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Applying the theory of Mellin pseudodifferential operators with non-regular
symbols we establish Fredholm criteria and index formulas for singular
integral operators with piecewise slowly oscillating coefficients and finite
non-cyclic groups of Lipschitz shifts whose derivatives admit slowly oscil-
lating discontinuities. Such operators studied on the Lebesgue spaces are
related to boundary value problems with finite groups of shifts.

1. Introduction. Let B(X) be the Banach algebra of all bounded
linear operators acting a Banach space X, and let K(X) be the closed two-
sided ideal of all compact operators in B(X). An operator A € B(X) is said
to be Fredholm, if its image is closed and the spaces ker A and ker A* are
finite-dimensional. In that case the number Ind A = dim ker A —dim ker A*
is referred to as the index of A (see, e.g., [1, p. 9]).

Let T = {z € C : |z| = 1} be the unit circle with counter-clockwise
orientation and let G be a finite group of Lipschitz homeomorphisms of T
onto itself that have slowly oscillating (see Section 2) derivatives. By [2],
G has one of the two following forms:

G={e,a,...,a" ", G={ea,...,a" ' Bap....a" '8}, (1)

where n € N, e is the unit of G, the shift a preserves the orientation on T,
a” =eand af #eif k =1,2,...,n—1, the shift 8 reverses the orientation
on T and 3% =,

akﬂ:ﬂanik fOI' all k:172’...,n, (2)
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and (g192)(t) = g2[91(¢)] for all ¢t € T and all g1, g2 € G.
Let 1 < p < oo. Then the Cauchy singular integral operator St given
for f € L}(T) and almost all t € T’ by

(St f)(t) := lim i/T (1) dr, (3)

e—0 \T(t,e) T—1

where T(t,e) := {7 € T:|r —t| <e},is bounded on the Lebesgue space

LP(T), where || f||zo(T) := (fT lf(m |p|d7'|) (see, e.g., [1, Section 1.42]).

Our goal is the Fredholm study of the next boundary value problem:
Find a function ® analytic in C \ T, represented by the Cauchy type
integral over T with a density ¢ € LP(T) and satisfying the boundary
condition

> ar )@t = a,(t ()] + f(t) for teT, (4)

9€G geG

where ®*(t) are angular boundary values of ® on T, aF are piecewise
slowly oscillating (see Section 2) functions in L*°(T), and f € LP(T).
By the Sokhotski-Plemelj formulas ®* = :I:P,Ii,go, with boundary value
problem (4) we can associate the equivalent singular integral operator with
shifts
B=> (afVyPf +a,V,Pr) € B(L*(T)), (5)
geG

where V; are the shift operators given by V,f = fog, PTi =271+ St),
I is the 1dent1ty operator and St is the Cauchy singular integral operator
given by (3).

The Fredholm theory for the operator (5) with continuous coeffi-
cients and cyclic groups of shifts was constructed by G.S. Litvinchuk (see
[3]). The case of piecewise continuous coefficients and cyclic groups of
shifts preserving or changing orientation was studied by I. Gohberg and
N. Ya. Krupnik, N. K. Karapetiants and S. G. Samko, N. L. Vasilevski and
M. V. Shapiro (see [3, 4] and the references therein).

In the case of continuous coefficients agjE and finite non-cyclic groups
(1) of shifts, a Fredholm criterion and an index formula for the operator
(5) on the spaces LP(T") with p € (1,00) and a closed Liapunov curve T
were obtained in [2]. The Fredholm theory for the Banach algebra gener-
ated by operators (5) with piecewise continuous coefficients on the spaces
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LP(T, p) with power weights p was constructed in [5] (see also papers by
G.Yu. Vinogradova for the case I' = R in [4]).

In the present paper we establish a Fredholm criterion and an index
formula for the operator (5) under the following conditions: the finite group
G in (1) is non-cyclic, the coefficients agi are piecewise slowly oscillating
and admit only finite sets of discontinuities on T, the derivatives o and 5’
are slowly oscillating on T, and the fixed points of the shifts a and § := aof
are isolated discontinuity points for the derivatives o’ and &', respectively.
The study is based on the Fredholm theory for Mellin pseudodifferential
operators with non-regular symbols, which was constructed in [6 — §].

