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CLIFFORD ALGEBRA
AS A WAY TO QUANTUM GRAVITY

This article puts forward a novel hypothesis for a solution to the problem of quantization
of gravity. The objective of this study is to demonstrate that the geometric representation of
the wave function can be considered as a characteristic of the space-time manifold. In this
approach, it is shown that the Dirac theory for the hydrogen atom and the Kepler dynamics
for the planetary system describe analogous phenomena in the space-time. The states of these
systems possess parameters that correspond to the permitted dynamic states of the space-time,
thereby maintaining information regarding the corpuscular and wave nature. The proposed
approach sheds a new light on the potential resolution of the problems of quantum gravity.
K e yw o r d s: Clifford algebra, wave function, test particle, space-time manifold.

1. Introduction
One of the approaches to quantum gravity [1–3] as-
sumes that quantum theory can be represented in a
geometric form that is compatible with the general
theory of relativity. In this regard, the recent paper
[3]) which proposes quantum gravity without metric
quantization of a particular interest. That paper ad-
vanced a covariant extension of the Bohmian mechan-
ics onto a curved space-time, where trajectories create
a “hidden curvature” by replacing the metric super-
position with a statistical ensemble. In such a case,
gravitational effects arise from deterministic quantum
trajectories.

As shown in the previous studies [4–14], quan-
tum mechanics can be derived from the mathemat-
ical structure of the Clifford algebra without recourse
to an external Hilbert space of wave functions. An
interesting article in this direction is [15], where the
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formalism of geometric algebra is used to develop a
theory that enhances conventional quantum mechan-
ics. The use of Clifford’s algebra in quantum mechan-
ics [4,16] actually provides only an algebraic structure
and leads to a quantum mechanical theory that con-
tains no additional requirements; moreover, in the
terms of such an approach one can find the basis for
a common geometrical description as a different kind
of interaction of a separate particle [17].

Clifford’s space-time algebra provides a vivid exam-
ple of an alternative formulation of the wave equa-
tion. The Dirac equation can be understood as a
transfer rule for the wave function of any manifold,
and it has a hidden geometric structure [17, 18]. This
equation is used as one of the possible mathematical
interpretations of quantum mechanics. Moreover, it
does not depart from the principles of classical physics
[19]. It is also essential that, in this case, it is easy to
provide a geometrical representation of the genera-
tors for the gauge transformations. The appearance of
fields of different natures is dictated by quantum fluc-
tuations [20–22] has shown, and necessarily depends
on the geometrical nature of the physical vacuum,
that is, on what physical properties we attribute to it.
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In our interpretation, the transport equation for
the wave function of a test particle on an arbitrary
manifold is used as a prototype for the theory of
space-time, based on the general physical principles
of the equivalence of particle coupling constants and
this manifold dynamics. As will be shown, the pro-
posed algebraic approach is an effective means of de-
scribing the behavior of electrons in a hydrogen atom
and planetary systems. The geometric representation
of general relativity allows us to recover the stan-
dard quantum approach and can also be used to de-
scribe physical behavior on a large scale. The wave
properties of macroscopic particles are manifested in
the behavior of their “trajectories” in the observed
space-time.

The main idea of the paper is to show that the
quantum properties of the “test particle” can emerge
from the properties of the space-time in which the
dynamics takes place. The test particle exhibits cor-
puscular or wave properties on the dynamical mani-
fold and depends on the scale. The geometric defini-
tion of the wave function shifts the focus, where the
wave function is considered as a property of space-
time and takes a probabilistic value according to the
corresponding states of the manifold in which a “test
particle” with the appropriate coupling coefficients
is present. This approach, in our opinion, points a
way to the quantization of the gravitational field. The
quantization of the curved space-time in such a case
is done through the quantization of possible trajecto-
ries of the motion of the test particle endowed with
the appropriate physical properties.

2. Method

2.1. Geometrical presentation
of a “Test particle”

First, it is necessary to note the standard definition
of a test particle as an idealization of a physical ob-
ject whose properties (spin, mass, charge, or size) are
used to describe its dynamics on an arbitrary space-
time manifold, which directly affects arbitrarily cho-
sen properties on different scales. The primary con-
cept is based on the correspondence between Dirac
spinor matrices 𝛾𝜇 and elements of the external alge-
bra, and the definition of the state in terms of repre-
sentations of the Clifford space-time algebra Cl1,3. It
can be postulated that every elementary formation
at any point can be described in terms of the Clifford

number. Such a characteristic of the space-time man-
ifold at the corresponding point is represented as the
wave function of the test particle or excitation.

The characteristic of an excitation of the space-
time manifold at an arbitrary point is represented
by a complete geometric object consisting of the di-
rect forms of the induced space of the Clifford algebra
[18, 23–25]. In this case, the complete geometric ob-
ject can be written as the direct sum of a scalar, a vec-
tor, a bi-vector, a three-vector, and a pseudo-scalar,
i.e. Ψ = 𝑆⊕𝑉 ⊕𝐵⊕𝑇 ⊕𝑃 , where the basis vector is
represented by the Dirac matrix 𝛾𝜇. Another element
of the symmetry is the change of the multiplication
of the basis vectors to inverses in the representation
of the Clifford numbers, which turns them into Ψ̄ =
= 𝑆 ⊕ 𝑉 ⊖𝐵 ⊖ 𝑇 ⊕ 𝑃 . The ring structure is satisfied
by the direct product in the symbolic notation given
by ΨΦ = Ψ · Φ + Ψ ∧ Φ, where Ψ · Φ is an inner
product or convolution that decreases the number of
basis vectors, and Ψ ∧ Φ is an external product that
increases the number of basis vectors.

The symplectic structure of the Clifford algebra fol-
lows from ground relation for two basis vector mul-
tiplication 𝛾𝜇𝛾𝜈 = 𝛾𝜇 · 𝛾𝜈 + 𝛾𝜇 ∧ 𝛾𝜈 , where there
is present simultaneously a scalars and an outer
product for the basis vectors. The scalar product
𝛾𝜇 · 𝛾𝜈 = 1

2 (𝛾𝜇𝛾𝜈 + + 𝛾𝜈𝛾𝜇) = 𝜂𝜇𝜈𝐼 can be defined as
the Minkowski metric tensor in theEuclidean space
(anticommutator) and the outer product 𝛾𝜇 ∧ 𝛾𝜈 =
1
2 (𝛾𝜇𝛾𝜈 −𝛾𝜈𝛾𝜇) = 𝑠𝜇𝜈 as the commutator of the basis
matrices.

