are

smoothly deformable into each other. Modulo global
obstructions in the case of nontrivial topology, we,
therefore, get an unambiguous notion of two vectors
at a distance being equal, or parallel to each other,
and, hence, the name.

All in all, given a flat parallel transport, one can
choose a basis of 1-forms 𝑒𝑎 = 𝑒𝑎𝜇𝑑𝑥

𝜇 at some point
and get a covariantly constant basis of 1-forms 𝑒𝑎𝜇(𝑥)
over the full spacetime, or at least over a topologi-
cally trivial patch around the initial point. With the
global freedom of initially choosing the basis, this
“proper” co-tetrad, or a set of covariantly constant 1-
form fields, is a faithful representation of the telepar-
allel connection. At the same time, one can also go for
the dual basis of @

𝜇
𝑎 of covariantly constant vectors,

or a tetrad, with @ = 𝑒−1 in terms of matrices.
Note that usually I denote both tetrads and co-

tetrads with the same letter 𝑒 leaving the distinction
between them solely for the position of the Latin and
Greek indices. For the pedagogical purposes, here, I
follow the notation of letters @ and 𝑒 from the classi-
cal trinity paper [1]. Another option available in the
literature [10] is to use the letters 𝐸 and 𝑒.

All in all, a teleparallel geometry does have a basis
of covariantly constant vector fields, or a soldering
form of vanishing spin connection in the “covariant”
language, 𝜕𝜇𝑒𝑎𝜈 − Γ𝛼

𝜇𝜈𝑒
𝑎
𝛼 = 0 which implies an affine

connection of the Weitzenböck type

Γ𝛼
𝜇𝜈 = @

𝛼
𝑎𝜕𝜇𝑒

𝑎
𝜈 . (1)

If we believe that the flat connection (1) does objec-
tively exist on the given spacetime manifold, then its
defining (co-)tetrad 𝑒𝑎𝜇 is not free to be chosen. To the
contrary, it is a dynamical variable and must be ruled
by the equations of motion of a model at hand. In
the case we want to deal with an arbitrary (orthonor-
mal) tetrad, for either describing an observer or cou-
pling the fermions, it must be another object, say, ℎ𝑎𝜇,
which serves then as else another basis for represent-
ing all the geometric quantities.

All the consideration above does not depend on a
particular type of teleparallel models. One can spec-
ify it further, and it brings us to the two basic cur-
vatureless frameworks of the trinity [1]. The simplest
version, even though it appeared much later than the
classical teleparallel, is called symmetric teleparal-
lel, and this is about a (tele)parallel transport with
no torsion either, 𝜕𝜇𝑒𝑎𝜈 = 𝜕𝜈𝑒

𝑎
𝜇. At least locally, the
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basic co-tetrad can then be represented as a coordi-
nate basis,

𝑒𝑎𝜇 =
𝜕𝜁𝑎

𝜕𝑥𝜇
. (2)

In other words, the structure of the parallel trans-
port is that of a Minkowski space, with 𝜁𝑎 scalar
fields being its Cartesian coordinates. It’s just that
the physical metric is a different field, and, therefore,
non-trivial non-metricity 𝑄𝛼𝜇𝜈 ≡ ▽𝛼𝑔𝜇𝜈 is there.

To put it in else another way, there are 𝜁𝑎 coordi-
nates (2) with vanishing affine connection coefficients
in the symmetric teleparallel framework. The GR-
equivalent model in this case (STEGR) is basically
given by the non-covariant ΓΓ action of Einstein with
the partial derivatives of the metric interpreted as
components of the non-metricity tensor in the Carte-
sian coordinates of the teleparallel structure.

Another option is the classical or metric telepar-
allel geometry in which we allow for the torsion
only. This is the framework of this paper. The con-
dition of vanishing non-metricity means then that all
the scalar products do not change upon the parallel
transport. In particular, we can consistently choose
the defining tetrad to be orthonormal. The usual ap-
proach to that is to treat the tetrad as the only dy-
namical variable from which the metric is defined by

𝑔𝜇𝜈 = 𝜂𝑎𝑏𝑒
𝑎
𝜇𝑒

𝑏
𝜈 . (3)

In this case, two different letters for tetrads and
co-tetrads look particularly funny, for going from one
to another can be considered as simply raising and
lowering the Greek indices by the spacetime met-
ric and Latin ones by the Minkowski one. We then
probably have to also write the inverse metric as

𝜇𝜈 = 𝜂𝑎𝑏@𝜇𝑎@
𝜈
𝑏 .

