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FLUCTUATIONS AND POWER
LAW DISTRIBUTION FUNCTION
IN NONEQUILIBRIUM SYSTEMS

The Fokker–Planck equation is formulated for the distribution functions of macroscopic open
systems in the space of slowly changing physical variables (energy, adiabatic invariants,
etc.). The stationary solution of such equations determines a quasi-equilibrium distribution
function in the relevant space. The proposed approach involves the evolution of systems under
the action of dissipation and diffusion in the space of the appropriate variables. It is shown
that the well-known power law distribution can be obtained by considering internal and external
fluctuations in statistical systems.
K e yw o r d s: Fokker–Planck equation, power law distribution function, fluctuations in statis-
tical systems, Langevin equations.

1. Introduction
According to the basic principles of thermodynam-
ics, a macroscopic system in contact with the en-
vironment reaches the state of equilibrium during
the relaxation time. The relaxation time is deter-
mined by the physical nature of the system under
consideration and the properties of the external en-
vironment (see, for example, [1–3]). Establishing the
equilibrium in a system interacting with the ther-
mostat leads both to the establishment of the ther-
modynamic parameters, equivalent to the parame-
ters of the heat bath, and to the absence of flows
in the equilibrium system. In the case of nonequi-
librium open systems, flows are present, but steady
states may exist. Such states can be interpreted as
“quasi-equilibrium” in the sense that they do not
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change with time, but the thermodynamic param-
eters of the system and the environment are dif-
ferent. Nonequilibrium steady states are observed in
a system of hot electrons in semiconductors [4], a
system of photons with inhomogeneous scattering,
where the diffraction coefficient depends on the fre-
quency of photons [5, 6], a system of high-energy
particles generated in the collisions of heavy ions in
accelerators, and systems of dust particles in plas-
mas [7–9]. The distribution functions of such sys-
tems usually are different from the known equilibrium
distributions.

An example of such a stationary distribution may
be, in particular, a distribution with “heavy tails” for
large values of the variable (power law distribution)
that is extremely important from both theoretical
and practical points of view [10]. Many power dis-
tributions have been found in physics, biology, and
social sciences. The main feature is their qualitative
and quantitative difference from the normal (Gaus-
sian) distribution.

In physics, all distribution functions depend on the
energy that determines a hypersurface in the phase
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space and completely determines all probable states
of the system. The distribution function in the equi-
librium case depends only on the energy of the sys-
tem, and we can assume that the nonequilibrium dis-
tribution function also can be described in terms of
the energy of the macroscopic system. For physical
systems, energy is the slowest variable or control pa-
rameter. In economic systems, such a parameter may
be the amount of money involved in financial trans-
actions. For linguistics, this is a set of words that are
used in this or that language. Therefore, in the fur-
ther consideration we will analyze the changes of the
slowest control parameter of the system.

Any system is usually in a nonequilibrium state a
priori. Nevertheless, we may assume that, in some
cases, the state of a subsystem of the large sys-
tem is described by a local Gaussian distribution
that evolves to provide the smallest energy and the
largest entropy of that subsystem. On the other hand,
in the general case, the evolution of a nonequilib-
rium system can be described on the basis of the
Fokker–Planck equation, where the diffusion and dis-
sipation coefficients are related to the correspond-
ing Langevin equations [11–18]. The advantage of the
Fokker–Planck equation is that it accounts for both
the relaxation of the distribution function due to dis-
sipation and the random effect of fluctuations of vari-
ous nature (these can be both internal fluctuations
and fluctuations of the parameters of the external
environment). Thus, using the Fokker–Planck equa-
tion, it is possible to find probable stationary dis-
tributions generated, in particular, by multiplicative
noise, which arisee as a result of the nonlinear interac-
tion of internal and external fluctuations. In addition,
stationary solutions of the Fokker–Planck equations
under certain conditions indicate the probable exis-
tence of a phase transition to a state that can be as-
sociated with the stationary state of the system. We
suggest that multiplicative fluctuations can lead to a
power-law stationary distribution, if we properly ac-
count for them.

