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LEADING TO PROFILE RESILIENCE

Nonlinearities play an important role in many fields. In the field of thermonuclear fusion, they
are involved in questions such as profile resilience and fluid closure. A nonlinear phenomenon
common to both fusion and astrophysical planets is the generation of zonal flows. These flows
play a significant role in determining the level of turbulence and fluid closure in fusion. The
effects of resonance broadening and nonlinearities are investigated, specifically focusing on the
case of monlinear instability that has appeared in drift waves. Similarities and differences be-
tween our systems are discussed, with population explosion and the dynamics of nonlinear sys-
tems for drift waves by different states in profile resilience described with great precision. The
aim of our study is to put our fluid model for drift waves in tokamaks within the wider frame-
work of statistical physics principles. This reinforces our belief in the broad application of our
drift wave model, which encompasses current tokamaks, ITER, and the fusion pilot plant.
Keywords: magnetic confinement, nonlinearities, resonance broadening, drift waves, toka-
maks, profile resilience.

1. Introduction particles [33, 34, 40]. Although the linear theory [15]
can be useful to list different types of instabilities,
the nonlinear theory [1-4], is always needed to de-
termine the state of saturated turbulence. Initially,
rather much work was devoted to the separate studies
of linear [15] and nonlinear [1-4] theories. Such work
was initially mainly conducted in simple slab geom-
etry. However, most physics relevant for transport is
on a rather small scale and can then be described
by the ballooning mode formalism [5]. This descrip-
tion could be used for most phenomena previously
described in a simple geometry [3, 6].

One of the areas of interest is the fluid-like clo-
sure in magnetized plasmas, where the correct clo-
sure was already made in 1988 in the Weiland model

We have recently pointed out that nonlinearities have
to be included in the description of several phenom-
ena, where they are often left out [1-48]. We have
here studied the effect of nonlinearities and their im-
pact on profile resilience [8]. In particular, we have
looked at the role of resonance broadening [1, 3, 7],
since this influences the fluid closure [16, 31, 34, 35],
ionospheric physics [24,25], particle and heat pinches
[11-14], and recent models for the dynamics of fast
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[10]. This closure, although initially made intuitively,
depends on nonlinear effects through zonal flows and
is needed in order to obtain the appropriate pinch
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effects as shown in Ref. [11]. These are needed both
for transport in tokamaks and for understanding the
particle motion in the ionosphere [6,9, 23, 24]. Ano-
ther application for magnetized laboratory plasmas is
the levitated dipole [24, 25]. A further application is
for the population explosion on the Earth [32]. The
crucial effect to be included here is the nonlinear fre-
quency shift [1,3,4,9] which leads to resonance broad-
ening. We note that models for population develop-
ment [32] do not have the same base as our results for
drift waves, while a non-Markovian effect [16], which
will show as oscillations of the same type as those for
drift waves, is important. The application to tokamak
transport, where profiles of the density and temper-
ature have been surprisingly insensitive to the exact
location of sources, has been named “profile consis-
tency” or “profile resilience” [8].

The present work is organized as follows. Section 2,
describes the fundamental balance between the linear
growth rate and convective E x B nonlinearity and
elaborates on the saturation level and the diagonal
element for the transport. Section 3 presents the sys-
tem of three interacting waves and then delves into
the stabilization of nonlinear instability through non-
linear frequency shifts. Section 4 explores the dynam-
ics of explicit zonal flows at the correlation length,
their significance in specific calculations, and the al-
ternative of assuming absorbing boundaries for long
wavelengths in the absence of active zonal flows. Sec-
tion 5 highlights the significant contribution of the
integration along particle orbits in advancing the the-
oretical frameworks. Section 6 discusses the signifi-
cance of the resonance broadening in nonlinear fre-
quency shifts and its role in changing the phase veloc-
ity of waves, taking them out of resonance with parti-
cles. Section 7 concludes by highlighting the striking
similarity between the system describing the popu-
lation explosion with extreme accuracy [32] and the
dynamics of nonlinear systems for drift waves [9, 10],
based on different states in profile resilience [8].

