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Weakly-nonlinear modal equations are derived for modeling the liquid
sloshing dynamics in a two-dimensional circular tank by using analytically-
approximate natural sloshing modes and Lukovsky’ nonconformal mapping
technique.

Используя специальные приближения собственных форм и технику
неконформных отображений Луковского, выводятся слабонелинейные
модальные уравнения, моделирующие динамику жидкости в круговом
баке.

Виводяться слабонелiнiйнi модальнi рiвняння для моделювання дина-
мiки рiдини в круговому бацi, використовуючи спецiальнi наближення
власних форм та технiку неконформних вiдображень Луковского.

1 Introduction

Understanding the liquid sloshing behavior requires combining analytical
and computational fluid dynamics (CFD) as well as model tests. Being
motivated in analyzing the liquid sloshing response in lorry tanks,
horizontal cylindrical ship tanks, railway cisterns, and storage containers
exposed to seismic excitations, several researchers conducted experimental
and theoretical studies [1,3,4,13,16,18,21] on sloshing in two-dimensional
circular tanks focusing on both transient and steady-state regimes. An
almost full review of the theoretical results can be found in recent papers
[10, 14] which reflect the disregarding fact that the theoretical studies
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are mainly restricted to the linear statement or, alternatively, perform ad
hoc simulations by using different open-source and commercial packages.
The present paper is, probably, the first attempt towards creating a
semi-analytical theory of nonlinear sloshing in a two-dimensional tank by
using the nonlinear multimodal method. Normally, the method provides
rather accurate results for hydrodynamic characteristics and loads within
theoretical assumptions on irrotational flow of an incompressible fluid
with single-valued free surface elevations. The weakly-nonlinear modal
systems derived by the method have all attributes of an analytical theory
so that studying the modal equations makes it possible to get an insight
into the physics of liquid flows, e.g., by analyzing the energy distribution
and transfer between the natural sloshing modes, jumps between steady-
state solution branches and hydrodynamic instability.

The nonlinear multimodal method has been extensively elaborated for
tanks with vertical walls when there exist exact analytical natural sloshing
modes and the single-valued free surface elevations are handled by the
normal free-surface representation z = f(x, y, t). Examples are upright
circular, and two-dimensional and three-dimensional rectangular tanks [9].
The two-dimensional circular tank is not the case. When deriving a linear
modal theory, the paper [10] pointed out two principal difficulties for
generalizing the results to the nonlinear case. The first difficulty is a
requirement in approximate analytical natural sloshing modes which are
harmonic functions (satisfying the Laplace equation) not only in the mean
liquid domain but also in the whole tank interior and, in addition, exactly
satisfy the body-boundary conditions for all admissible positions of the
free surface. The papers [10,11] constructed the appropriate approximate
natural sloshing modes. The second difficulty is that the circular shape
does not admit the normal [single-valued] parametrization of the free
surface which is required for the nonlinear multimodal method. In the
present paper, we will show that one can use the so-called nonconformal
mapping technique by Lukovsky [15] (combined with the Bateman–Luke
variational formulation) for getting a single-valued parametrization and
derivation of the so-called adaptive nonlinear modal equations.

When assuming a harmonic resonant excitation of the lowest natural
sloshing mode, the adaptive modal equations transform to the Narimanov-
Moiseev form. Applicability of the Narimanov-Moiseev modal equations
depends on whether a secondary resonance may occur due to amplification
of the second and third harmonics in the corresponding higher modes. The
secondary resonance occurrence is examined. The forthcoming studies
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should focus on the steady-state analysis of the nonlinear resonant
sloshing.

2 Statement of the problem

2.1 Free boundary problem

We consider forced transversal surface waves in a horizontal circular
cylindrical tank of radius R0. The liquid is ideal incompressible with
irrotational flow. For brevity, we focus in the present paper on translatory
horizontal excitations with a relatively small magnitude.

The analysis will be done in nondimensional statement which suggests
characteristic dimension R0 and time t∗ =

√
R0/g where g is the

gravity acceleration. This implies that the theoretical tank has the unit
radius and the introduced horizontal tank displacements η2(t) are already
scaled by R0. The corresponding nondimensional free-boundary problem
is formulated in the tank-fixed coordinate system Oyz with the origin in
the circle center. The nondimensional absolute liquid velocity is described
by the velocity potential Φ(y, z, t) and the unknown function Z(y, z, t)
describes the instant free surface shape Σ(t) by the equation Z(y, z, t) = 0.
The free-boundary problem is formulated with respect to the unknowns
Φ and Z and takes the form

∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 in Q(t), (1a)

∂Φ

∂n
= η̇2n2 on S(t), (1b)

∂Φ

∂n
= η̇2n2 −

∂Z

∂t

/
|∇Z| on Σ(t), (1c)

∂Φ

∂t
+ 1

2 (∇Φ)2 − ∂Φ

∂y
η̇2 + z = 0 on Σ(t), (1d)

∫

Q(t)

dQ = Vl. (1e)