If we multiply each Clifford number by a fixed col-
umn 𝑢 with 4 elements, where the first element is one
and all others are zero, we get a Dirac bi-spinor with
four elements 𝐵 = 𝑢Ψ. Using this column, one can
reproduce the spinor representation of each Clifford
number. The complex conjugate bi-spinor can be ob-
tained by multiplying the same Clifford number by a
string 𝑢+ whose first element is one and all others are
zero 𝐵* = Ψ̄𝑢+ provided that 𝑢+𝑢 = 1. There is a
complete correspondence between the bi-spinors thus
obtained, and the elements of the exterior algebra -
the isomorphism [4].

Now, let us determine the rule of comparing two
Clifford numbers in different points of the mani-
fold. An arbitrary transformation of the coordinate
system may be set in terms of the basis deformations
𝑒𝜇 = 𝑅𝛾𝜇𝑅̃, where 𝑅 is the Clifford number that
describes arbitrary changes of the basis (including
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arbitrary displacements and rotations), that do not
violate its normalization, i.e., provided 𝑅̃𝑅 = 1. It
is not difficult to verify that 𝑒2𝜇 = 𝑅𝛾𝜇𝑅̃𝑋𝛾𝜇𝑅̃ =

= 𝑅𝛾2𝜇𝑅̃ = 𝛾2𝜇, and this relation does not violate the
normalization condition and commutation relations
between the new matrices [26]. An arbitrary physical
object must be represented by a mathematical object
which can transformed during rotations and trans-
lations. The geometrical objects presented here have
properties of the spinor transformation [27].

For an arbitrary basis, we may define, at every
point of the space, a unique complete linearly inde-
pendent form as a geometric entity that character-
izes this point of the manifold. If this point of the
manifold is occupied, then its geometric characteris-
tics may be described by the coefficients of general
representation. A product of arbitrary forms is given
by a similar form with new coefficients, thus provid-
ing the ring structure. This approach makes it pos-
sible to consider the mutual relationship of fields of
different physical natures [17, 28]. To determine the
characteristics of the manifold implies to associate
every point of the manifold with a Clifford number
and to find its value. To define a transfer operation
on an arbitrary manifold, we have to define a deriva-
tive operator, e.g., as given by 𝑑 = 𝛾𝜇 𝜕

𝜕𝑥𝜇
= 𝛾𝜇𝜕𝜇 and

represents changes along the curves passing through
a given point in the space. The action of this oper-
ator for any Clifford number may be presented as
𝑑Ψ = 𝑑 · Ψ + 𝑑 ∧ Ψ, where 𝑑 · Ψ and 𝑑 ∧ Ψ may be
referred to as the “divergence” and the “rotor” of the
relevant Clifford number. Within the context of the
definition of a differentiated variety, it is not enough
to have one special coordinate system covering a va-
riety whose topology differs from the topology of an
open set in the Euclidean space.

2.2. Transfer rule and motion
integrals at arbitrary space- time manifold

The assigning a specific geometric interpretation to
the wave function of the “test particle” allows us to ob-
tain precise transfer rules for an arbitrary space-time
variety [17, 18], and, thus, facilitating the discovery
of its nature. For the wave function as a geometric
entity, the first structural equation can be written in
standard form:

𝐷Ψ = 𝑑Ψ+ΩΨ, (1)

where the connectivity Ω include the influence of the
space-time manifold. After this presentation of the
transfer rule, several important remarks should be
made. In such a form, the operator 𝑑 and the connec-
tivity Ω are scalar and are not changed by different
symmetry transformations as coordinates by gauge
transformations together. As for coordinate transfor-
mations, it is obvious, because there is only one part
associated with such a transformation, that is

𝑑𝑡 = 𝑅𝛾𝜇𝑅̃𝑅𝜕𝜇𝑅̃ = 𝑅𝛾𝜇𝜕𝜇𝑅̃ = 𝛾𝜇𝜕𝜇 = 𝑑.

There are two equivalent variants of calibration
transformations Ψ𝑐 = 𝑅Ψ. The first consists in equat-
ing the covariant derivation to zero, and then all the
properties of the manifold appear as coefficients of
connectivity of the wave function with this mani-
fold. At the same time, the calibration relation, which
is applied to the connectivity as a constant Ω, takes
the form

Ω𝑐 = 𝛾𝜇𝑅𝛾𝜇Ω𝑅̃− 𝛾𝜇𝜕𝜇𝑅𝑅̃. (2)

The second method can be used, if the wave func-
tion transfer rules are proportional to the same wave
function with a selected scalar coefficient 𝑀 which
involves a separate connection with the manifold

𝐷Ψ = 𝑑Ψ+Ω𝑔Ψ−𝑀Ψ. (3)

Let has represent Ω𝑐 = 𝛾𝜇Γ𝜇 as a product of two
vectors, where Γ𝜇 can be called the vector-potential,
and rewrite the previous equation in the form

𝐷Ψ = 𝑑Ψ+Ω𝑐Ψ−𝑀Ψ = 0, 𝛾𝜇 · ∇𝜇Ψ =𝑀Ψ, (4)

where ∇𝜇 = 𝜕𝜇 − Γ𝜇 is the well-known covariant
derivation. Then the calibration transformation valid
for this equation takes the standard form

Γ𝑐
𝜇 = 𝑅Γ𝜇𝑅̃− 𝜕𝜇𝑅𝑅̃. (5)

The same transformation can be obtained in the first
case, if we represent the general connectivity as Ω =
= Ω𝑐 −𝑀 . In this sense, the scalar mass can also be
considered as the coefficient of the coupling of a “test
particle” with the space-time manifold. This proves
the equivalence of the two approaches. The difference
is only in that the first case allows us to use the
transfer equation in the non-linear case where the
general connectivity can be represented as a scalar
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product of the same wave functions Ω = ΨΨ̃ that
were used in the articles [8, 10, 11]. In article [11],
such representation of the connectivity was used to
describe the vacuum state of the manifold and its
predicted supersymmetric behavior. The representa-
tion of the connectivity of the space-time in the form
Ω = 𝛾𝜇Γ𝜇 can always be done, if we assume that the
general form of the connectivity has the same form as
a wave function. Let us multiply this expression by
𝛾𝜇𝛾𝜇 = 1. Then it may be used as a vector-potential
Γ𝜇 = 𝛾𝜇Ω.

