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CROSS SECTIONS OF ELASTIC
SCATTERING FOR SYSTEMS 16O+ 42Ca, 16O+ 48Ca
WITHIN THE MODIFIED THOMAS–FERMI METHOD
WITH TAKING THE REPULSION CORE INTO ACCOUNT

Within the framework of the modified Thomas–Fermi method, the distribution densities of nu-
cleons and nucleus-nucleus interaction potentials for the reactions 16O+ 42Ca and 16O+ 48Ca
have been calculated. Besides, all contributions up to the second-order terms in ~ in the quasi-
classical expansion of the kinetic energy are taken into account, and Skyrme forces, which
depend on density, are used as the nucleon-nucleon interaction. A convenient parametrization
of the potentials between nuclei has been obtained, allowing them to be represented in analytic
form. Using the obtained potentials, the elastic scattering cross-sections are calculated, which
agree well with the available experimental data.
K e yw o r d s: Thomas–Fermi method, reactions 16O+ 42Ca and 16O+ 48Ca.

1. Introduction

The study of the fundamental properties of nuclear
reactions, in particular, cross-sections of various pro-
cesses, first of all, requires knowledge of the poten-
tial of nucleus-nucleus interaction [1–4]. Information
about the size and shape of the nucleus-nucleus inter-
action potential at small distances between nuclei is
of particular interest.

Qualitatively, the potential of nucleus-nucleus in-
teraction can be represented as the sum of three
parts – nuclear, Coulomb, and centrifugal. The prop-
erties of the last two components of the potential have
already been studied sufficiently. But the situation
with the nuclear part, unfortunately, remains much
more complicated, its properties are not well defined
yet. Currently, a large number of different models are
used to approximate the nuclear part of the inter-
action potential [1–26], which can give significantly
different results. Given this, information about the
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potential of nucleus-nucleus interaction, in particu-
lar, the height of barriers, is fundamentally important
when describing nuclear reactions.

From all this variety of methods [27–38] for cal-
culation of the nucleus-nucleus interaction potential,
in our work, we chose a semi-microscopic approach,
namely, the modified Thomas–Fermi method with
density-dependent Skyrme forces [4, 8, 9, 11, 12, 14–
26] as a nucleon-nucleon interaction. From the cur-
rently existing successful parametrizations of these
forces, we choose SkP parametrization [33]. It should
be noted that, in the quasi-classical distribution of
the kinetic energy by powers of ℎ, we consider all
terms up to ℎ2. Preliminary calculations for various
problems, carried out both by us and by other au-
thors, demonstrated the sufficient accuracy of such
approximation. The modified Thomas–Fermi method
with Skyrme forces well describes the characteristics
of the ground and excited states of atomic nuclei, for
example, the binding energy, root mean square radii,
etc. [27–33, 35].

At large distances between the nuclei, the poten-
tial of the modified Thomas–Fermi method is close to
the Coulomb potential; when the distance decreases,
we can observe a potential barrier, the magnitude
of which is determined by the simultaneous action
of Coulomb repulsion and nuclear attraction. With a
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further decrease in the distance, when the nucleon
densities of the nuclei are significantly overlapped,
the potential of the modified Thomas–Fermi method
has a radically expressed repulsion core [8, 11, 14, 15,
18–23], the appearance of which is associated with the
nuclear matter incompressibility [14, 15, 20, 23]. Note
that the short-range repulsion core also exists, for ex-
ample, in the Proximity potential [5].

The nucleus-nucleus interaction potentials, which
have a repulsion core, were not very often used to
study the process of scattering of atomic nuclei. In
particular, we can mention works [14, 15, 20, 23, 39,
40], where, based on the potential with a core, it was
possible to describe simultaneously the processes of
both elastic scattering and subbarrier fusion of nu-
clei. Therefore, the study of the elastic scattering pro-
cess within the framework of the modified Thomas–
Fermi approach is important and relevant.