Here, Q(t) is the time-dependent (normalized) liquid domain, n =
(0, n2, n3) is the outer normal, S(t) is the wetted tank surface, and Vl
is the nondimensional liquid volume,

Vl =

∫

Q(t)

dQ =

(
1
2π + z0

√
1− z20 + arcsin(z0)

)
, (2)
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which should remain constant for the nondimensional mean liquid level
z0 as shown in Fig. 2.1 (a).
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Figure 1: Sketch of a two-dimensional circular tank partly filled by a liquid

in the physical plane Oyz (panel a) and its nonconformal transformation to

the plane Oξζ (panel b). The figure presents the original liquid volume Q(t),

free surface Σ(t), the wetted tank walls S(t), and their transformations to the

Oξζ-plane, Q̄(t), Σ̄(t), and S̄(t). The mean free surface Σ0 corresponds to the

vertical liquid level z0 which remains the same after transformation. The

dashed lines show the coordinate curves in physical and transformed planes

due to (5).

2.2 Bateman–Luke variational formulation

During the last years, the multimodal method is typically based on the
Bateman–Luke variational principle in which the Lagrangian takes the
form of the pressure integral. Both the free surface and the velocity
potential are two independent parameters and the free surface is implicitly
defined by the equation Z(y, z, t) = 0 [9].

Let us consider an admissible function Φ(y, z, t) associated with the
velocity potential and Z(y, z, t) defining the free surface Σ(t) so that
the volume conservation condition (1e) is fulfilled for any instant t.
According to the Bateman–Luke formulation, the free boundary problem
(1) coincides with extrema points of the action

A(Z,Φ) =

∫ t2

t1

BL(Z,Φ)dt

= −
∫ t2

t1

∫

Q(t)

[
∂Φ

∂t
+ 1

2 (∇Φ)2 − ∂Φ

∂y
η̇2 + z

]
dQdt (3)
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for arbitrary t1 and t2 (t1 < t2) and isochronous variations

δΦ|t1,t2 = 0, δZ|t1,t2 = 0. (4)

Here, we have employed the nondimensional Bernoulli equation

p = −∂Φ
∂t

− 1
2 (∇Φ)2 +

∂Φ

∂y
η̇2 − z

in the non-inertial coordinate system Oyz.

3 Weakly-nonlinear adaptive modal equations

3.1 Nonconformal transformation technique

A way to get a single-valued presentation of the free surface Σ(t)
can consist of employing the so-called Lukovsky nonconformal mapping
technique. For the circular tank, this implies transforming the entire
physical tank domain to a rectangle as it is schematically illustrated in
Fig. 2.1. The required transformation between the physical (Oyz) and
transformed (Oξζ) coordinates may be postulated as

y = ξ
√
1− ζ2, z = ζ; ξ =

y√
1− z2

, ζ = z. (5)

The horizontal coordinate curves remain horizontal, but, according to (5),
the vertical coordinate lines in the Oξζ-plane correspond to the arcs in
the physical plane.

In the transformed plane, the free surface Σ̄(t) allows for the normal
representation

ζ = f̃(ξ, t) = z0 + (1− z20)f(ξ, t) = z0 + r20f(ξ, t), (6)

where function f(ξ, t) defines perturbations of Σ̄(t) (and, implicitly, Σ(t)
in the physical plane) relative to the mean free surface Σ̄0 (z0 = 0).
Employing (6) and (5) implies that the originally-introduced function Z
takes the form

Z(y, z, t) = z − z0 − (1− z20)f

(
y√

1− z2
, t

)
, (7)

where f is the same as in (6).
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Function f should conserve the liquid volume so that (1e) appears as
a holonomic constraint. Using the Taylor series by f transforms (1e) to
∫

Q(t)

dQ− Vl =

∫

Q̄(t)

√
1− ζ2dQ− Vl

= 1
2

∫ 1

−1

[
f̄

√
1− f̄2 + arcsinf̄

]
dξ − z0

√
1− z20 − arcsin(z0)

= (1− z20)
3/2

[ ∫ 1

−1

fdξ − 1
2z0

∫ 1

−1

f2dξ − 1
6

∫ 1

−1

f3dξ

− 1
8z0

∫ 1

−1

f4dξ +O(f5)

]
= 0. (8)

Note that (6) contains the multiplier r20 = 1 − z20 = (1 + z0)(1 − z0)
in the front of f(y, t). It has the physical meaning: Because we develop
an asymptotic nonlinear modal theory, the smallness of the free surface
perturbations should be considered on the three scales, i.e., the free surface
length 2r0, the maximum liquid depth 1 + z0 (the free surface does not
dry the lower circle pole), and the distance between the mean free surface
and the upper liquid pole (there is no overturning). When the tank is
about half-filled, all the three scales are of O(1) so that r20 = O(1) and
has a symbolic character. In the small depth limit, (1 + z0) ∼ r20 ≪ 2r0
and, therefore, the free surface perturbation should be smaller that O(r20).
Analogously, for the almost filled tank, (1−z0) ∼ r20 ≪ 2r0 and, therefore,
the free surface perturbation should also be smaller than O(r20).