The purpose of this work is to substantiate the
occurrence of a power law distribution in the space
of various control parameters and to find the con-
ditions for the formation of such a distribution. The
solution of the Fokker–Planck equation for the dis-
tribution function of the macroscopic system, that
describes the probable quasi-stationary states of the
system is obtained. The proposed approach describes

the evolution of the system between different states
with regard for the dissipation and the external influ-
ence of the environment. For economic systems and
systems of other nature, where the slow variable may
be another quantity (such as money) [10], it has been
shown that this approach can yield a known power
law distribution.

The paper is organized as follows. A general ap-
proach to the derivation of the Fokker–Planck equa-
tion from the master equation is presented in Sec-
tion 2. In Section 3, we formulate the specific Lange-
vin equation that leads to the power law distribution
function. Analysis of the application of the Fokker–
Planck equation in the energy representation is given
in Section 4. The results obtained are formulated in
the Conclusions (Section 5). An illustration of the
description of the known results (ordinary Brownian
motion) is given in the Appendix.

2. Master Kinetic Equation

As is well-known, the macroscopic state of a statis-
tical system can be described in terms of distribu-
tion functions that determine all macroscopic prop-
erties of the system under consideration [2, 11]. Con-
trary to the microscopic functions, such distribution
functions depend only on a few macroscopic param-
eters. To describe the evolution in terms of distribu-
tion functions, these parameters, as control param-
eters of nonequilibrium systems, have to be “slow
variables”. In the absence of any other knowledge
about the nonequilibrium systems, there is no rea-
son to favor any definite state of the system. Ac-
tually, the current state of the system is deter-
mined by the control parameters. The nonequilib-
rium distribution function 𝜌(𝜀, 𝑡) includes the de-
pendence on the control parameter of the system 𝜀
and time. The distribution function, in general case,
may be obtained from the master kinetic equation
which describes the system evolution during a long
period of time and takes the fast random processes
in it into account. In terms of an arbitrary con-
trol parameter, the basic kinetic equation for the
nonequilibrium distribution function may be written
as [11]

𝜕𝜌(𝜀, 𝑡)

𝜕𝑡
=

∫︁ {︁
𝑊 (𝜀, 𝜀′)𝜌(𝜀′, 𝑡)−

−𝑊 (𝜀′, 𝜀)𝜌(𝜀, 𝑡)
}︁
𝑑𝜀′, (1)
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where 𝑊 (𝜀|𝜀′) is the probability of a transition be-
tween different values of the control parameter of
the system in the unit of time. This basic kinetic
equation is the balance equation for the probabilities
of states. All solutions of the basic kinetic equation
for 𝑡 → ∞ have fundamental properties: they relax
to stationary solutions that may be interpreted as
“quasi-equilibrium” states for these systems. In gen-
eral, such an evolution satisfies the law of entropy
growth in the sense of the general concept [18]. Ho-
wever, the basic kinetic equation is nonlinear, and
the transition probabilities themselves depend on the
distribution function. The transition to a linear equa-
tion may be performed only for the Brownian motion,
when there is no interaction between individual Brow-
nian systems. The form of the Fokker–Planck equa-
tion for the Brownian system depends on the path of
decomposition of the transition probabilities with the
change Δ𝜀 = 𝜀− 𝜀′.

Regardless of the process leading to the changes of
the distribution function on the control parameter,
the Fokker-Planck equation may be written in the
general form given by [11–18]

𝜕𝜌(𝜀, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝜀

(︁
𝐴(𝜀)𝜌(𝜀, 𝑡)

)︁
+

1

2

𝜕2

𝜕𝜀2

(︁
𝐷(𝜀)𝜌(𝜀, 𝑡)

)︁
. (2)

The coefficients 𝐴(𝜀) and 𝐷(𝜀) depend on the control
parameters, and their physical sense is determined by
the nature of the processes under consideration. The
explicit form of the Fokker–Planck coefficients is of
no particular importance, since, in different presen-
tations, there is a direct relationship between them
[11–18]. To choose one of them, it is necessary to in-
volve physical arguments. In particular, the Fokker–
Planck equation can be obtained from the chain of
Bogolyubov equations in the approximation of the
weak interaction (a small parameter at the interac-
tion potential) or the smallness of the masses of a
liquid or gas molecule to the mass of an impurity
particle [19].