The mathematical apparatus required for the im-
plementation of the chosen approach will be presented
in Sections 2 and 3. In Section 4, we will discuss the
calculation of elastic scattering cross sections and the
results obtained. In Section 5 we will present our con-
clusions.

2. Calculation of the Potential
within the Framework of the Modified
Thomas–Fermi Method

Qualitatively, the nucleus-nucleus interaction poten-
tial 𝑉 (𝑅) can be represented as the sum of nuclear
𝑉𝑁 (𝑅), Coulomb 𝑉Coul(𝑅), and centrifugal 𝑉𝑙(𝑅)
parts. The distance between the centers of mass of
the nuclei is denoted as 𝑅:

𝑉 (𝑅) = 𝑉𝑁 (𝑅) + 𝑉Coul(𝑅) + 𝑉𝑙(𝑅). (1)

The behavior of the Coulomb and centrifugal parts
has been studied quite well at present.

We will use widely used expressions for them, which
can be found in works [20, 23, 24]. We will calcu-
late the nuclear part of the nucleus-nucleus interac-
tion potential 𝑉𝑁 (𝑅) within the framework of the
modified Thomas–Fermi method, with regard for all
terms up to ℎ2 in the semi-classical distribution of the
kinetic energy [4, 8, 9, 11, 12, 14–26]. The density-
dependent Skyrme forces will be responsible for the
nucleon-nucleon interaction in the form of the SkP
parametrization [33]. The approximation of frozen

densities, within which we will work, is quite applica-
ble for energies in the nearby of the barrier.

To obtain the nucleus-nucleus interaction potential
𝑉𝑁 (𝑅), we need to calculate the energy of the sys-
tem of two nuclei at finite 𝐸12(𝑅) and infinite 𝐸1(2)

distances from each other [9, 11]:

𝑉𝑁 (𝑅) = 𝐸12(𝑅)− (𝐸1 + 𝐸2). (2)

Note that the energy of the system at the infinite
distance is the sum of the binding energies of two
separate nuclei:

𝐸12(𝑅)=

∫︁
𝜀[𝜌1𝑝(𝑟) + 𝜌2𝑝(𝑟,𝑅), 𝜌1𝑛(𝑟)+

+ 𝜌2𝑛(𝑟,𝑅)]𝑑𝑟, (3)

𝐸1(2)(𝑅) =

∫︁
𝜀[𝜌1(2)𝑝(𝑟), 𝜌1(2)𝑛(𝑟)]𝑑𝑟. (4)

In this formula, 𝜌1(2)𝑛 and 𝜌1(2)𝑝 denote the neutron
or proton density of the nucleus 1(2) respectively,
𝜀[𝜌1(2)𝑝(𝑟), 𝜌1(2)𝑛(𝑟)] is the energy density, and 𝑅 is
the distance between the centers of mass of the nuclei.

The expression for the energy density, which is
the sum of the kinetic, potential, and Coulomb
parts, with the Skyrme forces is well known [25–27,
31, 33, 38]:

𝜀 = 𝜀kin + 𝜀pot + 𝜀Coul =
~2
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In this expression, 𝜀kin is the kinetic energy density,
𝜀pot is the potential energy density, and 𝜀Coul is the
Coulomb energy density. Values 𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑥0, 𝑥1,
𝑥2, 𝑥3, 𝛼, 𝑊0 are Skyrme interaction parameters. The
terms, which include t0 and t3, correspond to zero ra-
dius forces. The term including 𝑡0 is related to the at-
traction, while the term proportional 𝑡3 is related to
the repulsion and increases as the density of nuclear
matter increases, preventing nuclear systems from the
collapsing. The terms, which include 𝑡1 and 𝑡2, corre-
spond to the forces of the finite radius of action, their
value increases with the nucleon density. The param-
eters 𝑥0, 𝑥1, 𝑥2 and 𝑥3 represent exchange effects, as
well as spin and isospin asymmetry, 𝑊0 is the spin-
orbit interaction constant.