Now, we can demonstrate that the form of the
transfer rule, the characteristic of a point of an arbi-
trary manifold 4, is entirely consistent with the Dirac
equation in the geometric representation [18]. In the
general case, the connectivity contains both the real
and imaginary parts Γ𝜇 = Γ𝜇 + 𝑖𝑈𝜇. For example,
if there is only an imaginary part, it is enough to
represent the general connectivity as Ω = 𝛾𝜇Γ𝜇 =
𝑖𝛾𝜇𝑈𝜇 = 𝑖𝑞𝛾𝜇𝐴𝜇, where 𝐴𝜇 is the vector-potential of
the electromagnetic field with the coefficient 𝑞 = 𝑒

~𝑐
and 𝑖𝑀 = 𝑚𝑐

~ where 𝑚 is the mass, 𝑒 is the charge of
the test particle, and ~ is the Planck constant. Then
the transport equation for the wave function of an
electron on the space-time turns into the well-known
standard Dirac equation:

𝛾𝜇
(︁
𝑖~𝜕𝜇 − 𝑒

𝑐
𝐴𝜇

)︁
Ψ = 𝑚0𝑐Ψ (6)

or canonical form [19]

𝛾𝜇∇𝜇Ψ = −𝑖𝑚0𝑐

~
Ψ. (7)

For the complete group of linear transformations
Ψ′ = Ψ𝑅 , where 𝑅 defines the mapping elements
and satisfies the condition 𝑅̃𝑅 = 1, the calibration
transformation for the connectivity 𝐴𝜇 is defined, as
previously:

𝐴′
𝜇 = 𝑅𝐴𝜇𝑅̃−𝑅𝜕𝜇𝑅̃. (8)

The test particle (electron) affects the manifold only
through its physical characteristics (mass, charge,
spin) as coefficients of the general representation. On-
ly in this approach, the dynamical equation for the
wave function of the electron is represented as a par-
allel transfer rule on an arbitrary space-time manifold
with the connectivity which describe the electromag-
netic field. For this reason, the transfer rules 4 for the
wave function can be called the Dirac-like equation.

It should be noted that, to determine the transfer
rules, it is not necessary to introduce Planck’s con-
stant. It appears, only when we want to find a wave
solution in the de Broglie presentation Ψ ∼ exp 𝑖𝑆ℎ ,
where 𝑆 is the action, and Planck’s constant ℎ is
a measure of the phase space that corresponds to a
single state that is described by a given wave func-
tion. Accordingly, the size of the phase space which is
celled belonging to one state directly depends on the
scales of the momentum and coordinates. The scales
of behavior of electrons and planets are significantly
different, and, therefore, this plays a decisive role in
the wave behavior of the test particle.

The symplectic structure of the Clifford algebra en-
ables the immediate identification of all integrals of
motion for such dynamics. The Clifford algebra al-
lows for the simultaneous introduction of the scalar
product and the commutator of these quantities due
to the presence of inner and outer products. It was
established in previous studies [12, 19] that the dy-
namic integrals of motion that are preserved for the
Dirac equation and, in our case, with general transfer
rules, have the form:
𝐽𝜇 = Ψ̄𝛾𝜇Ψ, 𝐽5 = Ψ̄𝛾5Ψ, (9)
𝐽𝜇𝜈 = Ψ̄𝑠𝜇𝜈Ψ, 𝐽5𝜈 = Ψ̄𝛾5𝛾𝜈Ψ, (10)

where 𝑠𝜇𝜈 = [𝛾𝜇𝛾𝜈 ] = 𝛾𝜇𝛾𝜈 −𝛾𝜈𝛾𝜇 is the commutator
of the Dirac matrix and 𝛾5 = 𝛾0𝛾1𝛾2𝛾3 product of
all Dirac matrices. The quantity Ψ̄𝛾0 = Ψ*; then the
integral of motion 𝐽0 = 𝜌 = Ψ*Ψ is clearly identified
as the probability of finding the test particle at the
corresponding point on the trajectory. The integral of
motion 𝐽𝜇 = Ψ̄𝛾𝜇Ψ = Ψ*𝜎𝜇Ψ corresponds to a prob-
ability flow on the space-time manifold, where 𝜎𝜇 is
the Pauli matrix in four dimension [19]. The conser-
vation of the probability flow can be demonstrated
by checking that 𝜕𝜇𝐽𝜇 = 0 is zero [13]. The integral
of motion 𝐽𝜇𝜈 = Ψ̄𝑠𝜇𝜈Ψ is responsible for the con-
servation of the angular momentum, and the integral
of motion 𝐽5𝜈 = Ψ̄𝛾5𝛾𝜈Ψ determines the Runge–Lenz
vector, which is exactly conserved in a centrally sym-
metric field [29].

It should be noted that the obtained integrals of
motion completely reproduce the very important hid-
den Lorentz covariance of quantum mechanics, fully
investigated in the article [30]. In general, the com-
mutators of two arbitrary matrices A and B can be
written as
[Ψ̄𝐴Ψ, Ψ̄𝐵Ψ] = Ψ̄(𝐴𝐵 −𝐵𝐴)Ψ. (11)
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In the introduced notations for our integrals of motion
𝐽𝑚𝑢, we can obtain

[𝐽𝜇, 𝐽𝜈 ] = 𝜌Ψ̄(𝛾𝜇𝛾𝜈 −𝛾𝜇𝛾𝜈)Ψ = 𝜌Ψ̄𝑠𝜇𝜈Ψ = 𝜌𝐽𝜇𝜈 (12)

and, for the integrals of motion 𝐽𝜇𝜈 , the following
relation is valid:

[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝜌Ψ̄(𝑠𝜇𝜈𝑠𝜌𝜎 − 𝑠𝜌𝜎𝑠𝜇𝜈)Ψ (13)

or, in a more convenient form through the previously
introduced integrals of motion,

[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝜌
(︁
𝛿𝜇𝜈𝐽𝜌𝜎 + 𝛿𝜈𝜎𝐽𝜇𝜌 − 𝛿𝜇𝜎𝐽𝜈𝜌 − 𝛿𝜈𝜌𝐽𝜇𝜎

)︁
,

(14)

which fully corresponds to the relations obtained in
the article [30] and confirms the hidden Lorentzian co-
variance of the presented approach. Using the given
integrals, one can always obtain a solution in the gen-
eral case.