The paper is organized as follows. Section 2 contains preliminaries on
slowly oscillating and piecewise slowly oscillating functions. Section 3 con-
tains necessary results on Mellin pseudodifferential operators. In Section 4
the operator B with shifts given by (5) is reduced to an equivalent matrix
operator Br without shifts. In Section 5 the operator Br is reduced to
a finite family of Mellin pseudodifferential operators, which together de-
scribe the Fredholmness of Br. Finally, applying the results of Section 3,
we obtain a Fredholm criterion and an index formula for the operator B
in Sections 6 and 7, respectively.

2. The C*-algebra of PSO(T) functions. Let C(T), PC(T) and
SO(T) denote the C*-subalgebras of L>(T) cousisting, respectively, of
all continuous functions on T, all piecewise continuous functions on T,
that is, the functions having one-sided limits at each point ¢ € T, and all
slowly oscillating functions on T, that is, the functions f that are slowly
oscillating at each point \ € T:

;i_rf(l)esssupﬂf(zl) — f(z2)]: 21,22 € Te()‘)} =0,

where T.(A) := {z € T : ¢/2 < |z — A\| < ¢}. Denoting by SO,(T) the
C*-subalgebra of L>°(T) consisting of the continuous functions on T\ {\}
that are slowly oscillating at A € T, we deduce that SO(T) is the smallest
C*-subalgebra of L>°(T) containing all C*-algebras SO, (T) for A € T.
Let PSO(T) := alg (SO(T), PC(T)) be the C*-subalgebra of L>°(T)
generated by the C*-algebras SO(T) and PC(T).
Since C(T) C SO(T) C PSO(T), it follows from [9] that

M(SO(T)) = | J Mi(SO(T)), M(PSO(T)) = M(SO(T)) x {0,1},

teT
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where the fibers of the maximal ideal space M (SO(T)) are given for ¢t € T
by
M(SO(T)) = {€ € M(SO(T)) : &loer) = t}, (6)

and t(f) = f(¢t) for f € C(T).

Theorem 1 [9, Theorem 4.6]. If £ € M;(SO(T)) with t € T and
w € {0,1}, then the characters (£, ) € M(PSO(T)) possess the following
properties: (&, p)lsomy = & (§;1)lem =t (& w)lpeery = (t,p); and
(t,0)a = a(t — 0) and (t,1)a = a(t + 0) are the left and right one-sided
limits of a function a € PC(T) at the point t € T.

Given a € PSO(T), we put a(¢1) := a(£,1) and a(£7) = a(€,0) for
all £ € M(SO(T)).

By the proof of [9, Theorem 6.2], the C*-algebra SO(T) is contained
in the C*-algebra QC(T) of quasicontinuous functions on T, and by [10],

QC(T) := (C(T) + H®)N (C(T) + H®) = L>(T) N VMO(T),

where the C*-algebra H> consists of all functions being non-tangential
limits on T of the functions bounded and analytic on the open unit
disc, and VMO(T) is the Banach space of functions of vanishing mean
oscillation. Hence, the compactness criteria in [11], the fact SO(T) C
C L*®(T)NVMO(T), and [12, Theorem 4.1 and Proposition 4.5] together
imply the following.

Theorem 2. Let 1 < p < 0.
(a) If a € SO(T), then aSt — Stal € K(LP(T)).

(b) If ais an orientation-preserving Lipschitz homeomorphism of T onto
itself and o € SO(T), then VoSt — STV, € K(LP(T)).

(¢c) If B is an orientation-reversing Lipschitz homeomorphism of T onto
itself and B’ € SO(T), then VagSt + StV € K(LP(T)).

3. Mellin pseudodifferential operators. Let a be an absolutely
continuous function of finite total variation V'(a) = [g |a/(x)|dz on R. The
set V(R) of all absolutely continuous functions of finite total variation on
R becomes a Banach algebra with the norm [la||y := ||a|| &) + V(a).

Following [6, 7], let Cp(R4,V(R)) denote the Banach algebra of all
bounded continuous V' (R)-valued functions on R} = (0, 00) with the norm

la(, ey ®ry vy = sup [lalt,-)llv.
teR,
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As usual, let C§°(R) be the set of all infinitely differentiable functions of
compact support on R.