2. Introduction to Drift
Wave Calculations, Saturation
Level and Transport

The basis of our drift wave calculations is the balance
between the linear growth rate and convective E x B
nonlinearity (vg - VOT)

yOT = vg - VIT. (1)
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This leads to the saturation level
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where e is the charge of an electron, ¢ is the electro-
static potential, T, is the temperature of an electron,
v is the mode’s growth rate, w,e is the frequency of
diamagnetic drift, &, is the radial propagation factor,
and L, is the length of a density gradient scale. The
diagonal element for the transport can be written as
follows:

_ /K
- 2 2" (3)
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Now, it has been found that the fastest growing
mode in typical drift-wave systems may have nega-
tive energy [4]. This means that waves grow, when the
energy is taken from them. This works both linearly
(inverse Landau damping) and nonlinearly, with the
possibility of explosive instability [4]. An example of
the inverse Landau damping is the Hammett—Perkins
case, as shown by Mattor and Parker [35]. We can
also conclude that the nonlinear terms are destabiliz-
ing from the figure in Ref. [35]. In such cases, which
seem to be typical, we have nonlinear growth (35, 36|
which, if fully developed, could lead to an explosive
instability [4,32]. In such cases, a nonlinear frequency
shift will develop and turn the energy into positive
energy, thus, stabilizing the system.

3. System of Interacting
Waves and Nonlinear Frequency Shift

We start from a system of three interacting waves
Jy kL

% = yu; + ¢; ug u; cos P, (4a)
ot

50— 0o (1)
9% _ ot <“’”” e “f“l> sin @, (4c)
ot Uj u; Uk,

5w = Zanl|um‘27 (4d)

where u = e¢/T,. We note that dw has a higher power
in the perturbation. This is the nonlinear frequency
shift, which is a change in the frequency due to the
nonlinear interactions between different waves. It will
dominate at high levels of perturbation.
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System (4) has a constant of motion
Uj Up W sin<I>+Z%|uj\2:I‘e?’“’t, (5)
¢j

where I' is a constant of motion. In order to see qual-
itatively how the stabilization by a nonlinear fre-
quency shift occurs, we can consider the case of equal
amplitudes of perturbations, i.e., u; = ur = w = u.
Then (5) gives the stationary state:

udsin® 4 kut =T, (6a)
1 e}
B vy 6b
K12 (6b)
We then find the maximum amplitude
1
=—. 7
u=- 7)

The simplest solution of this system is for I' = 0. It
then takes the form of a soliton solution in time [4]

1
u(t) = m, (8a)
where
t = ﬁ\/l — k2u?(0). (8b)

When I'" # 0, the solution does not meet its initial
condition after the maximum, and we get an oscilla-
tory solution. In the general dissipation-free case, we
can derive our system from a Hamiltonian

H:Zsj wj U?+2V(Ug u? ud)/? sinéfZ’yjku?ui.
J

(9)

For more details, we refer to Ref. 4 pages 135 and 153.
However, our main result is that we reach a steady
state, where we define

(10)
(1)

cos® = p,
w=-L.
cp
We are free to choose ¢ in such a way that (11) ful-
fills (2) with our present definition of u. However, a
typical situation as found from (6a) is that sin @ is
close to 0, which means that cos® = 4/ — 1. Thus,
the magnitude of the coupling is the same in unsta-
ble and stable cases. This means that our estimate of
the turbulence level continues to be given by (2). Ho-
wever, the effective energy sign oscillates so that dis-
sipative kinetic effects are averaged out. This means
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that our stabilization of a nonlinear instability due
to a nonlinear frequency shift maintains our previ-
ous saturation level for E x B stabilization of a lin-
ear instability. This saturation level has been found
to be in good agreement with experiments, as seen
from the general agreement of our model with exper-
iment [42,43].