2.3. Clifford algebra in general relativity

As shown in the known articles [20–22] the problem of
the appearance of a gravitational field can be solved
by considering fluctuations of the vacuum. Thus, the
Dirac equation with gravity appears as a prototype
of interaction theory based on a generalized principle
equivalence [21]. In the proposed geometric approach,
this can be taken into account by means of nonlinear
transformations of the coordinate system. The main
difficulty of the theory of gravity can be overcome
due to the quantum fluctuations of the vacuum, the
ground state, in relation to which matter represents
an excitation, the expected values of which are equal
to zero, but its square gives the nonzero value. This is
the simplest case of a field quantum theory that sat-
isfies the equivalence requirement. As shown in [18]
the Dirac equation in a geometric interpretation is,
probably, a prototype of a more general equations
including electromagnetism as well as another inter-
actions. Such equation is linear in the term additional
field, that being a necessary condition for the fulfill-
ment of the equivalence claim. In the geometric inter-
pretation, the Lagrange density for the transfer rule
equations can be represented as

𝐿 = Ψ̄𝐷Ψ = Ψ̄(𝛾𝜇 ×∇𝜇 −𝑀)Ψ, (15)

where operator ∇𝜇 = 𝜕𝜇 −Γ𝜇. Such an image always
occurs even in the case of a nonlinear dependence of

the connectivity on the wave function itself. A scalar
quantity Ω ∼ 𝛾𝜇Γ𝜇 can always be represented as a
scalar product of a unit vector and a “vector poten-
tial” of the unknown physical content. For our space-
time additional “vector potentials” Γ𝜇, the introduced
Lagrangian density will be invariant not only with re-
spect to unitary coordinate transformations but also
under more general gauge transformations. As for the
mass parameter 𝑀 in this approach, it considered as
a formal value, which will be discussed below. Now,
we can introduce the conformal transformation of the
field Φ̄ =

√
𝑔Ψ̄ and Φ =

√
𝑔Ψ where 𝑔, as usual,

the magnitude of the determinant of the matrix ten-
sor. In the new variables, the Lagrangian density can
be present in the form
𝐿 =

√
𝑔Φ̄(𝛾𝜇 ×∇𝜇 −𝑀)Φ. (16)

In this case, the coordinate transformations are not
unitary. The important property of the Lagrangian
density satisfies the equivalence claim in the sense
that, at any space-time point, the first coordinate
derivatives of the Dirac matrix can be made to
vanish, which was shown in [8]. Minimizing point
action with the new density Lagrangian [21, 28],
we can obtain the equation 𝑀Φ = = 𝛾𝜇 ×∇𝜇Φ
and 𝑀 Φ̄ = 𝛾𝜇 × ∇𝜇Φ̄. Taking into account that
𝛾𝜇 × ∇𝜇 = 1√

𝑔𝛾
𝜇 × ∇𝜇

√
𝑔 and (𝛾𝜇 × ∇𝜇)

2 =

=
√
𝑔(𝜕𝜇 − Γ𝜇)

√
𝑔(𝜕𝜈 − Γ𝜈)𝑔

𝜇𝜈 − 𝑅
4 , where 𝑅 is the

Einstein scalar curvature, we can obtain the action in
final form

𝑆=

∫︁
√
𝑔Φ̄

(︁√
𝑔(𝜕𝜇−Γ𝜇)

√
𝑔(𝜕𝜈−Γ𝜈)𝑔

𝜇𝜈−𝑅

4
−𝑀2

)︁
Φ.

(17)

Thus, taking the fluctuations of the spinor field in
the Clifford algebra into account, it is possible to de-
scribe the motion of the test particle in the distorted
Euclidean space-time. For the vacuum, this approach
assumes an elastic deformation of the space-time due
to the presence of a spinor field [18].

3. Results
3.1. Gravitation field in Clifford algebra

Let us now consider a very important question con-
cerning a possible combination of quantum theory
and general relativity. The preliminary definition of
the transfer rules on an arbitrary manifold (space-
time), as well as the existence of corresponding in-
tegrals of motion for the covariant transfer, already
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contain such a possibility. It is enough to change the
emphasis of the interpretation of the wave function it-
self. Let the physical object be a wave function with a
given geometrical representation describe dynamical
trajectory. That is, the wave function describes the
test particle on the corresponding trajectory. On this
trajectory, we can enter the corresponding coordi-
nates in the form 𝑥𝜇 = 𝐽𝜇 = Ψ̄𝛾𝜇Ψ, which correspond
exactly to the first integrals of motion. Now, we can
enter the definition of the interval on the correspond-
ing trajectory 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈𝑑Ψ̄𝛾
𝜇Ψ𝑑Ψ̄𝛾𝜇Ψ.

If we use the transport equation for the wave func-
tion 4 and introduce a new definition of the metric
tensor in terms of the introduced wave functions as
𝑔𝜇𝜈 = Ψ̄𝛾𝜇𝛾𝜈Ψ, then we can obtain an interval on any
trajectory in the form 𝑑𝑠2 = Ψ̄ΨΓ2 = 𝐵*𝐵Γ2 = 𝜌Γ2,
where only the real part of the space-time connection
Γ = 𝛾𝜇Γ

𝜇 is present. As is seen, this is the vector
potential of the gravitational field in Fock–Ivanenko
presentation [8, 19] and 𝜌 is probability density.

In the Clifford algebra, Ψ̄Ψ = 𝜌 defines the prob-
ability density for a wave function which present
in canonical form [7, 19] Ψ = 𝜌

1
2𝑅, where 𝑅 is

the Clifford number and defines all possible trans-
formations of the wave function, provided that
𝑅̄𝑅 = 1. Now, let us introduce a new defini-
tion of the metric tensor in terms of the canoni-
cal form of the wave function 𝑔𝜇𝜈 = Ψ̄𝛾𝜇𝛾𝜈Ψ =
= 𝜌𝑅̄𝛾𝜇𝛾𝜈𝑅 = 𝜌𝑅̄𝛾𝜇𝑅̄𝑅𝛾𝜈𝑅 = 𝜌𝑒𝜇𝑒𝜇. In this inter-
pretation, the metric tensor represents the probabil-
ity of the corresponding deformed basis, which corre-
sponds to the geometric representation of the general
theory of relativity. With this definition of the metric
tensor, it can take on both real and imaginary val-
ues. This defines a hidden non-classical geometry of
the space-time. In such interpretation of the metric,
the stochastic (quantum) behavior is hidden.