The teleparallel connection (1) is automatically
compatible with the metric (3) while it does gener-
ically have a non-trivial torsion tensor

𝑇𝛼
𝜇𝜈 = Γ𝛼

𝜇𝜈 − Γ𝛼
𝜈𝜇, (4)

and one can easily check that the torsion scalar

T =
1

4
𝑇𝛼𝜇𝜈𝑇

𝛼𝜇𝜈 +
1

2
𝑇𝛼𝜇𝜈𝑇

𝜇𝛼𝜈 − 𝑇𝜇𝑇
𝜇, (5)

where 𝑇𝜇 ≡ 𝑇𝛼
𝜇𝛼, differs from (minus) the usual

(Levi-Civitian) scalar curvature by only a surface
term. Therefore, the Lagrangian density of T defines
a teleparallel theory equivalent to general relativity
(TEGR).

3. New General Relativity

Having fixed the metric teleparallel framework of for-
mulae (1) and (3), i.e., a flat and metric-compatible
connection, one of the most natural ideas [11] in the
quest for modified gravity is to modify the coefficients
in the torsion scalar (5):

T =
𝑎

4
· 𝑇𝛼𝜇𝜈𝑇𝛼𝜇𝜈 +

𝑏

2
· 𝑇𝛼𝜇𝜈𝑇𝜇𝛼𝜈 − 𝑐 · 𝑇𝜇𝑇𝜇. (6)

This is the most general quadratic in torsion
(and parity-preserving) invariant. The action of∫︀
T ·

√
−𝑔𝑑4𝑥 defines what is known as New GR,

with restoration of the good old GR in the case of
𝑎 = 𝑏 = 𝑐.

Historically, the case of the so-called one-parameter
New GR [11], that is 𝑎 + 𝑏 = 2𝑐 with one more
free parameter removed by fixing the effective grav-
itational constant, is very much preferred over other
cases due to the claimed absence of ghosts [5] and
the same static spherically symmetric solutions as in
GR [11]. However, on one hand, this option seems
to lack much interest, for deviations from GR can
hardly be seen, neither for (unperturbed) astrophysi-
cal solutions [12] nor in linear cosmological perturba-
tions [13], unless one goes for unnaturally complicated
tetrads in the background solutions [14]. On the other
hand, there are arguments that the dynamical struc-
ture of such restricted models cannot be robust and
stable [15].

In this respect, my opinion [6] is that the most
general (“type 1”) New GR models (6), that is

𝑎 ̸= 𝑏, 𝑎 ̸= −𝑏, 𝑎+ 𝑏 ̸= 2𝑐, 𝑎+ 𝑏 ̸= 6𝑐, (7)

are the most promising ones. Practically, there are
no remnant symmetries. Out of sixteen variables, four
are pure gauge due to diffeomorphism invariance, four
more are physical but constrained, due to the gauge
symmetries “hitting twice”, and therefore eight dy-
namical modes are present. In both Minkowski [6] and
(spatially flat) cosmological spacetimes [13], all the
polarizations of waves are clearly seen.

Let me briefly summarise the simplest, weak grav-
ity case. In order to study gravitational waves around
the trivial Minkowski background, 𝑒𝑎𝜇 = 𝛿𝑎𝜇, one
needs to consider the most general perturbation of
the tetrad, as opposed to only some possible choice
of a tetrad for the most general perturbation of the
metric. Modified teleparallel gravities have got more
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equations of motion, due to their non-trivial anti-
symmetric part, and they require more variables of
course. Or in other words, the local Lorentz invari-
ance is broken, and therefore various tetrads for the
same metric are physically different. In particular,
in 𝑓(T) gravity the Lorentz boosts of the perturbed
tetrad do influence the scalar cosmological perturba-
tions [16]. If one goes for Lorentz covariant descrip-
tion, then the new variables in the spin connection
must be taken into account [17].

I continue in the pure-tetrad approach [6]. Sepa-
rating the perturbations into scalars, divergenceless
vectors, and a symmetric traceless divergenceless ten-
sor, one can parametrize the perturbed tetrad as

𝑒00 = 1 + 𝜑,

𝑒0𝑖 = 𝜕𝑖𝛽 + ℒ𝑖 +ℳ𝑖,

𝑒𝑖0 = 𝜕𝑖𝜁 + ℒ𝑖 −ℳ𝑖,

𝑒𝑖𝑗 = (1− 𝜓)𝛿𝑖𝑗 + 𝜕2𝑖𝑗𝜎 + 𝜖𝑖𝑗𝑘𝜕𝑘𝑠+

+ 𝜕𝑗𝑐𝑖 + 𝜕𝑖𝜒𝑗 − 𝜕𝑗𝜒𝑖 +
1

2
ℎ𝑖𝑗 .