The sense of the coefficients may be clarified using
the dynamic equation for the control parameter. In
the general case [14, 18], one can suppose that the
stochastic dissipation equation can be written as

𝑑𝜀

𝑑𝑡
= 𝑓(𝜀) +

√︀
𝐷(𝜀)𝐿(𝑡). (3)

The solution of this stochastic dissipation equation
depends on the external influences and initial con-

ditions. The external influence is manifested in the
change of the control parameter of the system under
the random influence of the external environment act-
ing together with the dissipation. The dissipation is
described by the first part of the above equation. This
part may be obtained from the dynamic equation of
the macroscopic system with the known interaction
of the system with the environment.

The random influence of the environment is taken
into account by the second part of the equation.
Usually, it is assumed that the fluctuation sources
are not correlated, and the correlation between two
fluctuation values at two different times ⟨𝐿(𝑡)𝐿(𝑡′)⟩ =
= 𝜑(𝑡− 𝑡′) may not be zero only during the time in-
terval that is equal to the interaction time. The sym-
bol ⟨...⟩ implies the statistical averaging of the cor-
responding value. The function 𝜑(𝑡− 𝑡′) should have
a sharp peak around zero and satisfy the condition∫︀
𝜑(𝜏)𝑑𝜏 = 𝜎2 for the white noise [18]. However, the

properties of the environment may also be changed
randomly. As a result, a system that cannot reach
equilibrium after rapid environmental changes should
relax to a new state. This process indicates degrada-
tion of the system upon the contact with the environ-
ment. Since the general stochastic equation has the
same form as that for an ordinary Brownian particle,
henceforth we will call such systems Brownian.

A true nonlinear Langevin equation should have
an equivalent equation for the probability distribu-
tion function that can be written with regard for the
specific properties of the statistical system. Today, we
know two different approaches for the consideration of
stochastic processes. If the diffusion coefficient 𝐷(𝜀)
depends on the control parameter at the initial point,
then the equation for the nonequilibrium distribu-
tion function may be obtained in the Ito form. If this
coefficient depends on the control parameter before
and after the transition, the diffusion equation can
be written in the Stratonovich form. If we use the
breakdown of the symmetric and asymmetric parts
of the transition probability, we obtain the kinetic
form of the representation of the Fokker–Planck equa-
tion. They are all related to the representation of the
“scattering” and diffusion forces, i.e.,

𝐴(𝜀) = 𝑓(𝜀) + 𝜈
𝑑𝐷(𝜀)

𝑑𝜀
, (4)

where the coefficient 𝜈 = 1, 1/2, 0 in the Ito, Strato-
novich, and kinetic representations, respectively. The
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explicit form of the coefficients through the micro-
scopic parameters is defined as [11–18]

𝑓(𝜀) =
∫︀
Δ𝜀𝑊 (Δ𝜀)𝑑Δ𝜀,

𝐷(𝜀) =
∫︀
(Δ𝜀)2𝑊 (Δ𝜀)𝑑Δ𝜀.

(5)

The equation for the nonequilibrium distribution
function in this case may be rewritten in the form
of the local conservation law for the probability, i.e.,

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=

𝜕𝐽(𝜌(𝜀, 𝑡))

𝜕𝜀
, (6)

where

𝐽 = 𝐴(𝜀)𝜌(𝜀, 𝑡) +
𝜕

𝜕𝜀
𝐷(𝜀)𝜌(𝜀, 𝑡). (7)

The stationary solution of the Fokker–Planck equa-
tion for 𝐽(𝜌(𝜀, 𝑡)) = 0 is given by

𝜌𝑠(𝜀) =
𝐶

𝐷𝜈(𝜀)
exp

⎛⎝− 𝜀∫︁
0

𝑓(𝜀′)𝑑𝜀′

𝐷(𝜀′)

⎞⎠. (8)

This distribution function has the extreme value for
the control parameter satisfying the equation

𝜈𝐷′(̃︀𝜀) = 𝑓(̃︀𝜀), (9)

where ′ stands for the control parameter derivative.
Equation (8) establishes the relation between the sys-
tem dissipation and diffusion in the stationary case
and completely determines a new “quasi-equilibrium”
state of the system [15, 16].