We may assume that if we consider the coordinate
on the trajectory, where the test particle is located
(see the articles [31, 32], where the spinor represen-
tation 𝑥𝜇 = 𝐽𝜇 = Ψ̄𝛾𝜇Ψ was used) and take the
equation of a geodesic trajectory in the gravitational
field, then we can obtain the equation for velocity
𝑣𝜇 =

𝑑𝑥𝜇

𝑑𝑠 =
𝑑𝐽𝜇

𝑑𝑠 =
𝑑(Ψ̄𝛾𝜇Ψ)

𝑑𝑠 in the form

𝑑𝑣𝜇

𝑑𝑠
+ Γ𝜇

𝜈𝜆𝑣𝜈𝑣𝜆 =
𝑑2𝐽𝜇

𝑑𝑠2
+ Γ𝜇

𝜈𝜆

𝑑𝐽𝜈
𝑑𝑠

𝑑𝐽𝜆
𝑑𝑠

= 0. (18)

The publication of articles [31, 32], in which the
spinor regularization of Kepler’s motion was pro-

posed, helped one to find the hidden symmetry of a
hydrogen atom and reduce the problem to description
of a harmonic oscillator. After that, we can use the
quantization of the flow of possible trajectories. The
observed trajectory may correspond to a bound state
in the set of possible trajectories. For example, for
closed periodic trajectories 𝑑Ψ

𝑑𝑠 = 𝑖𝜔Ψ with frequency
𝜔 it corresponds to a hydrogen atom. For the Ke-
pler motion, the above relation (18) holds exactly. For
open trajectories 𝑑Ψ

𝑑𝑠 = ±𝜔Ψ corresponding to free
motion in a gravitational field, we can obtain that
𝜌 = 𝛾𝜎

𝜕𝑔𝜇𝜈

𝜕𝑥𝜎 𝑔
𝜇𝜈 is determined only through the met-

ric tensor of the space-time.
Now, it is necessary to consider the rules for

the transformation of Clifford numbers in a non-
Euclidean coordinate system. In order to address the
issue of covariant derivation of the theory, it is es-
sential to include the internal coupling of Clifford
numbers within the context of an arbitrary Rie-
mann geometry, where the Minkowski metric can
be considered a relatively simple approximation. In
the Fock–Ivanenko approach, as outlined in articles
[8, 21, 28, 33], an analogy with electrodynamics was
employed to define the essential properties required
for the covariant derivation which is used in the con-
text of Clifford numbers. The article [9] shows that
a modification of the space-time metric allows one
consider the geometrization of quantum mechanics in
the de Broglie–Bohm formulation using non-Riemann
Weyl structure. In this context, let us write a trans-
fer rule on an arbitrary manifold represented by the
“vector potential” field Γ𝜇, due to which the Lagrange
density will be invariant not only with respect to co-
ordinates transformations, but also with respect to
more general unitary transformations.

𝛾𝜇∇𝜇Ψ = 𝛾𝜇(𝜕𝜇 − Γ𝜇)Ψ =𝑀Ψ. (19)

In the general relativistic theory, the transport equa-
tion can be written in a similar way, if we intro-
duce the Dirac matrices as functions of the space-
time coordinates, which form a contravariant vec-
tor field. Anticommutators of these matrices must be
multiples of the unit matrix 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈𝐼,
where 𝑔𝜇𝜈 is identified with the metric field. In ad-
dition, it is convenient to use the following: 2𝑠𝜇𝜈 =
= [𝛾𝜇𝛾𝜈 ] = 𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇 and 𝑔 = det(−𝑔𝜇𝜈). For gen-
eral relativity theory, the covariant derivative of the
metric tensor ∇𝜆𝑔𝜇𝜈 = 0. The Dirac matrix 𝛾𝜇 is usu-
ally not covariant with respect to 𝑅-transformations
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𝛾𝑟𝜇 = 𝑅𝛾𝜇𝑅̃. The transformation of elements of the
Clifford algebra must be modified in some way. We
note that the present form can be obtained with the
use of properties of the Clifford algebra. With the new
field matrix presentation of the manifold Γ𝜇, the co-
variant derivative of 𝛾𝜇 can be defined as [33]:

∇𝜈𝛾𝜇 = 𝜕𝜈𝛾𝜇 + [𝛾𝜇Γ𝜈 ], (20)

where, for the introduced additional field, a gouge
transformation is performed (5) which makes it pos-
sible to equate the covariant derivative of the Dirac
matrix to zero. From well-known condition for the
metric tensor ∇𝜆𝑔𝜇𝜈 = 0, we can obtain [8]:

Γ0
𝜇 =

1

8

(︁
𝛾𝛼𝛾𝜇,𝛼 − 𝛾𝜇,𝛼𝛾

𝛼 + Γ𝛽
𝜇,𝜈(𝛾𝛽𝛾

𝜈 − 𝛾𝜈𝛾𝛽)
)︁
, (21)

where Γ𝛽
𝜇,𝜈 Christopher’s symbol. The index zero is

just a reminder that we deal with a Minkowski back-
ground in an arbitrary system of coordinates. We
can globally annihilate such connection by moving
to an Euclidean coordinate system. At any space-
time point, the first coordinate derivatives of the
𝛾𝜇, which represent the field, can be made to van-
ish, while the 𝛾𝜇 themselves become equal to the
Dirac matrices. A direct consequence of the relation
∇𝜇𝛾𝜈 = 0 is that the covariant derivative of all 𝛾𝜇
vanishes. This is a consequence of that the metric is
Riemann: ∇𝜆𝑔𝜇,𝜈 = 0. Although the condition that
the covariant derivatives are equal to zero is sufficient
to guarantee the Riemann structure, but the geomet-
ric representation of the Clifford number is optional.