(8)

where the perturbations of the metric tensor are given
by 𝜑, 𝜓, 𝛽 − 𝜁, 𝜎, 2ℳ𝑖, 𝑐𝑖, and ℎ𝑖𝑗 . On the top of
that, we have got (8) Lorentz boosts in 𝛽 + 𝜁 and
2ℒ𝑖, and spatial rotations of 𝑠 and 𝜒𝑖. Given that dif-
feomorphism invariance is still there (with the tetrad
taken as a set of vectors), we should fix a gauge which
will be [6, 13, 16]

𝛽 = 𝜁, 𝜎 = 0, 𝑐𝑖 = 0 (9)

leaving us with twelve physical modes as long as the
condition (7) is satisfied.

There is no constraint in the tensor sector. If
𝑎 ̸= −𝑏, there is no new gauge freedom either; and
the two standard polarisations of a graviton do obey
the simple wave equation

ℎ̈𝑖𝑗 −△ℎ𝑖𝑗 = 0 (10)

which goes away if 𝑎+ 𝑏 = 0.
If 𝑎 ± 𝑏 ̸= 0 and 𝑎 + 𝑏 ̸= 2𝑐, the vector sector can

be represented as

ℳ̈𝑖 −△ℳ𝑖 = 0,

�̈�𝑖 −△𝜒𝑖 =
2𝑏(𝑎+ 𝑏)− 4𝑎𝑐

(𝑎− 𝑏)(𝑎+ 𝑏− 2𝑐)
· ℳ̇𝑖,

ℒ𝑖 =
𝑎+ 𝑏

𝑎− 𝑏
· ℳ𝑖 − �̇�𝑖,

(11)

where the first equation initially had a factor of
𝑎 + 𝑏. In the three divergenceless vectors, there are
six variables. We see that two modes are constrained
(the last equation), while four of them are dynamical,
with only two dynamical modes being visible in the
metric (ℳ𝑖).

Finally, in the scalar sector, the new variables 𝑠
and 𝜁 are not pure gauge, if 𝑎 ̸= 𝑏 and 𝑎 + 𝑏 ̸= 2𝑐
respectively. If also 𝑎 ̸= −𝑏, the scalar mode in the
metric must be conformal, 𝜑 = −𝜓, and finally
we get

𝑠−△𝑠 = 0,

𝜁 −△𝜁 = 0,

𝜑 = −𝜓 =
2𝑐− 𝑎− 𝑏

6𝑐− 𝑎− 𝑏
· 𝜁.

(12)

There are two dynamical modes. One of them (𝑠)
is hidden from the usual observers, while another
one (𝜁) presents itself in the conformal mode of the
metric.

All in all, there are eight dynamical modes, five of
which are visible in the metric (10)–(12). What can
be seen in the metric is somewhat similar to the ghost-
free massive gravity: one tensor, one vector, and one
scalar. On the top of that, there are three dynamical
modes residing purely in the Lorentz group. The four
constraints do fix another half of the Lorentz, and also
impose one restriction (𝜑 = −𝜓) on the six metric
variables.

One can also look at the New GR framework as a
theory which has four vector fields (composing the
tetrad) and with the action which is quadratic in
derivatives coming only in combinations (4) of

F𝑎
𝜇𝜈 = 𝜕𝜇𝑒

𝑎
𝜈 − 𝜕𝜈𝑒

𝑎
𝜇. (13)

As long as the corresponding gauge symmetries are
preserved, we normally expect eight degrees of free-
dom, unless there are some extra fine tunings of
parameters. This is precisely what happens in the
quadratic weak gravity action above. Non-linearly,
the 𝑈(1)

⨂︀
4 symmetry is no longer there, and one

would generically expect then twelve degrees of free-
dom. However, the Abelian symmetry gets replaced
by the full diffeomorphisms which still reduce the
number of dynamical modes by four due to a gen-
eralisation of Bianchi identities [11, 12, 18].
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4. Instabilities of Generic New GR?