3. Power Law Distribution Function

The power law stationary distribution of the control
parameter has been observed for many systems of dif-
ferent types. Many articles and reviews [10] are re-
lated to this important problem. We would like to
draw attention to one of the general probable reasons
for the appearance of such a stationary distribution
both in the general approach and for specific physical
examples. First of all, we will focus on the stationary
distribution function (8). It is obvious that, in the
presence of a relation between the drift of the sys-
tem under the influence of external factors and the
diffusion coefficient 𝑓(𝜀) ∼ 𝐷′(𝜀), it is always possi-
ble to obtain a power law dependence on the control
parameter. Practically, this means that there is a re-
lationship between the average value of the drift of the

system, when the control parameter changes, and the
diffusion in the space of this control parameter. This
leads to the fact that the relation between the dis-
persion of the system and the fluctuations is present,
and it provides a steady state with the stationary
distribution function in the power form 𝜌𝑠 = 𝐷𝜇(𝜀),
where the degree 𝜇 will be determined by the ratio
between the degradation coefficient and the fluctua-
tion correlations. This makes it possible to conclude
that the Pareto-type distribution function arises un-
der the influence of a multiplicative noise in the sys-
tem, namely, due to fluctuations in the parameters of
the dissipation process.

Let us consider a simple case concerning the evo-
lution of the system in the inhomogeneous dissipa-
tion environment. In this case, the characteristics of
the system may be considered in terms of a different
value of the dissipation coefficient that depends on
the control parameter as a random quantity. In this
case, we can use the general results [14] where the
present approach is used to describe the noise induced
phase transition. In the case under consideration the
Langevin equation for slow control parameter can be
written in the form

𝑑𝜀

𝑑𝑡
= −𝛾𝑡𝜀,

where 𝛾𝑡 = 𝛾 + 𝜉𝑡 consists of constant part 𝛾,
which determine the average dissipation coefficient
and chaotic part 𝜉𝑡 which describes the influence of a
random dissipation change. In the case of the white
noise, we can write the following Fokker–Planck equa-
tion for the nonequilibrium distribution function in
the standard form of the Stratonovich interpreta-
tion [14]

𝜕𝜌(𝜀, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝜀
(𝛾𝜀𝜌(𝜀, 𝑡)) +

𝜎2

2

𝜕2

𝜕𝜀2
𝜀2𝜌(𝜀, 𝑡), (10)

where 𝜎2 determines dispersion of the dissipation co-
efficient fluctuations 𝛾. The stationary solution of this
equation can be presented as [14]

𝜌𝑠(𝜀, 𝑡) = 𝐶(𝜀)−[𝜈+𝛾/𝜎2]. (11)

This stationary solution has the form of a Pareto dis-
tribution. This result has been tested experimentally
and found to be valid in many cases, such as the dis-
tribution of money in society or the distribution of
words in literary works, etc. It may be argued that
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the distribution of the Pareto function is generated
by fluctuations in the environment in which the dy-
namics of an unbalanced system takes place. In addi-
tion, it should be considered that 𝜎2 is the variance
of only the dissipation coefficient 𝛾 and may be de-
termined by external conditions. The dependence of
dissipation properties on the control parameter may
be nonlinear. In such a case, we can introduce addi-
tional nonlinear term in the function

𝑓(𝜀) = −𝛾𝜀+ 𝛿𝜀𝑛.

As is seen, if 𝑛 = 1, nothing will change compared to
the previous case, except the power −[𝜈+(𝛾 − 𝛿)/𝜎2].
In the case of a nonlinear power, we get the following
result for the distribution function

𝜌(𝜀) = 𝐴𝜀−[𝜈+𝛾/𝜎2] exp

(︂
𝛿

𝜎

2

𝜀𝑛−1

)︂
. (12)

The resulting distribution does not work well for both
low and high control parameter values and can only
occur in a certain range of it. The multiplier before
the exponent can be interpreted as a dependence on
the density of states. It turns out that the physi-
cal properties of the system, such as heat capac-
ity, depend on the density of states. Based on the
behavior of the latter, conclusions are made about
the type of the phase transition in the equilibrium
case [20].