3.2. Hidden quantization
of a “test” particles trajectories

Article [8] considers the case where the dynamics is
governed by the structure of the Clifford algebra un-
der the condition of commutation:

∇𝜇𝛾𝜈 = [𝑈𝜇, 𝛾𝜈 ], (22)

where 𝑈𝜇 is an arbitrary element of the Clifford al-
gebra which can be presented as the sum of vectors
and pseudo-vectors 𝑈𝜇 = 𝐴𝜇 + 𝐵𝜇𝛾5. We can obtain
that ∇𝜆𝑔𝜇,𝜈 = [𝑈𝜆, 𝛾𝜇] 𝛾𝜈 + 𝛾𝜇 [𝑈𝜆, 𝛾𝜈 ] + [𝑈𝜆, 𝛾𝜈 ] 𝛾𝜇 +
+ 𝛾𝜈 [𝑈𝜆, 𝛾𝜇], and the use of anticommutators with
all 𝛾𝜇 implies that ∇𝜆𝑔𝜇,𝜈 = 0. This holds for arbi-
trary vectors 𝐴𝜇 and 𝐵𝜇. This provides a convenient
equivalent way to describe the non-linear structure

for choice of spinors 𝑈𝜇. Thus, the internal connection
takes the form Γ𝜇 = Γ0

𝜇 − 𝑖𝑈𝜇, where Γ0
𝜇 is the “vec-

tor potential” in the Minkowski space. In such case,
we can calculate the vector potential in small central
gravitation field [8] and present the Hamiltonian in
classical case in the well-known form:

𝐻 = 𝐸(p) = 𝑚𝑐2 +
p2

2𝑚
− 𝐺𝑚𝑀

𝑟
. (23)

In Kepler’s problem, the 𝑀 is the Sun mass, the
mass of the planet is 𝑚, and there is no first term. In
this section, we will continue to calculation with the
Hamiltonian without the first term.

The publication of articles [31, 32], in which the
spinor regularization of Kepler’s motion was pro-
posed, helped us to find the hidden symmetry of a
hydrogen atom and reduce the problem to descrip-
tion of a harmonic oscillator. In the future, we will
use only the final formulas of the spinor represen-
tation of Kepler’s dynamics. The motion of planets
along their orbits around the Sun can be described
by Newton’s equation

𝑚r̈+ 𝛼
r

𝑟2
= 0, (24)

where 𝛼 = 𝐺𝑀𝑚 – coefficient of gravitation interac-
tion between central mass 𝑀 and test particle with
mass 𝑚. Additional conditions for the solution of this
problem are the law of conservation of the energy

𝐸 = 𝑚ṙ2 − 𝛼

𝑟
(25)

the momentum vector

M =
𝑚

𝑟
(r× ṙ) (26)

and the Runge–Lenz vector

A =
1

𝑟
(M× ṙ) + 𝛼

r

𝑟
. (27)

The last integral of motion involves a change in the
position of the orbits in space, as well as the form of
these orbits with constant energy.

An important point is that a new angular variable
called “eccentric anomaly” was used to describe the
positions of the planets on their orbits [31, 32]. With
the help of this variable, using Kepler’s laws, it is
possible to accurately describe the flat trajectory of
the orbit, as well as determine all possible integrals
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of dynamic motion. If, instead of the radius-vector
of a position of the planet on its orbit, we write its
representation through the two-component spinor 𝜓
and the Pauli matrix in the form 𝜎, r = 𝜓*𝜎𝜓, then
it is easy to check that the spinor equation

𝜓 + 𝜔2𝜓 = 0 (28)

fully describes the dynamics of planets on Kepler or-
bits, where 𝜔 = 𝑎

𝜏 , 𝑎 is the value of the major axis of
the ellipsoid, and 𝜏 is the period of rotation around
the massive body at the center. The dot means the
derivative with respect to the parameter 𝑠 = 𝜏𝜒

2𝑚𝑎 ,
where 𝜒 is the eccentric anomaly of an elliptical or-
bit, which actually determines how an elliptical orbit
differs from a circular one. For a circular orbit, this
will be an angle indicating the orientation of the ra-
dius vector to an arbitrary point of the circular orbit.

The 𝑂(4) algebra symmetry of the original problem
becomes obvious, especially if we introduce a bispinor

Ψ =

√︂
2𝑚

𝜔

(︂
𝜓̇

−𝑖𝜔𝜓

)︂
in which the previous equations transform to one
equation

Ψ̇ = 𝑖𝜔𝛾5Ψ, (29)

where 𝛾5 = 𝛾0𝛾1𝛾2𝛾3 is product all Dirac matrix. The
presented solution in the bispinor form can be con-
sider as Clifford number. Equation (29) is invari-
ant with respect to transformations Ψ́ = Ψexp 𝑖𝑄
where 𝑄 the four-by-four matrix which must com-
mutes with 𝛾5.

The symplectic structure of the Clifford algebra al-
lows one to identify all integrals of motion for such
dynamics because it allows one to simultaneously in-
troduce the scalar product and the commutator of
these quantities due to the presence of inner and outer
products. In our case, the dynamical integrals of mo-
tion (9) and (10), defined as with the integrals of mo-
tion of the Dirac equation as rules for transferring the
Clifford number to the manifold [18]. The presence
of detected integrals of motion allows one to “quan-
tize” the corresponding adiabatic invariant. If we now
pay attention to the integrals of motion, the value
Ψ̄𝛾5 = Ψ* will then be clearly defined as the proba-
bility of finding the test particle in the corresponding
orbit, 𝜌 = Ψ*Ψ. Such integral of the motion corre-
sponds to the probability of finding the test particle

(planet) at the corresponding point of the orbit, pro-
vide that the 𝜕𝜇𝐽𝜇 = 0 is zero. The first integral of
the motion can be interpreted as the Hamiltonian of
the test particle (planet). In addition to the unit ma-
trix, the commutator of the gamma matrix 𝑠𝜇,𝜈 also
commutes with 𝛾5 and has the same integral of mo-
tion (9) and (10) as in the theory Dirac of a hydrogen
atom. The application of these integrals allows for the
derivation of a definitive solution to the problem.

If we now introduce a complex conjugate Dirac
bispinor Ψ̄ = Ψ*𝛾5 =

√︁
2𝑚
𝜔 (−𝑖𝜔𝜓*,−𝜓*), it is possi-

ble to represent the Hamiltonian in the form

𝐻 = 𝜔Ψ̄𝛾5Ψ, (30)

with addition relation Ψ̄Ψ = 0 and write the dynamic
equation of motion in the form of a Poisson bracket

Ψ̇ = (Ψ, 𝐻). (31)

The distinction with problem of an electron in the
hydrogen atom lies in the fact that, in our case, the
task is solved in terms of a function that describes
the range of potential trajectories. These trajectories
are shaped by the space-time generated by the cen-
tral field. In our case, these are classical trajectories,
but not without the possibility of space-time fluctu-
ations that could alter the corresponding position of
the planet. The problem of possible stable trajecto-
ries can be solved even at the expense of the quanti-
zation of the classical moment [33], and, thus, can be
reduced to “quantum” analog.