The kinetic energy density can be represented as
the sum of the density of the usual Thomas–Fermi
method and the gradient correction of the second or-
der, i.e., 𝜏 = 𝜏TF + 𝜏2 [8, 9, 11, 12, 25, 28, 29, 38],
while 𝜏 = 𝜏𝑝 + 𝜏𝑛 is the sum of neutron and proton
kinetic energy densities. The kinetic energy density of
the usual Thomas–Fermi method [28, 29]

𝜏TF,𝑛(𝑝) = 𝑘𝜌
5/3
𝑛(𝑝), (6)

is the kinetic energy density of neutrons (protons)
in the Thomas–Fermi approximation, 𝑘 = 5

3 (3𝜋
2)2/3

and 𝜏2 is the full expression for the second-order gra-
dient correction in terms of ℎ [28, 29]:
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where 𝑏1 = 1/36, 𝑏2 = 1/3, 𝑏3 = 1/6, 𝑏4 = 1/6,
𝑏5 = −1/12 and 𝑏6 = 1/2 are numerical coefficients,
ℎ𝑚 = ~2/2𝑚. Note that the last term is related to
the spin-orbit interaction. In addition,
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and 𝑓𝑞 depends on the nucleon densities and Skyrme
forces parameters:
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The contribution of the usual Thomas–Fermi method
term is the main one, especially in the bulk of the
core, but, near the surface, the gradient corrections
also start to play a prominent role.

The purpose of this work is to consider the elas-
tic scattering reactions of 16O + 42Ca and 16O + 48Ca.
For these systems, within the framework of the
modified Thomas–Fermi approach, it is necessary
to calculate the nucleus-nucleus interaction poten-
tial, for which it is necessary to know the nucleon
density distributions in the nuclei. Nucleon densi-
ties will be obtained within the framework of the
same modified Thomas–Fermi approach with Skyrme
forces (SkP parametrization [33]). Nucleon densities
for 16O, 42Ca, and 48Ca obtained within the frame-
work of this method are shown in Fig. 1.

Having obtained nucleon densities, using formulas
(1)–(9), we can calculate the nucleus-nucleus inter-
action potential within the framework of the modi-
fied Thomas–Fermi method with Skyrme forces. The
nuclear part of the potentials calculated by us for
the 16O + 42Ca and 16O + 48Ca systems can be seen
in Fig. 2. The potentials of the modified Thomas–
Fermi method have a completely realistic form,
demonstrating a significant repulsion core at small
distances.

3. Analytical Representation
of the Interaction Potential

For further calculations, it would be very conve-
nient to parametrize our potential, which would al-
low us to work with it in an analytic form. At the
same time, we note that the account for the repul-
sion core is important for considering elastic scatter-
ing processes. That is why the use of the well-known
Woods–Saxon parametrization does not suit us. The-
refore, to give a more realistic form to our potential,
we will use one more term, similar to the structure
of the kinetic energy of the Thomas–Fermi method,
which should provide the repulsion that we need at
small distances. We have already used something sim-
ilar in work [21] for the double folding potential,
which significantly simplifies the calculations. Thus,
our parametrization of the potential will have the
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a

b

c
Fig. 1. Nucleon density distributions for 16O (a), 42Ca (b),
and 48Ca (c) nuclei, obtained within the framework of the
modified Thomas–Fermi method

Fig. 2. Interaction potentials for the reactions 16O+ 42Ca and
16O+ 48Ca, obtained in the modified Thomas–Fermi method,
as well as the presentation of the corresponding potentials in
analytic form (𝑉FIT) (13)

following form:

𝑉FIT(𝑅) = 𝑉WS(𝑅) + 𝑉kin(𝑅), (10)

where 𝑉WS(R) is the well-known formula for the
Woods–Saxon potential

𝑉WS(𝑅) =
−𝑉0

1 + 𝑒(𝑅−𝑅0)/𝑑0
, (11)

and 𝑉kin(𝑅) is the kinetic term in the form of the
Thomas–Fermi method. The kinetic energy of the
Thomas–Fermi method is proportional to 𝜌5/3 (6), so,
the repulsive term is approximated as follows, using
the well-known Fermi formula for 𝜌:

𝑉kin(𝑅) =

(︂
𝑉𝐶

1 + 𝑒(𝑅−𝐶)/𝑎

)︂5/3
. (12)

After that, our analytic potential takes the final
form:

𝑉FIT(𝑅) =
−𝑉0

1 + 𝑒(𝑅−𝑅0)/𝑑0
+

(︂
𝑉𝑐

1 + 𝑒(𝑅−𝐶)/𝑎

)︂5/3
. (13)

As a result, formula (13) contains six fitting pa-
rameters 𝑉 , 𝑅, 𝑑, 𝑉𝑐, 𝐶, and 𝑎, the values of which
are obtained by minimization for the highest qual-
ity description of the potential calculated within the
framework of the modified Thomas–Fermi approach
with density-dependent Skyrme forces. The potential
parameters obtained for the considered reactions are
presented in Table 1.
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Fig. 3. Elastic scattering cross section for the 16O+ 42Ca system at beam energies 𝐸lab = 56 and 60 MeV,
calculated within the framework of the modified Thomas–Fermi approximation with density-dependent Skyrme
forces (ETF). Experimental data (exp) are taken from [41, 42]

Fig. 4. Elastic scattering cross section for the 16O+ 48Ca system at beam energies 𝐸lab = 40 and 56 MeV,
calculated within the framework of the modified Thomas–Fermi approximation with density-dependent Skyrme
forces (ETF). Experimental data (exp) are taken from [43]

The quality of the approximation of the modi-
fied Thomas–Fermi approach potential with Skyrme
forces using formula (13) for the 16O + 42Ca and
16O + 48Ca systems is demonstrated in Fig. 2. As we
can see, the accuracy of the approximation is very
high, the deviations are almost not noticeable on the
scale of the graph. So, we can conclude that proposed
formula is well suited for reproducing the realistic po-
tentials of nucleus-nucleus interaction.

4. Calculations of the Elastic
Scattering Cross Sections

We will calculate the cross sections of elastic scatter-
ing within the framework of the optical model. As

Table 1. Parameters of the analytic representation
of the potential for the considered reactions

Reaction 𝑉0, MeV 𝑅0, fm 𝑑0, fm 𝑉𝑐, MeV3/5 𝐶, fm 𝑎, fm

16O+ 42Ca 49.1634 6.7586 0.6847 20.6223 3.2221 1.0838
16O+ 48Ca 51.0870 6.9515 0.6767 20.1222 3.3725 1.0768

the real part of the potential, we use the poten-
tials obtained in the modified Thomas–Fermi method,
approximated using formula (13). The correspond-
ing approximation parameters are presented in Ta-
ble 1. The imaginary part of the potential has the
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Table 2. Parameters of the imaginary part
of the potential (14) for the reaction 16O+ 42Ca

𝐸lab, 𝑊W, 𝑟W, 𝑑W, 𝑊S, 𝑟S, 𝑑S,
MeV MeV fm fm MeV fm fm

56 21.68126 1.100 0.300 9.231324 1.259115 0.615223
60 21.9798 1.100 0.300 9.30105 1.262264 0.641428

Table 3. Parameters of the imaginary part
of potential (14) for the reaction 16O+ 48Ca

𝐸lab, 𝑊W, 𝑟W, 𝑑W, 𝑊S, 𝑟S, 𝑑S,
MeV MeV fm fm MeV fm fm

40 22.01157 1.1106 0.301 9.400213 1.26300 0.65000
56 24.99059 1.1709 0.499 9.55938 1.26400 0.65418

following form [2, 4]:

𝑊 (𝑅) = − 𝑊W

1 + exp

[︂
𝑅−𝑟W(𝐴

1/3
1 +𝐴

1/3
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1/3
2 )

𝑑S

]︂}︂2 . (14)

Here, the parameters 𝑊W, 𝑅W, 𝑑W, 𝑊S, 𝑟S, 𝑑S are
the strength, radius and diffusiness of the volume (W)
and surface (S) terms of the imaginary potential. This
form of the imaginary part of the potential is widely
known and is often used in the description of nuclear
reactions.