4. Energy Space

For a better understanding of the results thus ob-
tained, let us apply this approach to the description of
physical systems, where the energy of the system may
be a controlling parameter. In the nonequilibrium
case, the energy of the macroscopic system changes
depending on the external influences and initial con-
ditions, i.e., the system makes a transition from some
energy state to some other one. In order to describe
such evolution, it is necessary to consider the dissipa-
tion and influence of the environment [7–16].

A generalization of the statistical description of
such systems using the Gibbs distribution in the en-
ergy representation [21] is not always possible. In or-
der to understand the reasons for this, let us recall
the key points of this approach. The canonical Gibbs
distribution in the phase space is given by

𝜌(𝑞, 𝑝)𝑑Γ = exp

{︂
𝐹 −𝐻(𝑞, 𝑝)

Θ

}︂
𝑑Γ, (13)

where 𝐻(𝑞, 𝑝) = 𝐸 is the Hamiltonian on the hyper-
surface of the constant energy 𝐸, 𝑑Γ =

∏︀
𝑖 𝑑𝑞𝑖𝑑𝑝𝑖 is

an element of the phase space, Θ = 𝑘𝑇 , 𝑇 is the tem-
perature, and 𝐹 is the free energy that may be found
from the normalization condition∫︁

exp

[︂
𝐹 −𝐻(𝑞, 𝑝)

Θ

]︂
𝑑Γ = 1.

The phase space, as is known, is determined by the
energy of the system and by external parameters [21].
We introduce the quantity Σ = ln (𝑑Γ)/(𝑑𝐸). Then
we can consider the distribution in the energy space

𝜌(𝐸)𝑑𝐸 = 𝐶 exp

{︂
𝐹 − 𝐸

Θ
+Σ(𝐸)

}︂
𝑑𝐸. (14)

The normalization condition yields∫︁
𝑐 exp

[︂
𝐹 − 𝐸

Θ
+Σ(𝐸)

]︂
𝑑𝐸 = 1.

In order to select the states with dominant contribu-
tions into the partition function, we employ the condi-
tion for the temperature given by (𝑑Σ)/(𝑑𝐸) = 1/Θ.

When doing so, we assume that the relation be-
tween the changes of the value of the phase space
on the energy 𝐸 is known. In terms of this definition
and within the context of fundamental principles of
statistical mechanics [13], we come to the conclusion
that

Σ = ln
𝑑Γ

𝑑𝐸
= 𝑆

reproduces the entropy of the system bearing in
mind that the temperature describes the dependence
of entropy only on the energy, but not on other
thermodynamic functions. It also follows that inte-
gration over energy in the continual sense yields
an expression for the partition function. It is obvi-
ous that the extremum contribution into the parti-
tion function is associated with the states for which
𝐹 = 𝐸 − 𝜃𝑆 and that for any deviations from the lat-
ter condition the contribution into the partition func-
tion is negligibly small similarly to the contribution
of quantum corrections to the classical trajectories
[8, 16].

In the case of open systems, the additional dissi-
pation can occur (for example, the dissipative char-
acteristics of the external environment can have sig-
nificant random changes during the evolution), which
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can lead to a slow change in the energy of the sys-
tem under external influence. The random walking of
the system is also a result of the interaction with the
environment, the influence of which is manifested in
the random sequence of changes in the energy of the
system. If the system does not have enough time to
return to its initial distribution after a random change
in environmental parameters, it has to relax to a new
state. Therefore, the contribution of states with en-
ergy changed by fluctuations of external parameters
and which do not satisfy the condition of the dom-
inant contribution to the partition function in the
equilibrium case, can be significant, and the Gibbs
distribution is no longer valid.