Considering this larger invariant group will allow us
to see, in a different light and understand why, that
the Planck constant is not exactly the same for differ-
ent cases. This is due primarily to the fact that the
de Broglie presentation Ψ ∼ exp 𝑖 𝑆

ℎeff
, which defines

wave properties, came to us from the understanding
of the adiabatic invariant

∫︀
𝑝𝑑𝑞, which presents the

action 𝑆. For the “test part”, which, in Kepler’s prob-
lems, is a planet, the maximum momentum can be
estimated as 𝑝 ∼ 𝑀𝑐, and the minimum excitation
that can change position of the planet according to
its size 𝑅. It follows that the real action takes on a
very large value. The wave properties will manifest
themselves, if the size of a cell in the phase space is
of the order of the action itself, i.e., ℎeff = 𝑆. There
are two very important points here. The first is that,
even for classical particles, there is Pauli’s rule, ac-
cording to which two classical particles of finite size
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cannot be in the same state, since they cannot occupy
the same spatial position, even if they have the same
momentum, which is also unattainable due to fluc-
tuations. Moreover, the symplectic structure of the
mathematical description implies that the adiabatic
invariant must be preserved, and cannot be equal to
the usual, generally accepted Planck’s quantum con-
stant ℎ, if we consider the corresponding values of
the momentum and the coordinates of the test par-
ticle (planet). Accordingly, Planck’s constant is con-
tingent upon the dimensions and mass of the ‘test
particle, thus establishing the scale of the correspond-
ing perturbations of the manifold that can alter the
system’s state.

Now, we can move to the quantum description of
classical trajectories. We will try to present a “quan-
tum version” of the solution to this problem. Accor-
ding to Dirac’s approach, the transition from classi-
cal to quantum description is based on the replace-
ment of classical Poisson brackets by commutation
relations. It is the symplectic structure of the man-
ifold that leads to the possibility of quantizing clas-
sical Hamiltonian systems [29, 34]. The quantum dy-
namical equation can, in our case, rewritten in the
well-known form

𝑖ℎeffΨ̇ = [Ψ, 𝐻], (32)

where ℎeff is the new effective “Plank constant.”. The
commutation conditions can be fully satisfied, when
the function is represented in spinor form. We will try
to, show that the energies of the planets are quan-
tize according to the occupied orbits, and this can be
shown in two ways. One is suggested in article [35],
but we will continue to use the proposed approach
with the geometrical description, when the obtained
bispinor takes the form:

Ψ =

√︂
ℎeff
2

(︂
𝑢+ + 𝑣

−𝑢+ + 𝑣

)︂
,

Ψ̄ =

√︂
ℎeff
2

(𝑢− 𝑣+,−𝑢− 𝑣+)

(33)

but by giving a different physical meaning to the in-
troduced quantity. Birth and annihilation operators
of the corresponding components of the coordinates
of the planet on the orbit, which can be numbered
𝑛. The Hamiltonian of the problem describing the
motion of the corresponding planet in the correspond-

ing elliptical orbit 𝑛 can be obtained in the form

𝐻 = 𝜔Ψ̄𝛾5Ψ = 𝜔Ψ+Ψ = ℎeff𝜔(𝑢
+𝑢+ 𝑣+𝑣 + 2). (34)

Under symmetric conditions Ψ̄Ψ + ΨΨ̄ = ℎ̄((𝑢+𝑢−
− 𝑣+𝑣)) = 0, we find that

𝐻 |Ψ⟩ = 2ℎeff𝜔(𝑢
+𝑢+ 1) |Ψ⟩ = 2ℎeff𝑛𝜔 |Ψ⟩. (35)

If we take into account that the energy of the Kep-
lerian motion is constant and equal to 𝐸 = −2𝜔2𝑚,
then we can obtain an expression for the energy levels
for a planet with mass 𝑚 in the corresponding orbit

𝐸𝑛 = −𝑚(𝐺𝑀𝑚)2

2ℎ2𝑒𝑓𝑓𝑛
2

(36)

around a centrally symmetric field. In this way, the
proposed geometric representation of the “test parti-
cle” makes it possible to solve Kepler’s problem both
in the classical and in the quantum approaches.

The same can be done in the case of a hydrogen
atom, if we assume the probability of the existence
of electron orbits around the nucleus. Similarly, the
entire mathematical procedure can be carried out for
the classical hydrogen atom. In the non-relativistic
case, a classical Hamiltonian for the hydrogen atom
can be written in the well-known form

𝐻 = 𝐸(p) =
p2

2𝑚
− 𝑍𝑒2

𝑟
, (37)

which will be used below for another representation
in terms of spinors. Using geometric representations
of the wave function at the level of finding solutions
to the Dirac equation for a hydrogen atom, we can
find all the necessary properties of a relativistic el-
ementary particle. The exact solution of the Dirac
equation in a warped space-time was proposed in [36].
In the simple approach proposed above for Kepler’s
problem, we can determine the expression for the en-
ergy levels for electrons with mass 𝑚 on the corre-
sponding orbit as

𝐸𝑛 = −𝑚(𝑍𝑒2)2

2ℎ2𝑛2
(38)

which completely to reproduce the well-known results
of quantum mechanics, where ℎ is the usual Planck
constant. This means that, from the quantization of
the orbits, it is possible to obtain the corresponding
energy values of electrons of the hydrogen atom. Now,
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the square of the wave function determines the prob-
ability of being in the corresponding orbit. It is not
possible to determine at which, but such the interpre-
tation also corresponds to our knowledge about the
quantum behavior of the atom.

4. Discussion

Of course, the classical Hamiltonian for an electron
in the hydrogen atom, as well as the Hamiltonian for
Kepler’s problem, could be written immediately us-
ing simple textbooks. But, for the consistency of the
proposed approach, we have derived these expressions
from the transfer rules for the corresponding geomet-
ric object describing the physical situation. This is
done to show that the mathematical structure does
not allow any other kind of Hamiltonian in the pro-
posed consideration. The corresponding form of the
Hamiltonian allows the representation of a manifold
due to the characteristics of the “test particle” that
scans this manifold. Therefore, it is possible to de-
scribe the dynamics of a physical system in terms of
the geometric representation of a test particle and to
study the dynamics of the space-time.