However, in Ref. [11] we also included the full quasi-
linear transport, which includes pinch effects. The
frequency dependence of (3) is a non-Markovian ef-
fect. In order to have pinch effects leading to inward
fluxes, we also need nonadiabatic electrons. This
was accomplished by including electron trapping, as
shown in Ref. [11]. It gave possibility for both par-
ticle and thermal pinches. In particular, the particle
pinch has been much explored in connection with the
levitated dipole [24, 25] and ionospheric phenomena
[3, 4]. It was further tested with good agreement for
a tokamak experiment (Tore Supra) [28]. A similar
agreement was also found with QualiKiz [19,27,28], a
model based on quasilinear theory, but fitted to fully
nonlinear simulations. We had further experimental
support for poloidal spinup in internal transport bar-
riers [20], nonlinear upshift in internal transport bar-
riers, and the L-H-transition [23, 44]. We also note
that (3) was obtained by Connor and Pogutse for col-
lisional drift waves [17].

A remaining question is the validity of (3), when we
have nonlinear growth at low amplitudes, as found in
Refs. [17,35,36]. This will give rise to the initial phase
of explosive instability, as discussed in Ref. [4]. We
know from Ref. [4] that such an instability will be sta-
bilized by a nonlinear frequency shift, as also seen in
Refs. [35,36]. Here, we get oscillations after the initial
saturation (compare Refs. [4, 35], [32, 36]), and this
averages out the effect of higher nonlinearities. The
nonlinear frequency shift works to change the sign of
the wave energy, or dissipation. Thus, we expect (3)
to be valid on average. Further, we note that, for the
population explosion, we only have the initial phase
of stabilization by a nonlinear frequency shift. Thus,
the growth rate is due to a balance between quadratic
and cubic nonlinearity. This becomes very accurate,
since local and system-dependent quantities usually
enter through the linear growth rate.

We finally note the interesting similarity to several
papers [45-47], where a fixed linear frequency mis-
match in a three-wave interaction leads to limit cy-
cles similar to those in Figure 1. The main difference
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Fig. 1. Stabilization of an explosive instability, from Ref. 4.
The oscillations are due to oscillations in ® due to an oscil-
lating nonlinear frequency shift. The oscillations in ® lead to
oscillations in cos® giving the periodic behavior of the ampli-
tude

is that we consider a nonlinear frequency shift due
to cubic nonlinear effects. Nonlinear frequency shifts
play a major role in plasma turbulence, as first shown
by Dupree [1]. This was demonstrated in a general
renormalization of plasma turbulence, where nonlin-
ear frequency shifts act as a nonlinear friction, lead-
ing to resonance broadening. We later showed that
this process results in the saturation of quasilinear en-
ergy transfer between waves and particles, effectively
eliminating linear wave energy transfer mechanisms
such as Landau damping or magnetic drift resonances
[16]. However, this is not the case where a resonance
exists between waves and an external source, such
as during the neutral beam heating or nuclear reac-
tions as demonstrated in [40]. It is also interesting to
compare this with the Mattor—Parker system [35, 36],
which includes a nonlinear frequency shift, but repre-
sents the coherent limit of resonance broadening. In
all these cases, the resonance broadening leads to a
fluid-like closure, where waves move out of a reso-
nance with particles.

Another case where nonlinear frequency shifts are
important is given by the stabilization of explosive in-
stabilities [4]. Since we have found that the Mattor—
Parker system is nonlinearly unstable, when only
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quadratic nonlinearities are considered, we have ex-
plored its similarity to the system studied in [4]. As
it turns out, the stabilization of explosive instabil-
ities by nonlinear frequency shifts results in a sce-
nario, where the sign of the wave-particle interaction
changes after the stabilization. This implies that the
limit cycle averages out the dissipative wave-particle
interaction, as previously predicted in [16].