The general equation that describes the variable
energy (3) as a slow control parameter 𝜀 = 𝐸 and
accounts for the dissipation energy and the random
walk in the energy space may be represented in the
form

𝜕𝐸

𝜕𝑡
= 𝑓(𝐸) + 𝐿(𝑡), (15)

where 𝑓(𝐸) determines changes in the energy due to
the dissipation processes, and 𝐿(𝑡) is a fluctuation
that cannot be associated with the changing dissipa-
tion and accounts for the random disturbances of the
environment. The dependence of the dissipation func-
tion on the energy includes the influence of all exter-
nal factors leading to the energy dissipation. Below,
we consider some examples of such dependence. In
the case of the white noise, we use the simple Fokker–
Plank equation (2) for the nonequilibrium distribu-
tion function given by [14, 18]

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
= − 𝜕

𝜕𝐸
(𝑓(𝐸)𝜌(𝐸, 𝑡)) +

𝜎2

2

𝜕2𝜌(𝐸, 𝑡)

𝜕𝐸2
. (16)

The stationary solution of this equation has the fol-
lowing simple form:

𝜌(𝐸) = 𝐴 exp

⎛⎝ 𝐸∫︁
0

𝑓(𝐸′)

𝜎2
𝑑𝐸′

⎞⎠. (17)

In the case 𝑓(𝐸) = −𝛾𝐸 that involves the efficient
dissipation of the energy in the external medium. The
stationary solution may be written in the form

𝜌(𝐸) = 𝐴 exp

(︂
−𝛾𝐸2

𝜎2

)︂
. (18)

To determine the physical meaning of the coefficient
of energy dissipation, we should return to the dy-
namic equation for the energy. The solution of this
equation may be written in the form

⟨︀
𝐸2

⟩︀
= 𝐸2

0 exp(−2𝛾𝑡) +
𝜎2

2𝛾
(1− exp(−2𝛾𝑡)), (19)

with the necessary condition lim𝑡→∞
⟨︀
𝐸2

⟩︀
= 𝜎2

2𝛾 . In
such case, the nonequilibrium distribution function is
given by

𝜌(𝐸) = 𝐴 exp

(︂
− 𝐸2

⟨𝐸2⟩

)︂
(20)

which is the equilibrium “Maxwell distribution func-
tion” for the energy close to the average value of the
fluctuating energy. It can be treated as a generaliza-
tion of the energy distribution in the conservative sys-
tem that does not interact with the thermostat. In
the latter case 𝑓(𝐸) = 0, and the stationary solu-
tion transforms to a constant. The equation for the
nonequilibrium distribution function in the case of
an open system has the form of the diffusive equation
that has the solution

𝜌(𝐸) = 𝐴
1√
8𝜋𝜎

exp

(︂
− 𝐸2

4𝜎2𝑡

)︂
(21)

that describes free migration of a fuzzy (blurred) sys-
tem in the energy space. The measure of fuzziness
increases in time according to the law

⟨︀
𝐸2

⟩︀
= 4𝜎2𝑡.

This solution describes the evolution of the system,
that in the initial state, was described by the distribu-
tion function of the closed system 𝜌(𝐸) = 𝛿(𝐸 −𝐸0).
All states of the system at the initial time are located
at the points of the energy conservation surface. Fluc-
tuations in external conditions lead to the blurring of
the microcanonical distribution. In this situation, a
stationary probability density does not exist. In this
sense, it is necessary to consider that 𝐸 = 0 is not
only an internal limit, but also a stationary point at
which all probable states of the system have similar
probability densities, and, therefore, transfer and dif-
fusion do not occur. This point is also an attraction
point, and all the “mass” of the probability density
is concentrated at zero and must satisfy the normal-
ization condition for the distribution function [14].
According to the probability density, it should cor-
respond to the microcanonical distribution function.
The stationary solution in the general nonequilibrium

524 ISSN 2071-0186. Ukr. J. Phys. 2024. Vol. 69, No. 8



Fluctuations and Power Law Distribution Function

case can be presented as given by

𝜌𝑠(𝐸) =
𝐶

𝐷𝜈(𝐸)
exp

⎛⎝− 𝐸∫︁
0

𝑓(𝐸′)𝑑𝜀′

𝐷(𝐸′)

⎞⎠. (22)

This distribution function has the extreme value by
the control parameter that can be found as a solution
of the equation

𝜈𝐷′( ̃︀𝐸) = 𝑓( ̃︀𝐸). (23)