3.2 Natural sloshing modes

The paper [10] constructed approximate natural sloshing modes, i.e.
solutions of the spectral boundary problem in the physical plane

∂2ϕn

∂y2
+
∂2ϕi

∂z2
= 0 in Q0;

∂ϕn

∂n
= 0 on S0;

∂ϕn

∂z
= κnϕn on Σ0, (9)

by using the Trefftz variational method with a harmonic basis which
satisfies the zero-Neumann boundary condition on the tank surface except
in the upper pole:

Wi(y, z) =

[i/2]∑

k=0

(−1)kC2k
i

(
2y

y2 + (z − 1)2

)i−2k
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×
(
−1− 2(z − 1)

y2 + (z − 1)2

)2k

, i = 0, 1, . . . , (10)

where [i/2] is the integer part of i/2, and C
(2k)
i = (2k)!/(i!(2k − i)!). It

has been extensively discussed in [10] that (10) implies a horizontal dipole
type flow in the upper circle pole as it was observed in experiments [2].

Following [10], we adopt the following normalized natural sloshing
modes

ϕi(y, z) :=
ϕi(y, z)

Ni
, fi(y) :=

ϕi(y, z0)

Ni
,

Ni = sign (ϕi (−r0, z0))

√√√√√

∫ r0

−r0

ϕ2
i (y, z0)dy

r0

(11)

providing that the transformed Fourier basis f̄n = fn(ξr0) = ϕn(ξr0, z0)
on the mean surface Σ̄0 becomes orthogonal, i.e.

∫ 1

−1

f̄if̄jdξ = δij , (12)

where δij is the Kronecker delta, and the elevation by these functions is
positive at the left-side wall.

3.3 Modal solution vs. volume conservation

Now, we are ready to give the needed modal solution in the physical plane.
First, we present the velocity potential in the form

Φ(y, z, t) = η̇2(t)y +
∞∑

n=1

Rn(t)ϕn(y, z), (13)

which automatically satisfies the Laplace equation (1a) and the boundary
condition (1b) for any admissible position of the free surface Σ(t).
Furthermore, the free surface is presented by (7) (or by (6) in the
transformed plane) where

f(ξ, t) =

∞∑

i=0

βi(t)f̄i(ξ) (14)
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and summation from zero is important to include

f0 = 1/
√
2 (15)

which is required to satisfy the volume conservation condition (8) for any
instant t.

Substituting the modal solution (14) into the nonlinear volume
conservation condition and using the orthogonality condition (12) and
expression (15) lead to the equation

√
2β0 = 1

2z0

∞∑

i=0

β2
i + 1

6

∞∑

i,j,k=0

Λ
(3)
ijkβiβjβk

+ 1
8z0

∞∑

i,j,k,m=0

Λ
(4)
ijkmβiβjβkβm + . . . , (16)

where the Λ-coefficients are defined in Appendix A.
Considering (16) in a neighborhood of zero (weakly-perturbed free

surface), one can resolve it with respect to β0 rewriting (14) as

f(ξ, t) = G(βi) +

∞∑

i=1

βi(t)f̄i(ξ). (17)

The function G is found in terms of the Taylor series by βi(t)

G =
1

4

[
z0

∞∑

i=1

β2
i + 1

3

∞∑

i,j,k=1

Λ
(3)
ijkβiβjβk+

+ 1
4z0





∞∑

i,j,k,l=1

Λ
(4)
ijklβiβjβkβl + (1 + 1

2z
2
0)

( ∞∑

i=1

β2
i

)2


+ . . .

]
. (18)

In summary, the modal free-surface presentation takes the form

ζ = z0 + (1 − z20)

[
G(βi) +

∞∑

i=1

βi(t)f̄i(ξ)

]
, (19a)

Z(y, z, t) = z − z0 + (1− z20)

[
G(βi) +

∞∑

i=1

βi(t)fi

(
y

√
1− z20√
1− z2

)]
=
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= z − z0 + (1 − z20)

[
G(βi) +

∞∑

i=1

βi(t)ϕi

(
y

√
1− z20√
1− z2

, z0

)]
, (19b)

where function G is given by (18).

3.4 Weakly-nonlinear expressions

The nonconformal mapping technique [15] may adopt the Bateman–Luke
variational formulation and the modal solution (13), (19) to be substituted
into (3). The result is

A(βi, Rn) = −
t2∫

t1

[ ∞∑

n=1

AnṘn+
1
2

∞∑

n,k=1

AnkRnRk+l2η̈2+l3− η̇22

]
dt, (20)

where An, Ank, l2 and l3 are defined in the physical plane as follows

An =

∫

Q(t)

ϕndQ; Ank =

∫

Q(t)

(∇ϕn · ∇ϕk)dQ,

l2 =

∫

Q(t)

ydQ; l3 =

∫

Q(t)

zdQ.