Indeed, the transformation that takes the Dirac
equation to its canonical form as a wave function
transfer rule does not depend on Planck’s constant. In
fact, this independence is a general fact. Thus, the
normal representations (or canonical forms) of the
Dirac equations are better representations for ex-
pressing the generalized de Broglie relations in a
curved space-time. The presented results indicate
that the Dirac equation in the geometric representa-
tion of general relativity is a transfer equation on an
arbitrary manifold. As was previously discussed, the
complete set of coordinate transformations associated
with the structural equation exists only in the Clifford
number representation of the wave function. The ini-
tial structural equation for the wave function is found
to be identical to the Dirac equation. As was demon-
strated by numerous authors, including [4] and [19],
the solutions to this equation for definite integrals of
motion are identical to those obtained in the spinor
representation.

From all the above, it can be assumed that such
a representation of the wave function contains both
corpuscular and wave properties. It seems possible to
attribute such properties primarily to the manifold
on which the corresponding phenomenon is consid-

ered. The stationary states of the test particle corre-
spond to the stationary states of the manifold. At the
same time, it is not very important which quantum
or classical interpretation we attribute to it. What
is important is that this wave function describes a
manifold, which means that the dual corpuscular and
wave nature of the manifold is built into the behav-
ior of the geometric representation. The true value of
Planck’s quantum constant is determined by scales
of motion, since the dynamics of the “test parti-
cle” can only be affected by perturbations or fluc-
tuations comparable to the size of the test particles
themselves.

The articles [35,37] showed that the orbits of plan-
ets and satellites around the large central mass in our
solar system are quantized. Verification of the predic-
tions of the Titius–Bode law for different Kepler’s
multi-planetary systems is being carried out. The
word “quantized” is usually applied to the physics on
the subatomic scale. According to the above results,
the orbits in the gravitational system are quantized;
that is, the distance, period, and velocity can only
have certain discrete values. To describe this, it is
necessary to use not only the features of the “test
particle”, but also those of the space-time in which
its dynamics takes place.

The wave function of a“test particle” on the hy-
persurface of constant energy in the phase space in
all cases can be written in the form of a de Broglie
wave. Definition of the introduced coefficients follows
from the fact that we are looking for a squared com-
plex wave function which module that does not ex-
ceed unity. In addition, we need to have a represen-
tation of all possible states in the phase space, and
this is possible, if the phase of this complex func-
tion is represented in this phase space. Such a func-
tion is action, the minimum of which determines the
classical trajectory. Finally, the number of states in
the phase space will depend on the size of the cell
to which only one state can be attributed. The size
of a unit cell in the phase space is determined by
Planck’s constant ℎ. Then the general form of the
wave function can be given as: Ψ ∼ 𝜌

1
2 exp( 𝑖

~𝑆), where
𝑆 =

∫︀
(𝐻(𝑝, 𝑞)𝑑𝑡 − 𝑝𝑑𝑞) action is written in terms

of the coordinates 𝑞 and impulses 𝑝. All the neces-
sary attributes of such form of the wave function are
present in the geometric representation [18,19,26]. In
addition, only such representation contains all the
necessary detailed definitions of the relationship be-
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tween the energy and momentum in the relativity
theory.

An estimation of the value of the effective “Planck
constant” can be made as ℎeff = 𝑚𝑐𝑅, which facil-
itates the application of this definition on various
scales. For specific values of the electron mass and
the size of the hydrogen atom, the effective constant
ℎeff = ℎ aligns with that introduced by Planck. Con-
sequently, it can be concluded that the effective quan-
tization constant is contingent on the scale of the
objects under investigation. From whence, we can
obtain the relation for effective Planck’s constants
ℎeff

ℎ ∼ 𝑅4

𝑅4
atom

, which, for the values of the radius of the
orbit 𝑅 of the Earth and that of the electron 𝑅atom

in a hydrogen atom, gives ℎeff

ℎ ∼ 1080.
We can also estimate the value of the wavelength

of a perturbation 𝜆𝑔 = ℎeff

𝑚𝐸𝑐 , analogous to the Comp-
ton length for a hydrogen atom 𝜆𝑐 = ℎ

𝑚𝐸𝑐 , and
compare these two quantities. The ratio between the
Planck constant for gravitational perturbations and
the Compton length of a hydrogen atom can be es-
timated as ℎeff

ℎ =
𝜆𝑔𝑚𝐸

𝜆𝑐𝑚𝑒
. This value can be called

the scale factor. If we take the wavelength of a grav-
itational perturbation of the order of an astronom-
ical unit 𝜆𝑔 ∼ 149 × 109 m and the values of the
masses of the electron 𝑚𝑒 ∼ 9.1 × 10−31 rg and
the Earth, 𝑚𝐸 ∼ ×1024 kg, for the Compton wave-
length 𝜆𝑐 ∼ 2.4 × 10−12 m, we obtain ℎeff ∼ 1078 h,
which agrees with the estimates in the previous
work [35, 38].

It is necessary to make an important remarks on
the transport equation on an arbitrary manifold,
since, in the general case, the connectivity can be
represented also by the Clifford number, and indi-
vidual components can and should have different re-
sponse coefficients for fields of different natures. But,
the mathematical structure of such a representation
[17] is still far from complete and needs a more consis-
tent development. Even the simplest implementation
gives non-trivial results, because it contains more in-
formation about the possible nature of the manifold
and the wave function of a “test particle”. This re-
quires a more careful explanation and, probably, will
be done in the future.
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search Foundation of Ukraine through the project
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Б.I.Лев

АЛГЕБРА КЛIФОРДА
ЯК ШЛЯХ ДО КВАНТОВОЇ ГРАВIТАЦIЇ

У статтi висувається нова гiпотеза щодо розв’язування про-
блеми квантування гравiтацiї. Метою дослiдження є де-
монстрацiя того, що геометричне представлення хвильової
функцiї можна розглядати як характеристику просторово-
часового многовиду. У цьому пiдходi показано, що теорiя
Дiрака для атома водню та динамiка Кеплера для планетної
системи описують аналогiчнi явища у просторi-часi. Стани
цих систем мають параметри, що вiдповiдають дозволеним
динамiчним станам простору-часу, тим самим зберiгаючи
iнформацiю щодо корпускулярної та хвильової природи. За-
пропонований пiдхiд проливає нове свiтло на потенцiйне ви-
рiшення проблем квантової гравiтацiї.

Ключ о в i с л о в а: алгебра Клiфорда, хвильова функцiя,
пробна частинка, просторово-часовий многовид.
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