Coming back to stability issues, a paper [19] appeared
recently analysing the New GR models more carefully
than it used to be with the classical result [5] which
had been obtained by the use of spin projection op-
erators (hence new derivative terms) directly inside
the action. As is mentioned above, this old work [5]
led the community to accepting only a 1-parameter
model of New GR, or more precisely a 2-parameter
one if not to insist on the measured value of effec-
tive gravitational constant. Of course, extra deriva-
tives in the action generically do change a model at
hand. Recently, we claimed with colleagues [6] that
the generic 3-parameter New GR theory might ac-
tually be healthy, while the new paper [19] asserts
that it Is not, due to ghosts in the vector sector of
perturbations.

To be honest, I cannot tell it for sure, for the full
answer would require thorough analysis of all the dy-
namical features, ideally beyond the linear approxi-
mation. What can be seen from the paper [6] is that
the kinetic part of the (gauge-fixed linearised) Hamil-
tonian can easily be positive definite, except for the
non-dynamical conformal mode. For sure, it is not
enough for really implying stability. For example, a
massive vector field with 𝑚2 < 0 does have a posi-
tive definite kinetic part of its canonical Hamiltonian,
too. However, it ceases to be the case upon solving
for the temporal component or using the Stückelberg
trick. Nevertheless, it must always be accurately an-
alyzed, while the argument of the paper [19] does not
justify the claim.

A minor issue is that they are going for an action
in terms of gauge-invariant variables. As I explained
elsewhere [20], the gauge structure is crucial. One
might, indeed, go for Lorentz-gauge-invariant vari-
ables in covariant teleparallel theories thus produc-
ing the pure-tetrad ones [21], with no change to the
physical content. However, this is so due to the purely
algebraic nature of the symmetry, which is not the
case of diffeomorphisms. Turning the blind eye to fun-
damental aspects, changes in the numbers of spatial
derivatives are often quite benign for the perturba-
tion theory where we, say, put any harmonic func-
tion to identically vanish, however, it can produce
an essential differences when involving time deriva-
tives. For example, in electrodynamics, taking the
gauge-invariant field strength as the dynamical vari-

able removes derivatives from the action making the
equations trivial.

An important point in understanding the paper [19]
is that they think only in terms of dynamical (“prop-
agating”) modes, as if the constrained ones were not
physical. In electrodynamics, it Is possible to go for
an action for the transverse (gauge-invariant) modes
only. It can be done, indeed, but it is not the same as
real electrodynamics in which the longitudinal mode
is also physical, for it has the Coulomb’s law in it. In
the case of New GR, this attitude also makes them
think about potential viability of gravity models [19]
in terms of propagating ghosts only, without caring
of whether an accidental gauge freedom (beyond dif-
feomorphisms) appears in the metric sector. It is not
a good idea, of course. It is all right, if some of the
metric perturbations are not propagating by them-
selves, but they must be predictable, one way or an-
other, in order for the usual coupling of matter to
make sense. An extra gauge freedom in metric per-
turbations is not admissible.

All in all, I must admit that the count of dynamical
modes [19] in the type 1 vector sector went correct. In
their notations, the only time derivative in this part of
the trick was in defining a new gauge-invariant vari-
able 𝐷𝑖 = 𝑆𝑖− �̇�𝑖. The variation with respect to 𝐷 is
then equivalent to the variation in terms of 𝑆. Ana-
logously, we can imagine a mechanical system for 𝑥(𝑡)
and 𝑦(𝑡) with a Lagrangian 𝐿 = (𝑦 − �̇�)2 with the
equation of 𝑦 = �̇�. One can take the gauge invariant
variable 𝑌 = 𝑦 − �̇� for which the Lagrangian 𝐿 = 𝑌 2

demands 𝑌 = 0. This equation is the same as it was
before, from the variation with respect to 𝑦. At the
same time, it is more restrictive than it was in the
equation for 𝑥. However, the latter was anyway over-
taken by the equation for 𝑦.

In the end of the day, they have found [19] two fully
dynamical transverse vectors, and one transverse vec-
tor constrained. This is the same result (11) as we had
[6]. Then the ghostly claim [19] comes from the fact
that the authors were able to derive a fourth-order
equation from the two second-order ones. It is abso-
lutely incorrect to deduce the ghosts from that. It is
not a big deal, to do so for many absolutely stable
systems.

Let me discuss a simple toy model of the La-
grangian

𝐿 =
1

2
(�̇�2 + �̇�2 − 2𝑥𝑦),
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which corresponds to a Hamiltonian

𝐻 =
1

2

(︀
𝑝2𝑥 + 𝑝2𝑦 + 2𝑥𝑦

)︀
with a positive definite kinetic part and no constraints
in it. There is no ghost at all, even though the po-
tential energy is not bounded. Nonetheless, the equa-
tions of motion

�̈�+ 𝑦 = 0, 𝑦 + 𝑥 = 0

can immediately be brought to the form of
....
𝑥 − 𝑥 = 0, 𝑦 = −�̈�,

which is a fourth-order equation for one of the vari-
ables, with the second one being uniquely determined
then. It does not mean that we have produced a ghost
out of nowhere.