4. The Importance of Boundary
Conditions in K-Space

As pointed out above, we have a similarity in the
boundary conditions in k-space between Ref. [10] and
Ref. [17]. These models both use reactive fluid mod-
els. An important aspect of the drift wave turbulence
is that it cascades both toward shorter and longer
wavelengths [6]. The cascade toward shorter wave-
lengths is a common feature of 3D turbulence, and
this is absorbed by viscosity. However, the cascade
toward longer wavelengths is critical in a finite sys-
tem. Here, we need a sink for the turbulence, which
absorbs the cascade toward long wavelengths [6]. This
sink is caused by another nonlinearity, which is the
generation of zonal flows [9,21,27,28]. In the absence
of this sink, the energy is accumulated at the longest
wavelengths possible in the system, which leads to
the excessive transport. The increased transport in
the presence of dissipation was already observed in
Ref. [9]. Thus, we need strong zonal flows, and these
are strongest in reactive systems [10, 17]. Thus, the
level of transport depends sensitively on the fluid-like
closure. With a reactive closure, we get a fluid de-
scription. We note, in particular, the very strong sen-
sitivity of zonal flows to the type of dissipation used
in gyrofluid closures [22], where the Dimits nonlinear
upshift [22] could not be reproduced when the dissipa-
tion was included. In a fluid description, a quasilinear
description is usually valid (Refs. [17, 37]). However,
in a kinetic description, we need the strongly non-
linear resonance broadening. The reason for why we
need strongly nonlinear effects in a kinetic descrip-
tion but not in a fluid description is the vastly dif-
ferent magnitudes of the velocities. However, in fluid
theory, we also need to include zonal flows, as shown
in Refs. [20] and [21]. Actually, explicit zonal flows
at the correlation length are needed in calculations
of Dimits shift, spinup in internal transport barriers,
and the L-H transition. When zonal flows are not ac-
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tive at the correlation length, we can just assume an
absorbing boundary for long wavelengths, as done in,
e.g., Ref. [11].

5. Orbit Integration

The integration along particle orbits has played an
important role in the development of our theory. The
first example is the derivation of linear and non-
linear gyrokinetic equations [26]. The first nonlinear
gyrokinetic equation was actually derived by Frie-
man and Chen [41] by averaging the local orbits.
We then derived a nonlinear gyrokinetic equation
by the orbit integration [26]. This latter derivation
is actually shorter, but both derivations lead to
the Hasegawa—Mima equation [6] in the appropriate
limit. In Ref. [37], we also showed, by the orbit in-
tegration, that the linear part of the eigenfrequency
is typically obtained with high accuracy in a quasi-
linear treatment, as also found in Ref. [17]. Now, the
imaginary part of the frequency can be due either to
inhomogeneities in configuration space or wave par-
ticle resonances in kinetic theory. The latter reason
will vanish in the long time asymptotic part of the
velocity dispersion, i.e., the deviation of the velocity
square from its initial condition. Thus, there will be
no more energy transfer between resonant particles
and waves.

6. Resonance Broadening

We have mentioned resonance broadening on several
occasions. Resonance broadening [1,3,7,30-32,35, 36|
occurs due to nonlinear frequency shifts that act to re-
duce the effect of wave-particle resonances. This pro-
cess is active, when we keep a Maxwellian distribu-
tion but still observe that wave-particle resonances
are not active [35, 36]. This is a strongly nonlinear
effect that is not present in quasilinear theory. This
effect has recently been added to several studies of
fast particle instabilities [33, 34]. We have also re-
cently derived a combined theory for drift wave turbu-
lence and nonlinear friction (resonance broadening),
where resonance broadening is one of the main fea-
tures [40]. As expected, the resonance broadening re-
duces the strength of wave-particle resonances when
there are no external sources in the velocity space,
as usually for drift waves. A more general treatment
of triplet wave dynamics with independent, unequal
damping rates has recently been explored in the con-
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text of fast ion-driven modes [47], further demonstrat-
ing the role of nonlinear effects in stabilizing energetic
particle-driven instabilities.