(21)

Derivation of the kinematic and dynamic modal equations suggests
variation by independent generalized coordinates βi and velocities Rn and
equating the result to zero. The obtained variational equations should be
considered together with condition (4) which means that

δβi(t1) = δβi(t2) = δRn(t1) = δRn(t2) = 0. (22)

During this derivation, it is important that expressions (21) can be
explicitly presented in term of the generalized coordinates βi:

An =

1∫

−1

z0+(1−z2
0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

∫

−1

ϕn

(
ξ
√

1− ζ2, ζ
)√

1− ζ2 dζdξ, (23a)

Ank =

1∫

−1

z0+(1−z2
0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

∫

−1

[(
∂ϕn

∂y

)2

+

(
∂ϕn

∂z

)2
]

y=ξ
√

1−ζ2,z=ζ
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×
√
1− ζ2 dζdξ, (23b)

l2 =

∫ 1

−1

∫ z0+(1−z2
0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

−1

ξ(1− ζ2) dζdξ, (23c)

l3 =

∫ 1

−1

∫ z0+(1−z2
0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

−1

ζ
√
1− ζ2 dζdξ. (23d)

3.4.1 Kinematic modal equations

To get the kinematic modal equations, we vary functional (20) by
independent generalized velocities Rn, n ≥ 1 and equal it to zero.
Analogously to derivations in [9], the latter equality will, after integrating
by part and using condition (22), lead to

dAn

dt
=

∞∑

k=1

AnkRk, n ≥ 1. (24)

Here, according to definitions (23a),

dAn

dt
=

∞∑

k=1

∂An

∂βk
β̇k, (25)

and

∂An

∂βk
= (1−z20)

1∫

−1

[
ϕn

(
ξ
√

1− ζ2, ζ
)√

1− ζ2
]
ζ=z0+(1−z2

0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

×
[
f̄k +

∂G

∂βk

]
dξ.

Keeping the quadratic terms gives

∂An

∂βk
= r30


δnk +

∞∑

i=1

χ
(1)
n,k,iβi +

∞∑

i,j=1

χ
(2)
n,k,i,jβiβj


 , (26a)

Ank = r0


κnδnk +

∞∑

i=1

Π
(1)
nk,iβi +

1
2

∞∑

i,j=1

Π
(2)
nk,ijβiβj


 , (26b)
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where

χ
(1)
n,k,i = (κnr

2
0 − z0)Λ

(3)
nki − z0Λ

(3,1,ξ)
n,ki ,

χ
(2)
n,k,i,j = (− 1

2 − z0κnr
2
0)Λ

(4)
nkij + (z20 − 1

2 − κnz0r
2
0)Λ

(4,1,ξ)
n,kij + 1

2z
2
0Λ

(4,2,ξ2)
n,kij

− 1
2r

2
0Λ

(4,2)
n,kij +

1
2z0(κnr

2
0 − z0)(δniδjk + 1

2δijδnk)

− 1
2z

2
0

(
δjkΛ

(2,1,ξ)
n,i + 1

2δijΛ
(2,1,ξ)
n,k

)
,

Π
(1)
nk,i = r20κnκkΛ

(3)
nki + Λ

(3,1,1)
nk,i ,

Π
(2)
nk,ij = −z0κnκkr20

(
Λ
(4)
nkij + Λ

(4,1,ξ)
k,nij + Λ

(4,1,ξ)
n,kij

)

+
(
r20(κn + κk)− z0

)
Λ
(4,1,1)
nk,ij − r20

[
κnΛ

(4,2)
k,nij + κkΛ

(4,2)
n,kij

]

− z0

[
Λ
(4,2,1,ξ)
n,k,ij + Λ

(4,2,1,ξ)
k,n,ij

]
+ 1

4z0δij

[
r20κnκkδnk + Λ

(2,1,1)
nk

]

and the Λ-coefficients are defined in Appendix A.
Now we can consider the kinematic modal equations (24), (25) with

expressions (26a) and (26b) as a system of linear algebraic equations with
respect to Rn. For this purpose, we present the generalized coordinates

Rk = r20


 β̇k
κk

+

∞∑

p,q=1

V
(2)
k,p,qβ̇pβq +

∞∑

p,q,l=1

V
(3)
k,p,q,lβ̇pβqβl


 (27)

and substitute (27) into the kinematic modal equations (24) to find that

V (2)
n,p,q =

1

κn

[
χ(1)
n,p,q −

Π
(1)
np,q

κp

]
,

V
(3)
n,p,q,l =

1

κn

[
χ
(2)
n,p,q,l −

Π
(2)
np,ql

2κp
−

∞∑

k=1

V
(2)
k,p,qΠ

(1)
nk,l

]
.

Here the inner summation by k is infinite that is in contrast to the
analogous expressions in [8] for a rectangular tank where the trigonometric
natural modes provided zeros of Λ-coefficients when one of the indexes
tends to infinity.