In the case of worries, one can go, for 1
2 (𝑥+𝑦)

2, in-
stead of 𝑥𝑦 in the potential energy which still allows
for the same higher-derivative-order rewriting, even
though it would look far less natural than a simple
change of variables to 𝑥 + 𝑦 and 𝑥 − 𝑦. Or, to make
it even sharper, one can start from an absolutely sta-
ble model of 𝐿 = 1

2

(︀
�̇�2 + �̇�2 − 𝑥2

)︀
and introduce new

variables 𝑠 = 𝑥+𝑦√
2

and 𝑎 = 𝑥−𝑦√
2

. It is then easy to
rewrite the equations as a constraint for one of them
and a fourth-order equation for the other. Indeed, two
modes of second-order equations need four Cauchy
data altogether, therefore the whole freedom can be
represented in terms of a single fourth-order equa-
tion. Does it really mean a bad ghost in the system?

Therefore, the claim [19] of having found ghosts
is unsubstantiated. Of course, at the linear level,
even the question of stability is not very meaning-
ful, for the dynamics is fully under control. Once we
turn interactions on, in a Lorentz-invariant theory
with ghosts, negative kinetic energies generically yield
an infinite volume of ways to produce new excita-
tions respecting all conservation laws. Hence we usu-
ally expect to see an instability with no finite time
scale. This is a very interesting question, whether the
ghosts are present or not, even if we can still live
with some of them in a physical theory [22], but it
requires a more detailed analysis. What I am quite
sure about is that the generic (type 1) models [6] are
pretty robust in terms of their physical modes. It’s
always four diffeomorphisms hitting twice and no
more constraints. The issue of stability is else to be
investigated.

5. Non-linear 𝑓(T) Models

Let me now turn to a very popular model, 𝑓(T) grav-
ity. We come back to the standard torsion scalar (5)
of TEGR, and put a non-linear function of it into
the action:

∫︀
𝑓(T) ·

√
−𝑔𝑑4𝑥. The torsion scalar T it-

self was almost the usual Einstein–Hilbert Lagrangian
density, different from the latter by only a surface
term which does not change anything in the system
of equations. However, once a surface term has got
into the argument of a non-linear function, it ceases
to be such. Still, one can use this structure of the
action for facilitating the variations and subsequent
calculations a lot [23].

The equations of motion (in vacuum) are worth to
be written in a covariant form

𝑓𝑇 ·𝐺𝜇𝜈+
1

2
(𝑓 − 𝑓𝑇T) ·𝑔𝜇𝜈+𝑓𝑇𝑇 ·𝑆𝜇𝜈𝛼𝜕

𝛼T = 0, (14)

as opposed to big parts of modified teleparallel lit-
erature. A few comments on the notations are in or-
der. The superpotential, or a torsion conjugate, 𝑆𝛼𝜇𝜈

is a tensor which can be defined

𝑆𝛼𝜇𝜈 =
1

2
(𝐾𝜇𝛼𝜈 + 𝑔𝛼𝜇𝑇𝜈 − 𝑔𝛼𝜈𝑇𝜇),

𝐾𝛼𝜇𝜈 =
1

2
(𝑇𝛼𝜇𝜈 + 𝑇𝜈𝛼𝜇 + 𝑇𝜇𝛼𝜈)

(15)

in terms of the contortion tensor 𝐾𝛼𝜇𝜈 (15) which, in
turn, is a difference between the teleparallel connec-
tion and the Levi-Civita one. The 𝐺𝜇𝜈 is the usual
Einstein tensor calculated from the metric 𝑔𝜇𝜈 . Since
it goes then in terms of the Levi-Civita connection,

we often denote it by
(0)