Resonance broadening is able to make a reac-
tive fluid-like closure possible [16]. Without resonance
broadening, linear Landau damping and magnetic
drift resonances remain and are able to completely
damp out particle pinches [11, 14]. This is also the
reason for the need to make a fit to nonlinear ki-
netic theory in Ref. [19]. Thus, the essence of the fit
of QualiKiz to nonlinear kinetic codes is to introduce
resonance broadening with an empiric procedure. As
mentioned above, this leads to similar results by our
model and QualiKiz for the particle pinch in Tore
Supra [27, 28]. Thus, a strongly nonlinear approach
is needed for kinetic theory. On the other hand, the
orbit integration has shown that the quasilinear ap-
proach is sufficient in fluid calculations. This was also
found in Ref. [17]. Of course, we define strongly non-
linear as including an explicit nonlinear frequency
shift. We also need to include zonal flows in the fluid
model [20,21]. In Ref. [40], we found that there may
be a balance between resonance broadening S and an
external source in the velocity space, 5, for fast par-
ticles. Thus, we expect the resonance broadening to
reduce fast particle instabilities.

0. 0 ) .0
(8t +'Uar> W(X,X,t,t)— 61} |:/8'U+D aU:| X

X W(X, X' t,t') + Sy. (12)
Here W is the transition probability in phase space, 8
is the nonlinear friction (resonance broadening), DY
is the nonlinear diffusivity in the velocity space, and
Sy is an external source (typically, the heating) in the
velocity space

B=Bile;
J

D" =" d;|¢,|>.
7

(13a)

(13b)

However, at drift wave frequencies, the fast par-
ticle source term is typically a factor 100 smaller
than the resonance broadening and can, thus, be ne-
glected. We are then back in the Fokker—Planck equa-
tion derived in Ref. [16]. Thus, our fluid model is valid
to within 1% in the drift wave regime.
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For constant coefficients and without source (12)
leads to the velocity dispersion

(Av?) = %(1 —e P,

Showing that Av? saturates for ¢+ > 1/3. This means
that, after this time, there is no more energy transfer
between waves and resonant particles. This fact was
tested for much more general cases in Ref. [48].

We found that the resonance broadening /S can
counteract an external source term in the velocity
space, Sy, leading to a reduction in the fast parti-
cle instabilities. However, this suppression is not ab-
solute; if the source term is in resonance with the
excited waves, instabilities such as fishbones can still
be driven. In the case of fusion alphas and neutral
beam injection, where S, is sharply peaked at the
birth energy, fishbone modes can be preferentially
excited by particles at their injection energy before
redistribution effects modify their phase-space cha-
racteristics.

As pointed out above, the resonance broadening is
what is needed for kinetic models to give adequate
particle pinches [19]. In our fluid model, however,
the resonance broadening has already turned the ki-
netic model into a fluid model, and, there, we do not
need further strongly nonlinear effects in order to re-
cover particle pinches [11]. Instead, our quasilinear
fluid model allows us to recover the Dimits nonlin-
ear upshift [21, 22, 31|, the L-H transition [23], and
the poloidal spinup in internal transport barriers [20]
when we include zonal flows.

(14)