Take the Lebesgue space LP(R.,du) with invariant measure du(t) =
= dt/t on Ry. The following boundedness result for Mellin pseudodiffer-
ential operators follows from [7, Theorem 6.1] (see also [6, Theorem 3.1]).

Theorem 3. If a € Cy(Ry,V(R)), then the Mellin pseudodifferential
operator Op(a), defined for functions f € C5°(Ry) by the iterated integral

v = o [dr [ato) (1) 50 o vem,,
R

R

extends to a bounded linear operator on the space LP (R, du) and there is
a number C, € (0,00) depending only on p such that

I Op()lBLr®,du)) < Collallc,®y,vRr))-

Let SO(R4,V(R)) denote the Banach subalgebra of Cp(R4,V(R))
consisting of all V(R)-valued functions a on Ry that slowly oscillate at 0
and oo, that is,

lim cm¢ (a) = lim em&(a) = 0,
r—0 r—00

where

em& (a) = max{Ha(t, ) —a(r, -)||LOC(R) it 7€ [r,2r]}.

Let £(R4+,V(R)) be the Banach algebra of all V(R)-valued functions
a € SO(R4+,V(R)) such that

fim 3 ot el =0,

where a”(t,z) := a(t,z + h) for all (t,r) € Ry x R.

To study the Fredholmmess of Mellin_ pseudodifferential operators
Op(a), we also need the Banach algebra E(Ry,V(R)) consisting of all
functions a € E(R4, V(R)) such that

. da(t, x)
lim sup —_—
M—o0 t€R+ 8513
R\[-M,M]

dr = 0.
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Thus, £R4,V(R)) and E(R., V(R)) are Banach subalgebras of the al-
gebras SO(R4+,V(R)) C Cp(R4+, V(R)).

Below we need the following Fredholm criterion and index formula for
Mellin pseudodifferential operators Op(a) with symbols a € £(R4+, V(R)),
which were obtained in [8, Theorem 4.3| on the base of [6, Theorems 12.2
and 12.5]. Let M;(SO(R4)) denote the fibers the maximal ideal space
M(SO(R.)) defined similarly to (6).

Theorem 4. If a € £&(R4,V(R)), then the Mellin pseudodifferential
operator Op(a) is Fredholm on the space LP(Ry,du) if and only if

a(t,+£00) #0 forall tc Ry, a(&,2)#0 forall (£,2) € AxR, (7)
where A = My(SO(R4)) U Moo (SO(RYy)). In the case of Fredholmness

1
Ind Op(a) = lim or {argaf(t, x)}(t,m)GGHT’

T—+00 2T

-1

where I, = [t71,7] x R and {arga(t,z denotes the increment

)} (t,x)€dIl,
of arg a(t,x) when the point (t,x) traces the boundary 011, of IL. counter-
clockunse.

4. Reduction to an operator Br without shifts. Let the group G
be of the second form in (1). Then the operator (5) takes the form

B=A,Pi+A Py, (8)

where A4 are functional operators given by

n—1 n—1
Ap = afVi+ > af VEVs (9)
k=0 k=0

and a,f,aak € PSO(T) for all k=0,1,...,n— 1.

To study the operator (8), we first apply a reduction to an operator
without shifts.

Fix tg € T such that 3(to) = to. Then the points to, a(to),...,a" (tg)
are pairwise distinct. In what follows we assume without loss of generality
that tg < a(tg) < ... < " 1(tg) < to. The shift § = a o B reverses the
orientation on T and maps the endpoints of the arc segment [to, a(t9)] C T
to each other: §(tg) = (a0 B)(to) = alty), da(te)] = (a o B)[alty)] = to.
Hence the open arc (tg, a(tp)) C T contains exactly one fixed point of the
shift § = a o 8. We denote this point by #;.
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Let T be the arc segment [tg,t1] C T,
n—1
T=J (" @ Uu(Boa) (D))
k=0

and the arcs T, a(I),..., " Y(T), B(I'), (B o a)(I),..., (B o a® 1))
can admit pairwise intersections only at the points of the set

Uns {@(to). a*(t1)}.