In this work, we consider elastic scattering reac-
tions for 16O + 42Ca at beam energies 𝐸lab = 56,
60 MeV, as well as 16O + 48Ca at beam energies
𝐸lab = = 40, 56 MeV. As the real part of the po-
tential, we used our potential calculated within the
framework of the modified Thomas–Fermi method,
approximated using (13). For the imaginary part, the
parameters 𝑊W, 𝑅W, 𝑑W, 𝑊S, 𝑟S, 𝑑S were deter-
mined by fitting to best reproduce the experimental
data from the elastic scattering cross sections. The
parameters obtained in this way are presented in Ta-
bles 2 and 3.

Our calculated elastic scattering cross sections for
16O + 42Ca system at beam energies 𝐸lab = 56,

60 MeV, and for 16O + 48Ca at energies Elab = 40,
56 MeV are presented in Figs. 3 and 4. The cross-
sections in the figures are normalized to the Ruther-
ford cross section. From the figures, we can see that
our calculated elastic scattering cross sections agree
well with the available experimental data, which were
taken from works [41–43].

5. Conclusions

In this work, we calculated the nucleus-nucleus inter-
action potentials within the framework of the modi-
fied Thomas–Fermi approach for the 16O + 42Ca and
16O + 48Ca systems. The density-dependent Skyrme
forces were used as the nucleon-nucleon interaction,
namely, SkP parametrization. Note that the nucleon
distribution densities were obtained using the same
approach. The obtained potentials have a completely
realistic form, at small distances demonstrating the
presence of a radically expressed repulsion core, which
is very important when considering elastic scattering
processes.

A successful form of parametrization is proposed,
which well describes the realistic potentials of nuc-
leus-nucleus interaction, in particular, obtained wi-
thin the framework of the modified Thomas–Fermi
method with Skyrme forces.

Based on calculated nucleus-nucleus interaction
potentials, elastic scattering processes for the
16O + 42Ca and 16O + 48Ca systems at different en-
ergies were studied. The elastic scattering cross sec-
tions were obtained. Note that the expression of the
real part of the potential for each reaction at different
energies remained the same, the fitting was performed
due to the imaginary part. Our calculation cross sec-
tions are in good agreement with the available exper-
imental data.
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ПЕРЕРIЗИ ПРУЖНОГО РОЗСIЯННЯ
ДЛЯ 16O+ 42Ca ТА 16O+ 48Ca, ОДЕРЖАНI
НА ОСНОВI ПОТЕНЦIАЛУ МОДИФIКОВАНОГО
МЕТОДУ ТОМАСА–ФЕРМI З УРАХУВАННЯМ КОРУ

Густини розподiлу нуклонiв та потенцiали ядро-ядерної
взаємодiї для реакцiй 16O+42Ca та 16O+48Ca було розра-
ховано в рамках модифiкованого методу Томаса–Фермi, з
урахуванням усiх доданкiв до членiв другого порядку по ~
у квазикласичному розкладi кiнетичної енергiї. В ролi нук-
лон-нуклонної взаємодiї використовувалися сили Скiрма,
залежнi вiд густини нуклонiв. Знайдено параметризацiю
потенцiалу ядро-ядерної взаємодiї, яка добре описує вели-
чину потенцiалу, розрахованого у рамках модифiкованого
пiдходу Томаса–Фермi з залежними вiд густини силами
Скiрма. На основi одержаних потенцiалiв були обчисленi
перерiзи пружного розсiяння, що добре узгоджуються з
експериментальними даними.

Ключ о в i с л о в а: метод Томаса–Фермi, реакцiї
16O+ 42Ca та 16O+ 48Ca.
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