7. Discussion

In conclusion, we have explained the similarity be-
tween our system describing the population explosion
with high accuracy [32] and the dynamics of nonlin-
ear systems for drift waves [9,10] by different states in
the profile resilience [8]. The stabilization of the world
population, projected to reach a saturation level of 10
billions, which is the estimated maximum the world
can sustain, bears strong similarities to the stabiliza-
tion of explosive instabilities driven by cubic non-
linearities. The resulting limit cycle oscillations arise
from the inclusion of a 25-year time delay in the stabi-
lizing cubic terms. To the best of our knowledge, the
connection between explosive instabilities and satura-
tion due to cubic nonlinear terms has not previously
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been associated with the mixing length saturation of
drift waves. Another important aspect is that the or-
bit integration has shown that our quasilinear fluid
approach works extremely well [32-36]. However, the
resonance broadening is the main nonlinear effect that
turns kinetic theory into fluid theory. Our first deriva-
tion of our model was mainly intuitive, assuming that
moments without sources in the experiment would
be damped out by transport. It was really not until
Ref. [16] that we could see how the resonance broad-
ening turned a fully nonlinear description into a re-
active fluid model. While a quasilinear kinetic model
does not have a particle pinch, a fit to the nonlinear
kinetic model, introducing the resonance broadening
[19,27] recovers the particle pinch. However, our fluid
model recovers the particle pinch directly without ad-
ditional fitting [11, 28]. Furthermore, an important
aspect is that we keep ¢, = 2L, /R arbitrary. This
means that we can describe L modes, as well as H
modes and the L-H transition dynamically [23]. This
also includes electromagnetic effects, and the H-mode
barrier is typically in the second stability regime of
MHD ballooning modes. This strengthens our con-
fidence in the broad applicability of our drift wave
model, which involves current tokamaks, ITER, and
fusion pilot plants in addition to various ionospheric
problems [25], the levitated dipole [24, 25] and the
population explosion [32].
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fice of Fusion Energy Sciences, under Award Numbers
DE-5C0013977. One of us (JW) wants to express his
gratitude to the Bogolyubov Institute for Theoretical
Physics, Kyiv, Ukraine, for developing the monlin-
ear kinetic theory on which our main derivations are
based.
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HEJIIHIMHOCTI B MATHETHOMY
YTPUMAHHI, ®I31II IOHOCOPEPI

TA TTIPOIECI AEMOTI'PA®IYHOI'O BUBVYXY,
SIKI IIPUBOASATD JIO CTIMKOCTI [TPO®IJIFO

HeuniniitHocTi BigirpaioTh BaXKJIMBY pOJIb y OaraTbOX sIBUIAX.
V rajy3si TepMOsiIEpHOrO CUHTE3y BOHU IIOB’sI3aHI 3 TAKUMU I1H-
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TaHHSAMH, sIK CTIMKicTh nmpodiio Ta yTpuMmanHs iadmu. He-
JIHIMHUM SIBUINEM, CIIJIBHUM fK JJIs sIIEDHOIO CHHTE3Y, TaK
i mist acrpodi3ukm, € reHepariisi 30HHUX HOTOKIB. Lli moroku
BiirpatoTh 3HAYHY POJIb Y BU3HAYEHHI PIiBHA TypOyJIEHTHOCTL
Ta yTPUMaHHI IUIa3Mu IIij 9ac cuHTesy. JlociimkeHo edexkTu
PO3ILINPEHHsI PE30HAHCYy Ta POJIb HeJliHIWHOCTeH, 30KpeMma, y
BHIIQIKY HeJIHIAHOI HeCTIfKOCTIi, sIKa BHHUKa€ B ApeiidoBux
xBusax. OBroBoprooThes noAidHocTi Ta BinMiHHOCTI MiXK pO3-
IVISTHYTUMHA HaMU CUCTEMAaMHU, IIPU I[bOMY 3 BEJIMKOIO TOYHICTIO
OIIMCAaHO Ipolec meMmorpadidHoro BuOyxy Ta SUHAMIKY HeJIi-
HIfHUX cucTteM Ui ApeiidpOoBUX XBUJIb i3 PISHUMHU CTaHAMU
npodisto crifikocri. MeTorw JaHOro HOCIIiIXKEHHsI € BpaxyBaH-
HsI HaIol Mojesti Ay ApeiipOBUX XBUJIb y TOKaMaKax y LIAP-
IMX paMKaX MPUHIMIIE crarucTudHol ¢disuku. Mu cromgisae-
MOCH Ha 3aCTOCYBaHHS TaHOI MOzeJI ApeiiOBUX XBUJIb Y Cyda-
cuux Tokamakax, ITER Ta nisioTHiil ycTaHOBII TEPMOSIIEPHOTO
CHHTE3Y.

Katowoei cao6a: MarueTHe YTPUMAHHS IIJIA3MHU, HEJIIHIHHO-
CTi, pO3IIUPEHHSI PE30HAHCY, JpeidoBl xBuUi, TOKaMak, CTiii-
KicTb npodisro.

ISSN 2071-0186. Ukr. J. Phys. 2025. Vol. 70, No. 6