In summary, the kinematic modal equations gave us asymptotic
solution (27) in terms of the generalized coordinates Rk with respect to
another set of generalized coordinates βk by (27), where the V -coefficients
are known functions of z0.
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3.4.2 Dynamic modal equations

To derive the dynamic modal equations, we should vary the functional
(20) by independent generalized coordinates βµ, µ ≥ 1 and equal the
result to zero. The leads to the equalities

∞∑

n=1

∂An

∂βµ
Ṙn + 1

2

∞∑

n,k=1

∂Ank

∂βm
RnRk +

∂l2
∂βµ

η̈2 +
∂l3
∂βµ

= 0, µ ≥ 1. (28)

Looking for a weakly-nonlinear solution, we should, according to (26b),
use the expressions

∂Ank

∂βµ
= r0


Π(1)

nk,µ +
∞∑

j=1

Π
(2)
nk,µjβj


 , (29)

(26a) (for ∂An/∂βµ), and Rn are, due to (27), equal to

Ṙk = r20

[
β̈k
κk

+
∞∑

p,q=1

V
(2)
k,p,qβ̈pβq+

∞∑

p,q,l=1

V
(3)
k,p,q,lβ̈pβqβl+

∞∑

p,q=1

V
(2)
k,p,qβ̇pβ̇q+

+
∞∑

p,q,l=1

V̄
(3)
k,pq,lβ̇pβ̇qβl

]
, V̄

(3)
k,pq,l = V

(3)
k,p,q,l + V

(3)
k,p,l,q . (30)

Furthermore, we should take care of ∂l2/∂βµ and ∂l3/∂βµ defined by (23c)
and (23d), respectively.

For the asymptotic modal equations, the quantity ∂l2/∂βµ appears at
the excitation term which is of the highest order in our asymptotic modal
analysis. Thus, we need only to account for the lowest order term, O(1),
which is computed as

∂l2
∂βµ

= r40

∫ 1

−1

ξf̄µdξ +O(β) = r40λ2µ +O(β). (31)

Another term is generally defined by the formula

∂l3
∂βµ

= r20

∫ 1

−1

ζ
√
1− ζ2|

ζ=z0+(1−z2
0)

[

G(βi)+
∞
∑

i=1

βif̄i

]

[
fµ +

∂G

∂βµ

]
dξ (32)

which should be expanded in a Taylor series by generalized coordinates

∂l3
∂βµ

= r50

[
βµ − z0

∞∑

i,j=1

Λ
(3)
ijµβiβj − 1

2

∞∑

i,j,k=1

Λ
(4)
ijkµβiβjβk − 3

4z
2
0βµ

∞∑

i=1

β2
i

]
.

(33)
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3.4.3 Adaptive modal equations

Including up to the third-order polynomial quantities in the dynamic
equations (28) leads to

∞∑

k=1

β̈k


δkµ +

∞∑

i=1

d
(1)
µ,k,iβi +

∞∑

i,j=1

d
(2)
µ,k,i,jβiβj




+

∞∑

p,q=1

β̇pβ̇q

[
t(0)µ,p,q +

∞∑

i=1

t
(2)
µ,p,p,iβi

]
+ κµβµ +

∞∑

i,j=1

g
(2)
µ,ijβiβj

+

∞∑

i,j,k=1

g
(3)
µ,ij,kβiβjβk + κµλ2µ

η̈2
r0

= 0, µ ≥ 1, (34)

where

d
(1)
µ,k,i = κµ

[
V

(2)
µ,k,i +

χ
(1)
k,µ,i

κk

]
, (35a)

d
(2)
µ,k,i,j = κµ

[
V

(3)
µ,k,i,j +

χ
(2)
k,µ,i,j

κk
+

∞∑

l=1

χ
(1)
l,µ,iV

(2)
l,k,j

]
, (35b)

t(0)µ,p,q = κµ

[
V (2)
µ,p,q +

Π
(1)
pq,µ

2κpκq

]
, (35c)

t
(1)
µ,p,q,i = κµ

[
V̄

(3)
µ,p,q,i +

Π
(2)
pq,iµ

2κpκq
+

∞∑

k=1

V
(2)
k,p,qχ

(1)
k,µ,i +

∞∑

k=1

Π
(1)
kq,µV

(2)
k,p,i

κq

]
,

(35d)

g
(2)
µ,ij = −z0κµΛ(3)

ijµ, (35e)

g
(3)
µ,ij,k = −κµ

[
1
2Λ

(4)
ijkµ + 3

4z
2
0δijδkµ

]
. (35f)

Here, the inner summations in the hydrodynamic coefficients are indeed
infinite. Furthermore, since β2k−1 correspond to antisymmetric modes,
but β2k are generalized coordinates responsible for symmetric modes, the
hydrodynamic coefficients possess the properties

d
(1)
µ,i,j = t

(0)
µ,i,j = g

(2)
µ,i,j = 0, mod (µ+ i + j, 2) = 1,

d
(2)
µ,i,j,k = t

(0)
µ,i,j,k = g

(2)
µ,i,j,k = 0, mod (µ+ i+ j + k, 2) = 1,

(36)
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which leads to specific zeros in (53).
The novelty of these equations with respect to those for cylindrical

tanks [8] is additional nonlinear terms associated with the g-coefficients
caused by the fact that the vertical coordinate lines in the transformed
plane are not along the gravity acceleration vector.