𝐺𝜇𝜈 or 𝐺𝜇𝜈 . Finally, there
are derivatives of the function 𝑓 , i.e., 𝑓𝑇 ≡ 𝑑𝑓

𝑑T and
𝑓𝑇𝑇 ≡ 𝑑2𝑓

𝑑T2 .
We immediately see that, in the case of a linear

function 𝑓(T), the equations (14) are reduced to those
of GR, or TEGR, with only the gravitational constant
renormalized by the factor of 𝑓𝑇 and an additional
cosmological constant given by 𝑓(0). Genuinely new
modification is solely brought about by the 𝑓𝑇𝑇 term
(14). There is no surprise in that, since what is re-
sponsible for non-trivial modifications of gravity is
precisely the non-linearity of the function 𝑓 . Note also
that this is the only term in the equations (14) which
has got a non-trivial antisymmetric part and also de-
pends on Lorentz rotations of the tetrad beyond the
scalar coefficients. Of course, the reason for that is
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the broken local Lorentz invariance. A bit more wor-
risome is that the constant T solutions do never go
beyond the limit of GR, and we should probably be
able to find a (very often quite unnatural) Lorentz
transformation of a simple tetrad which would do it
for any given metric, as for instance, was done (us-
ing null tetrads) for Kerr [24] and cosmological [25]
metrics.

So far so good, but then the foundational issues
come [9]. As has already been mentioned above, one
and the same metric can correspond to different tet-
rads, even if orthonormal ones. When those are phys-
ical objects in themselves, we face the issue of choos-
ing the real physical one. In the case of weak gravity,
it is natural to take the trivial tetrad of 𝑒𝑎𝜇 = 𝛿𝑎𝜇.
It is the one which respects all the symmetries and
also enjoys vanishing torsion tensor. What else would
we want from the true vacuum? However, then the
torsion scalar (5) is already quadratic in perturba-
tions around this important background. Hence, the
quadratic action feels only the linear term in the Tay-
lor expansion of the function 𝑓, thus bringing us back
to TEGR. Equivalently, the 𝑓𝑇𝑇 -term in the equa-
tions (14) obviously disappears at the linear order.

Given that the full linear theory around the Min-
kowski background is nothing but simply TEGR, we
have got a strong coupling issue in the shape of acci-
dental gauge symmetry. Namely, all the local Lorentz
group is fully restored at the linear level. Since it is
for sure not the case in general, this is a singular locus
of the phase space. Even if, for a moment of despera-
tion, we only cared about propagating modes, there is
little doubt that at least one new dynamical degree of
freedom must be available in the full model [26]. The
rather bad news is that this problematic locus is a
very simple and important place for any theory.

In principle, singular loci can be found in phase
spaces of many modified gravity theories, like, for ex-
ample, at the zeros of the first or the second derivative
of the function 𝑓 in 𝑓(𝑅) gravity. What is amazing
about 𝑓(T) theories though, is that the strong cou-
pling issues are really persistent. If not to play with
very contrived structures [25], the spatially flat cos-
mology can be built by using a conformally rescaled
tetrad 𝑒𝑎𝜇 = 𝑎(𝑡) · 𝛿𝑎𝜇. Long time ago, it was noticed
that there is still no new dynamical mode in the
linear cosmological perturbations around it [27]. An
accurate analysis [16] also shows a bit of accidental
gauge symmetry, that for the pseudoscalar mode 𝑠. In

what concerns new dynamical modes, even going for
spatially curved cosmologies does not seem to help
much [28].

6. Preferred Foliations?

Given this rather unclear situation with the dynami-
cal, constrained and pure gauge modes in the theory,
it would be natural to look at the Hamiltonian analy-
sis. It turns out to be a rather complicated endeavor
though, due to non-constant ranks of Poisson brack-
ets’ algebras of constraints. This is again nothing new
for models with ill-defined numbers of degrees of free-
dom, except for how dense the events of rank changes
seem to be in 𝑓(T) gravity. Actually, there are con-
tradictory results in the literature.

To the best of my knowledge, there are three
main Hamiltonian claims [29–31] available. In the
usual spacetime dimension, the first and the last ones
[29, 31] found three new dynamical modes, that is on
the top of the usual two graviton polarisations thus
being 2+3 = 5 in total, while the middle work [30] in-
sisted, on only one new dynamical mode, and, there-
fore, three in total. The last work [31] is probably the
most accurate one, although there is still no discus-
sion of how the numbers jump in the phase space,
and what are the necessary assumptions for getting
the full number of claimed modes. Considerations of
constant T solutions without allowing for variations
of that even in perturbations do not count.

The paper [30] which counted less dynamical modes
has got an obvious mistake in it. Namely, the spatial
derivatives of the auxiliary scalar field equal to T had
been forgotten in the Poisson brackets [31]. Based on
that, it is rather tempting to conclude that the real
number of new dynamical modes is three. However,
the puzzling point is that, as far as I know, it is not
what has ever been seen in explicit perturbative calcu-
lations. I have already mentioned just zero new modes
in weak gravity and in cosmology. On the other hand,
employing the remnant symmetries [8], one can have
myriads of other solutions with Minkowski metric and
T = 0. By studying perturbations around those, we
see at most “almost one” extra mode [26], with the
word “almost” meaning some strange restriction on
the freedom of Cauchy data.