If we assume that the dissipation 𝑓(𝐸) is a non-
linear function of the system state, many interesting
situations may arise, including noise-induced transi-
tions to new nonequilibrium states that are more sta-
ble than the previous state. In this sense, it is possible
to realize a new nonequilibrium state, with longer life-
time of the system. In this special state, the system
manifest new properties that were not manifested un-
der the initial conditions. Fluctuations of the environ-
ment determine the temperature of the system and all
possible states of this system. The temperature of the
system is determined by the diffusion in the energy
space, and this diffusion is a universal characteristic
of the environment. The temperature is determined
by the process under consideration. As an example,
we calculate the entropy at the extreme value of the
distribution function, i.e.,

𝑆 = −
∫︁

𝜌𝑠(𝐸) ln 𝜌𝑠(𝐸)𝑑𝐸 = ⟨𝑈(𝐸)⟩ (24)

and determine by definition, the temperature of the
system at the saddle point:

1

Θ
=

𝑑𝑆

𝑑 ⟨𝐸⟩
=

𝑑 ⟨𝑈(𝐸)⟩
𝑑 ⟨𝐸⟩

. (25)

This means that the temperature does not correspond
to the average value of the energy in the system and,
in the general case, represents a certain function of
the average energy. Below, we will show this in some
cases. In the simplest case of the Brownian particle,
we can take 𝑓(𝐸) = −𝛾𝐸, where 𝛾 is the coefficient
of dissipation and 𝑔(𝐸) = 1 for the white noise, then
𝑈(𝐸) = 2𝛾

𝜎2𝐸 and 1
Θ = 2𝛾

𝜎2 . The temperature for such
systems is determined only through the noise inten-
sity, that is natural.

5. Conclusion

The cause of the Pareto distribution in many nonequi-
librium systems is shown to be associated with the
fluctuations of the environmental properties.

The justification of the previously proposed ap-
proach to the statistical description of nonequilibrium
systems in the energy space [15] is presented, and a
general description of the evolution of the nonequi-
librium distribution function in the energy space is
proposed. On the basis of the Fokker–Planck equa-
tion for the distribution function of the macroscopic
system, a new equation was obtained that accounts
for fluctuations in the state of the environment. The
stationary solution of such equation describes steady
states of nonequilibrium systems. The proposed ap-
proach involves probable transitions between differ-
ent states due to the dissipation and diffusion of the
system in the energy space.

To describe the evolution of a nonequilibrium sys-
tem, we should find solutions to the Fokker–Planck
equation with nonlinear kinetic coefficients that may
be the subject of further research. It is natural to de-
scribe the evolution in the energy space using kinetic
coefficients, which should be found from the relevant
Langevin equations for the evolution of the control
parameter of the system interacting with the fluctua-
tions of the environment and its macroscopic charac-
teristics. A decrease in the power of the initial ground
state does not contradict the H-theorem, since it is
known that distributions whose evolution is governed
by the Fokker–Planck equation lead to an increase in
the entropy. Therefore, the picture proposed in this
article seems to be quite consistent.

APPENDIX A.
Ordinary Brownian Motion

To more fully illustrate the advantages of the proposed ap-
proach, let us consider the known results of the theory of Brow-
nian motion. Now, we will show that, for an ordinary Brown-
ian particle, the proposed approach to the description of the
stochastic dynamics in the energy space is completely equiva-
lent to the description in the velocity space. The dynamics of
Brownian particles can be described in terms of the velocity 𝑣

by the Langevin equation

𝑑𝑣

𝑑𝑡
= −𝛾𝑣 + 𝐹 (𝑡), (A1)

where 𝛾 is the coefficient of friction, and 𝐹 (𝑡) is the random
force that describes the action of the environment on the par-
ticle with the average over the equilibrium ensemble equal to
zero ⟨𝐹 (𝑡)⟩ = 0 and ⟨𝐹 (𝑡)𝐹 (𝑡′)⟩ = 𝜑2𝛿(𝑡 − 𝑡′), which satisfy
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the white noise condition and describe the uncorrelated pro-
cess of particle motion. For a Brownian particle, the energy
𝐸 = 𝑀𝑣2/2 and a change in the energy may be defined as