3.4.4 Horizontal hydrodynamic force

According to Lukovsky’s formula [9] the hydrodynamic force is determined
by the mass center motions so that the dimensional horizontal force is

F2(t) = mlg(η̈2 + ÿC(t)), (37)

where the horizontal component of the mass centre is defined by l2 and
can, within the framework of the third-order approximation, be computed
by the formula

yC(t)Vl = l2 = r40




∞∑

i=1

λ2iβi


1− 1

2z
2
0

∞∑

j=1

β2
j


− z0

∞∑

i,j=1

λ2ijβiβj−

− r20

∞∑

i,j,k=1

λ2ijkβiβjβk

]
, (38)

where the λ-coefficients are defined by (52). We can see that, in contrast
to, e.g., rectangular tank [8], yC(t) component of the mass centre is
strongly nonlinearly dependent on the generalized coordinates.

Accounting for expression (38), the horizontal force takes the form

F2(t) = mlg


η̈2 +

r40
Vl




∞∑

i=1

β̈i



f0i +

∞∑

j=1

f1ijβj +

∞∑

j,k=1

f2i,j,kβjβk





+

∞∑

i,j=1

β̇iβ̇j

{
h0ij +

∞∑

k=1

h1i,j,kβk

}


 , (39)

where

f0i = λ2i; f1ij = −2z0λ2ij ; f2i,j,k = −z20
(
1
2λ2iδjk + λ2jδik

)
− 3r20λ2ijk,

(40a)
h0ij = −2z0λ2ij ; h1i,j,k = −z20 (2λ2iδjk + λ2kδij)− 6r20λ2ijk. (40b)
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Here, we also have many zeros due to the property

f0i = 0, mod (i, 2) = 0; f1ij = h0ij = 0, mod (i+ j, 2) = 0,

f2i,j,k = h1i,j,k = 0 mod (i+ j + k, 2) = 0.
(41)

4 Narimanov–Moiseev modal equations

The Narimanov–Moiseev theory is based on the Duffing asymptotic
ordering [9] assuming that the primary-excited first mode is the only
dominant and of the order β1 = O(ǫ1/3) when the forcing is of the order
η2 = O(ǫ), ǫ ≪ 1. The non-zero second-order polynomial terms in β1
appear for the circular tank shape in all modal equations (34) responsible
for symmetric modes while the nonzero cubic terms in β1 exist in all modal
equations (34) governing the antisymmetric modes. This means that the
Narimanov–Moiseev asymptotics takes in the studied case the form

β1 = O(ǫ1/3), β2k = O(ǫ2/3), β2k+1 = O(ǫ), k ≥ 1. (42)

Neglecting the o(ǫ)-terms in (34) and using the generalized Moiseev
asymptotics (42), we arrive at the following Narimanov–Moiseev system
of modal equations

β̈2µ−1 + κ2µ−1β2µ−1 + d
(2)
2µ−1,1,1,1β̈1β

2
1 + t

(1)
2µ−1,1,1,1β̇

2
1β1

+ g
(3)
2µ−1,1,1,1β

3
1 + β̈1

∞∑

i=1

d
(1)
2µ−1,1,2iβ2i + β1

∞∑

i=1

d
(1)
2µ−1,2i,1β̈2i

+ β̇1

∞∑

i=1

[
t
(0)
2µ−1,1,2i + t

(0)
2µ−1,2i,1

]
β̇2i + 2β1

∞∑

i=1

g
(2)
(2µ−1)1(2i)β2i

+ κ2µ−1λ2(2µ−1)
η̈2
r0

= 0, (43a)

β̈2µ + κ2µβ2µ + d
(1)
2µ,1,1β̈1β1 + t

(0)
2µ,1,1β̇1 = 0, µ = 1, . . . . (43b)

Referring to numerical simulation and experimental data [10]
commented on the possibility of the internal (secondary) resonance
which causes both amplification of higher modes and transition to three-
dimensional flow [3, 20]. The secondary resonance may make the modal
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T

Figure 2: The schematic response curves for a clean rectangular tank

representing the maximum steady-state wave elevation A versus σ/σ1 for

0.3368 . . . < h/l due to lateral harmonic excitation. The dashed line shows

results of the linear sloshing theory. The solid bold lines display stable nonlinear

steady-state regimes. A hysteresis effect at σ/σ1 = 1 is possible and denoted

by the points T , T1, T2 and T3. The points i2 and i3 mark the most important

secondary resonance points occurring when the forcing frequency satisfies the

conditions 2σ = σ2 (amplification of the second mode) or 3σ = σ3 (amplification

of the third mode), respectively. A hysteresis effect at i2 and i3 is also possible

but, due to sufficiently large damping, it was detected in experiments [8] only

for a relatively-large forcing amplitude.