How can it be? Recall that the Hamiltonian mis-
take was in neglecting the spatial gradient of T. Ho-
wever, unless we go for non-symmetric configurations
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[25], the cosmological spacetimes do mostly have a
strictly time-like gradient of it, unless we are talking
about bounces or the like. Then one might (partially)
fix the gauge of T(𝑡,x) = 𝑡, for both background and
perturbations, and then the analysis of that paper
[30] seems to apply. If true, it looks like having a pre-
ferred foliation in this particular subset of the phase
space points. Except for the fact that it is not univer-
sal for all possible regimes, it is somewhat similar to
the case of cuscuton fields [32].

In order to better see what’s going on, let us as-
sume we’ve fixed a gauge with T = 𝑡 and 𝑔0𝑖 = 0. In
this case the last term in the equations (14) takes the
form of 𝑓𝑇𝑇 · 𝑆𝜇𝜈0. It contains at most first deriva-
tives and makes no contribution to the Hamilto-
nian constraint (the temporal component of the equa-
tion). The antisymmetric equations take the form of
𝑆𝜇𝜈0 −𝑆𝜈𝜇0 = 0. For the six Lorentzian variables, we
get three equations on velocities via F𝑎

0𝑖 combinations
(13) in the mixed components. At the same time, the
three other (spatial) antisymmetric equations do only
say that 𝜂𝑎𝑏𝑒𝑎0F𝑏

𝑖𝑗 = 0 and ask for no initial data. The
three initial data for F𝑎

0𝑖-equations are also restricted
by one condition of T = 𝑡, and it all indeed looks like
one extra mode in the whole Lorentzian realm.

Note also that it is now more clear what has
happened in cosmology [16]. The scalar part of the
𝑆𝑖𝑗0 − 𝑆𝑗𝑖0 = 0 equation just disappears leading to
one equation less, for there is no scalar contribu-
tion to 𝜂𝑎𝑏𝑒

𝑎
0F

𝑏
𝑖𝑗 . There is simply no way one could

have an antisymmetric in 𝑖 and 𝑗 linear expression
for the scalars. For the linear perturbations, the pseu-
doscalar belongs to an accidental gauge symmetry, for
it does not influence the torsion scalar T, not even
at quadratic level. Intuitively, one can conclude that
an extra gauge freedom imposes an extra constraint,
and, hence, no new dynamical modes. Note though
that, in the spatially curved cases [28] at least, there
is more to think about.

At the same time, in the case of static spheri-
cally symmetric solutions, one has a gauge of T =
T(𝑟). Then there is an extra derivative term to the
Hamiltonian constraint, and all six antisymmetric
equations feature the velocities inside F𝑎

0𝑖 quantities
(13) through 𝑆𝜇𝜈𝑟 − 𝑆𝜈𝜇𝑟 components. It might very
well be about three new dynamical degrees of free-
dom. Unfortunately, it would be hard to explicitly
study perturbations around such solutions, for the
lack of known exact ones except the rather problem-

atic cases of complex-valued tetrads [33]. Probably,
a feasible way to go would be to do perturbations
around the charged flat-horizon constructions [34],
even if much less physical.

Note also that, given such differences for different
types of T behavior, there should be no surprise that
the Cauchy data might look rather irregular [26] for
perturbations around solutions of T = 0, or any other
constant value. Going for the constant T solutions as
for the simplest ones gets to look even more suspi-
cious now.

Finally, I should mention that dynamical issues of
𝑓(T) were also mentioned already a decade ago [35],
in a somewhat nontransparent language of character-
istics [35]. On the top of the “constraint bifurcation”,
there was also unpredictability of evolution, in the
form of an extra gauge freedom. Additional amounts
of gauge freedom due to incomplete Lorentz break-
ing might be good, only if one could have them in
a stable way and not propagating to the metric sec-
tor. Neither the former [15] nor the latter [36] seem
to be the case in modified teleparalell frameworks,
at least not in the simplest cases, and, therefore, the
presence of remnant symmetries [8] does not help us
at all [37]. In my opinion, we should pay more atten-
tion to the papers [35–37], even though I do not buy
many of their interpretations.