𝑑𝐸

𝑑𝑡
= 𝑀𝑣

𝑑𝑣

𝑑𝑡
= −2𝛾𝐸 +

√
2𝑀𝐸𝐹 (𝑡) (A2)

that is the Eq. (15) with 𝑓(𝐸) = −2𝛾𝐸, 𝑔(𝐸) =
√
𝐸 and

𝐿(𝑡) =
√
2𝑀𝐹 (𝑡). Using the solution of the Langevin equa-

tion for the velocity, we obtain [18]
⟨︀
𝑣2(∞)

⟩︀
= 𝜑2/(2𝛾) =

= (𝑘𝑇 )/𝑀 and, so, ⟨𝐸⟩ = (𝑘𝑇 )/2, where 𝑇 is the temperature
of the thermal bath. Using the solution of Eq. (A2) and dis-
regarding the correlation of the energy fluctuations, we obtain
also√︁

⟨𝐸⟩2 =
𝜎2

4𝛾
≡

𝜑2

4𝛾
2𝑀 = 𝑘𝑇

that, as in the previous result, fully satisfies the equilibrium
condition. Different descriptions of the process occurring in a
nonequilibrium system are equivalent, but the energy repre-
sentation is preferred, because it provides a possibility to find
the conditions for the “steady” states of the nonequilibrium sys-
tem. This approach is valid for various systems for which the di-
rect influence of interaction with the environment and probable
random nonequilibrium fluctuations can be determined. This is
preferable, because the energy is the slowest variable on which
relaxation of the system depends.

The energy presentation may be more transparent for the
understanding, if we compare it with the usual way of de-
scribing the equilibrium states. For example, for an ordinary
Brownian particle, the stationary solution can be written as

𝜌𝑠(𝐸) = 𝐴 exp

{︂
−
4𝛾

𝜎2
𝐸 − ln

√
𝐸

}︂
≡ 𝐴

1
√
𝐸

exp(−𝛽𝐸), (A3)

where the well-known relation (2𝛾)/𝜎2 = 𝛽 was used. In view
of the normalization condition∫︁

𝜌𝑠(𝐸)𝑑𝐸 ≡
∫︁

𝜌𝑠(𝑝)𝑑𝑝,

we obtain the equilibrium distribution function in the momen-
tum space in the form given by

𝜌𝑠(𝑝) = 𝐴 exp

(︂
−𝛽

𝑝2

2𝑀

)︂
= 𝐴 exp

(︂
−
𝑀𝑣2

2𝑘𝑇

)︂
. (A4)

The stationary solution completely represents the well-
known equilibrium distribution function for ordinary Brownian
particles.

Let us analyze another case where the energy is constantly
introduced into the system and dissipated, i.e., 𝑓(𝐸) = 𝛼−𝛾𝐸.
For such system, we obtain the following stationary distri-
bution function for fluctuations of the dissipation coefficient
𝛾 = 𝛾 + 𝜉𝑡

𝜌(𝜀) = 𝐴𝐸−[1+(2𝛾)/𝜎2] exp

(︂
−

2𝛼

𝜎2𝐸

)︂
. (A5)

Here, 𝜎2 is the variance of only the dissipation coefficient 𝛾. For
large values of the energy, we observe only power law distribu-
tion function.
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ФЛУКТУАЦIЇ ТА СТЕПЕНЕВI ФУНКЦIЇ
РОЗПОДIЛУ В НЕРIВНОВАЖНИХ СИСТЕМАХ

Сформульовано рiвняння Фоккера–Планка для функцiй
розподiлу макроскопiчних вiдкритих систем у просторi по-
вiльно змiнних фiзичних величин (енергiї, адiабатичних iн-
варiантiв тощо). Стацiонарний розв’язок отриманих рiв-
нянь визначає квазiрiвноважну функцiю розподiлу у та-
кому просторi. Запропонований пiдхiд враховує еволюцiю

систем пiд дiєю дисипацiї та дифузiї у просторi вiдповiд-
них змiнних. Показано, що вiдомий степеневий закон роз-
подiлу можна отримати, якщо врахувати внутрiшнi та зов-
нiшнi флуктуацiї в статистичних системах. Наведено при-
клад рiвнянь Ланжевена, якi генерують степеневi функцiї
розподiлу.

Ключ о в i с л о в а: рiвняння Фоккера–Планка, степенева
функцiя розподiлу, флуктуацiї в статистичних системах,
рiвняння Ланжевена.
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