system (43) inapplicable. Papers [8,12,19] presented a detailed theoretical
and experimental analysis of the secondary-resonance phenomena for
liquid sloshing dynamics. An extended review on the secondary resonance
phenomenon for two-dimensional and three-dimensional sloshing is also
given in Chapt. 8 of [9]. In these publications, the phenomena are
studied for the case when the tank is harmonically forced, horizontally
or angularly, with an asymptotically-small amplitude and the forcing
frequency σ is close to the lowest natural sloshing frequency σ1, i.e.
σ ≈ σ1. The primary emphasis is placed on the two-dimensional steady-
state resonant liquid sloshing in a clean rectangular tank for which the
secondary resonance phenomenon is expected at 2σ ≈ σ2, 3σ ≈ σ3,...,
nσ ≈ σn, n ≥ 4. The latter conditions imply amplification of the
second, third, and higher harmonics as well as the corresponding natural
modes. Thinking in terms of the multimodal method, the harmonics
are mathematically yielded by the free-surface nonlinearities of the
corresponding polynomial orders. For 0.3368 . . . < h/l (0.3368 . . . is the so-
called critical depth where the soft-to-hard spring behavior of the response
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curves changes with σ = σ1, h is the rectangular tank depth, and l is the
tank width), the secondary resonance peaks on the steady-state response
curves are situated away from the primary resonance σ = σ1 as shown
in Fig. 4. Passage to shallow water depths moves the points ik closer to
1 and, thereby, increases the probability of the secondary resonance for
higher modes. However, the liquid damping causes that the secondary
resonance peaks associated with higher-order free-surface nonlinearities
(fourth, fifth, etc.) remain quite narrow and they are practically realized
only for nearly-shallow water conditions with h/l . 0.2.

Specific position of the secondary resonance peaks in Fig. 4 and,
therefore, contribution of higher modes is only typical to rectangular
tanks. The secondary resonance peaks may change positions for other
tank shape and even, as it is shown in [6, 7] due to internal structures
installed in the tank. This fact was extensively discussed in [7] in the
context of nonlinear liquid sloshing with a central slotted screen installed
at the rectangular tank by employing the ‘modal equations’ language. For
the modal equations (34) derived for circular tank, the calculations show
that the nonzero quadratic quantities in β1 appear now in all the equations
for even modes, i.e. all the symmetric modes (associated with β2i) can be
amplified due to the second harmonics (the second-order nonlinearity)
but the nonzero cubic terms in β1 are present in all the equations for
antisymmetric modes (associated with β2i−1). As a consequence, the
higher solidity ratios yield the secondary resonance due to the second
and third harmonics not only at i2 and i3 but also at ik, k ≥ 2 defined
by

2σ = σ2k =⇒ σ

σ1
=
σ2k
2σ1

= i2k, k = 1, 2, . . . (44)

(due to amplification of the double harmonics) and

3σ = σ2k+1 =⇒ σ

σ1
=
σ2k+1

3σ1
= i2k+1, k = 1, 2, . . . . (45)

(due to amplification of the third harmonics).

Occurrence of the secondary resonance due to excitation of the first
sloshing mode is expected when σ/σ1 ≈ 1 and σ/σ1 ≈ im for a certain
indexes m, simultaneously. Fig. 4 shows that this really can happen for
different liquid depths. So, Fig. 4 (a) demonstrates that amplification
of the double harmonics due to quadratic terms in the equations for the
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Figure 3: Occurrence of the secondary resonance due to the second harmonics

i2k ≈ 1 and the third harmonics i2k+1 ≈ 1, k = 1, . . . for different liquid depths

and the forcing frequency close to the lowest natural frequency.

symmetric modes is, first of all, dangerous for the fourth mode. According
to Fig. 4 (b), the harmonics 3σ will primary cause amplification of the
fifth and seventh modes for lower depths, but the ninth and eleventh mode
amplification is expected for higher liquid depths.

5 Concluding remarks

The paper opens a series of analytical studies on nonlinear liquid sloshing
in a two-dimensional circular tank. The literature on that is almost empty
and the theoretical papers are normally based on the linear statement,
or perform direct simulations employing CFD. In the present paper, we
derive the so-called adaptive and Narimanov–Moiseev weakly-nonlinear
modal equations. According to the secondary resonance analysis, the
Narimanov–Moiseev modal equations may have a limited applicability,
especially for higher tank fillings. This needs a dedicated study what
should employ a comparison with experiments.

A Definitions of coefficients

Λ
(3)
ijk =

∫ 1

−1

f̄if̄j f̄kdξ, Λ
(4)
ijkm =

∫ 1

−1

f̄if̄j f̄kf̄mdξ, . . . , (46)
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Λ
(2,1,ξ)
n,k =

∫ 1

−1

ξf̄nξf̄kdξ, Λ
(3,1,ξ)
n,ki =

∫ 1

−1

ξf̄nξf̄kf̄idξ,

Λ
(4,1,ξ)
n,kij =

∫ 1

−1

ξf̄nξ f̄kf̄if̄jdξ, . . . , (47)