7. Discussion and Conclusions

An interesting lesson to learn is that modifying
teleparallel gravity is a very dangerous thing to do. At
the same time, very often, we make conclusions with-
out a proper ground. One of the most interesting such
cases for me is the claims of ghosts in New GR be-
yond the “one parameter” case [5]. Having put extra
derivatives into the action, for the sake of the spin
projector formalism, we used to never think about
how much it had changed the model at hand.

I think that the paper [19] touches upon a very in-
teresting topic and presents a very important work. It
is really time to rethink all the restrictions put on
various metric-affine gravity models by blindly rely-
ing on the usual quantum-field-theory (QFT) ideas
which might not always work. At the same time, the
main claim [19] of seeing ghosts in the vector sector
doesn’t have any proper evidence behind. Basically,
every theory with several variables can be rewritten
in terms of some constrained modes and another one
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satisfying a higher derivative equation. One might say
that the old paper [5] was more informative in this
respect. Even though one cannot imply instability in
its way either, it clearly indicated that there would
be problems for using the usual QFT techniques in
these models.

In my view, the most general New GR is a very
promising option because it does have a well-defined
number of degrees of freedom. We still have to better
study the question of ghosts, and dynamical stabil-
ity in general. However, more popular models, such
as 𝑓(T), do not have even that. Their strong cou-
pling issues are so ubiquitous that even the num-
ber of degrees of freedom is not clear. People still
widely use such theories for cosmology, but the prob-
lem is very serious. It is of a very doubtful value, to
invest much effort in making predictions by closing
our eyes at the dynamics being severely ill-defined,
to start with.

I should also like to mention that the discussion
of finitely strong and infinitely strong couplings [19]
looks rather strange. Even if we make the fine struc-
ture constant extremely large, all the equations of
electrodynamics do have all the same degrees of free-
dom: two dynamical, one constrained and one pure
gauge. This is a finite case. We only lose our ability of
finding solutions perturbatively, let alone going quan-
tum. On the other hand, if we fully lack some modes
in a linear analysis, this is an infinitely strong cou-
pling and an ill-defined initial value problem, even
though the modes will normally be seen at higher or-
ders [20].

Roughly speaking, at a mostly intuitive level, a
coefficient in front of a kinetic term vanishes which
means that canonically normalising the field makes
a coefficient in a potential term diverge, hence the
name. If the coupling is strong but without such sin-
gularities, then the equations can be studied mathe-
matically, even if we have no idea of how to make it
quantum. Making good sense out of quantum physics
is a separate big problem. The issue of 𝑓(T) is that,
even at the purely classical level, it is extremely ill-
defined, and it does not seem possible to give it some
well-defined effective meaning, so that reliable calcu-
lations would be somehow available.
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СТУПЕНI ВIЛЬНОСТI В МОДИФIКОВАНIЙ
ТЕЛЕПАРАЛЕЛЬНIЙ ҐРАВIТАЦIЇ

У цiй статтi я пiднiмаю питання про ступенi вiльно-
стi в модифiкованiй телепаралельнiй ґравiтацiї. Цi теорiї
дiйсно мають додаткову структуру на звичайному (псев-
до)рiмановому многовидi, що є структурою плоского па-
ралельного переносу. Ця структура абсолютно абстрактна
i непередбачувана (чисто калiбрувальна) в еквiвалентних
моделях загальної вiдносностi, однак пiсля модифiкацiй во-
на стає фiзичною. Проблема полягає в тому, що в найпопу-
лярнiших моделях ця локальна симетрiя порушена, але не
є стабiльною, отже iснують сумнозвiснi проблеми сильно-
го зв’язку. Аналiз на основi гамiльтонiанiв стає складним i
має суперечливi результати. Забавно, що ми бачимо у до-
ступних лiнiйних збуреннях 𝑓(𝑇 ) ґравiтацiї те, що набагато
ближче до аналiзу з меншою кiлькiстю динамiчних ступе-
нiв вiльностi iз добре вiдомою помилкою, тодi як бiльш то-
чна робота передбачає набагато бiльше динамiки, нiж ми
бачили досi. Я обговорюю можливi причини цiєї загадки, а
також виступаю на користь вивчення найбiльш загальних
нових моделей загальної вiдносностi, якi зазвичай iгнорую-
ться через пiдозру iснування “духiв”.

Ключ о в i с л о в а: модифiкована телепаралельна ґравiта-
цiя, (псевдо)рiмановий многовид, нова загальна теорiя вiд-
носностi, квантова теорiя поля.
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