Λ
(2,1,1)
nk =

∫ 1

−1

f̄nξf̄kξdξ, Λ
(3,1,1)
nk,i =

∫ 1

−1

f̄nξf̄kξf̄idξ,

Λ
(4,1,1)
n,ki =

∫ 1

−1

f̄nξf̄kξ f̄if̄jdξ, . . . , (48)

Λ
(3,2)
n,ij =

∫ 1

−1

f̄nξξ f̄if̄jdξ, Λ
(4,2)
n,ijl =

∫ 1

−1

f̄nξξ f̄if̄j f̄ldξ, . . . , (49)

Λ
(3,2,ξ2)
n,ij =

∫ 1

−1

ξ2f̄nξξf̄if̄jdξ, Λ
(4,2,ξ2)
n,ijl =

∫ 1

−1

ξ2f̄nξξ f̄if̄j f̄ldξ, . . . , (50)

Λ
(3,2,1,ξ)
n,k,i =

∫ 1

−1

ξf̄nξξf̄kξ f̄idξ, Λ
(4,2,1,ξ)
n,i,jl =

∫ 1

−1

ξf̄nξξf̄kξ f̄if̄jdξ, . . . , (51)

λ2n =

∫ 1

−1

ξf̄ndξ, λ2nk =

∫ 1

−1

ξf̄nf̄kdξ, λ2nki =

∫ 1

−1

ξf̄nf̄kf̄idξ, . . . .

(52)

B Modal expressions adopted for calculations

It is convenient for calculation to rewrite the truncated nonlinear modal
equations (34) in the form

N∑

a=1

β̈a

(
δam +

N∑

b=1

βbD1m(a, b) +

N∑

b=1

b∑

c=1

D2m(a, b, c)βbβc

)

+

N∑

a=1

a∑

b=1

β̇aβ̇b

(
T 0m(a, b) +

N∑

c=1

T 1m(a, b, c)βc

)
+ κmβm

+

N∑

a=1

a∑

b=1

G2m(a, b)βaβb +

N∑

a=1

a∑

b=1

b∑

c=1

G3m(a, b, c)βaβbβc + Pmη̈2 = 0,

(53)
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where

Pm = κm
λ2m
r0

; D1m(a, b) = d
(1)
m,a,b,

D2m(a, b, c) =

{
d
(2)
m,a,b,b, b = c,

d
(2)
m,a,b,c + d

(2)
m,a,c,b, b 6= c,

T 0m(a, b) =

{
t
(0)
m,a,a, a = b,

t
(0)
m,a,b + t

(0)
m,b,a, a 6= b;

T 1m(a, b, c) =

{
t
(1)
m,a,a,c, a = b,

t
(1)
m,a,b,c + t

(1)
m,b,a,c, a 6= b,

G2m(a, b) =

{
g
(2)
m,a,a, a = b,

g
(2)
m,a,b + g

(2)
m,b,a, a 6= b,

G3m(b, c, d) =





g
(3)
m,b,b,b, b = c = d,

g
(3)
m,b,b,d + g

(3)
m,b,d,b + g

(3)
m,d,b,b, b = c, c 6= d,

g
(3)
m,b,c,c + g

(3)
m,c,b,c + g

(3)
m,c,c,b, b 6= c, c = d,

g
(3)
m,b,c,d + g

(3)
m,b,d,c + g

(3)
m,c,b,d

+g
(3)
m,c,d,b + g

(3)
m,d,b,c + g

(3)
m,d,c,b, b 6= c, c 6= d.

The force is due to (39) presented for calculations by the truncated
formula

F2(t) = mlg
(
η̈2+

r40
Vl

[ N∑

i=1

β̈i

{
F0(i)+

N∑

j=1

F1(i, j)βj+

N∑

j=1

j∑

k=1

F2(i, j, k)βjβk

}

+

N∑

i=1

i∑

j=1

β̇iβ̇j

{
H0(i, j) +

N∑

k=1

H1(i, j, k)βk

}])
, (54)

where

F0(i) = f0i; F1(i, j) = f1ij ; F2(i, j, k) =

{
f2,i,j,j, j = k,
f2,i,j,k + f2,i,k,j , j 6= k,

H0(i, j) =

{
h0ii, i = j,
2h0ij , i 6= j;

H1(i, j, k) =

{
h1,i,i,k, i = j,
h1,i,j,k + h1,j,i,k, i 6= j.
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M.M. Caracterizaciòn experimental del oleaje en tanquues. — Tech. Rep.,
Publication Technica No. 219. Instituto Mexicano del Transpote (IMT),
2003, Secretaria de Comunicaciones Y Transportes (SCT). — 120 p.

[19] Ockendon J.R., Ockendon H., Waterhouse D.D. Multi-mode resonance in
fluids // J. of Fluid Mechanics. — 1996. — 315. — P. 317–344.

[20] Sames P.C., Marcouly D., Schellin T.E. Sloshing in rectangular and
cylindrical tanks // J. of Ship Research. — 2002. — 46, No. 3. — P. 186–200.

[21] Strandberg L. Lateral sloshing of road tankers. Volume 1: Main report. —
Tech. Rep., Nr 138A-1978. National Road and Traffic Research Institute,
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