Let L, (I') denote the Banach space of vector functions 1 = {4, -t

k=0
2n—1 p 1/p .
where v € LP(T) and [l ) = ( 2n Hwkllm(p)) . Consider the
isomorphism
T:LX(T) » L5,(T), (T)(t) = {wn()},L," for teT,  (10)
where ¢ (t) = p[a® ()] if k= 0,1,...,n — 1 and ¢(t) = ¢[(8 0 a¥)(t)] if
k=n,n+1,...,2n— 1. Then for every £k =0,1,...,n — 1 it follows that

I" 0 0 Y;L—k

_ 0 Infk
h=[0 i

TV = [0 In] I, TVETl= [Yk 0 ]L
(11)

where I}, is the k x k identity matrix. Making use of (11) we immediately
obtain the following lemma.

Lemma 5. If AL are functional operators (9) and Y is given by (10),
then TALY™1 = AL T € B(LS, (T')), where

e +
AL(t) = jétgg ﬁ%gﬂ for tel,
[ @) et a (1)
a aft agy |a(t a t
A1) = nflz[ (t) 0[.()] ) n—2lo(t)] 7
e ) TS S ) o (A (3)
[ @8] at 1 [3(0) at [3(1)
a aft a, alt a aft
A1) = 1 [B(e(t))] 0[5(: ()] 2 [B(a(t))] 7
Lan_1[B@" ()] ap_o[Ba"1 ()] ag [B(a"1(1))]
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and the matriz functions Azi and A?jf are obtained, respectively, from .Ali
and .Aff by replacing aki by airk fork=0,1,...,n—1.

If the functions o/, 8’ € SO(T), then for every k = 0,1,...,n — 1 it
follows from Theorem 2 that

VESTV R~ S, VEVaSpV; 'V ~ —Sq, (12)

(e

where A ~ B means that the operator A — B is compact.

Lemma 6. If o/, 3 € SO(T) and § = a0 3, then

R, 0 0 ... 0 R
0 0 0 .. R R
B 0 0 0 .. Ry 0
TSTT”:E{F _éﬂ e T R
0 R Ry ... 0 0
R Ry 0 ... 0 0]

where the operators Ry, Ry € B(LP(I")) are given fort e T" by

(Rog) (1) = — /F P g (Rug)(t) = 2 /F T‘f(gzt) dr.  (14)

wi Jp T —B(t) i
Proof. The operator YStY~! € B(L5, (T)) is the operator matrix

n—1

SO _g@ o
o= N _ [gm B
TSTT ™ = [5?3) _SEAL) ; Spl = [Sk,j}wzo (r=1,2,3,4),

where for t € I" and all k,7 =0,1,...,n — 1 we have

(5910 = = [ 9D ooy

i (1) — ak(t)

[Sl(c?;(p] (t) _ iA ( (ﬂ ¢} a])’<7') @(T)d7—7

m Boad)(r)— ak(t)

@) () = L (a’)'(7) N

e [ Beeym)
[Sk,jw](t) = ~/F(5oaj)(7) — (Boak)(t) wlr)dr
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The operators S,(Clj) and S,(Cilj)- are compact if k # j, because in that case
aF(T)Nal(T) =0 and (Boa®) ()N (Boal)() = 0. On the other hand,
if k = j, then we infer from (12) that
Si) =~ Sr, S =~ Sr.

Analogously, (8 o o/)(I') intersects o(T") only if either j = n — k (here
j=0ifk=0)orj=n—k—1, and then

(8009)(T) N a*(T) = {a*(to)} it j=n—k

(Boal)(T)Na*(T) = {ah(t)} if j=n—k—1.

Hence the operators S( ) and S( ]) are compact if j ¢ {n — k,n —k —1}.

On the other hand, for j =n— k and j =n — k — 1 we have the relatlons
Sl(jnfk ~ Ry, Sl(cn)szfl ~ Ry, (15)
S,(Ci)kk ~ Ry, S,(f,)%kfl ~ R;.

Indeed, let ¢ > 0 be sufficiently small and let xT, X=, x-, X2 be the
characteristic functions of the arc segments

v = [to, tee™] C T, A7 :=B(yF) C T\T,
Vo = [tie™ t] C T, 75 =06(y-) C T\T,

respectively. Clearly,

Sl(crr)Lk_X Skn kXI Sl(crr)Lkl—XESknklxs‘[

for r = 2,3 and any sufficiently small £ > 0. Then, taking into account (2)
and (12), setting o := B(t) for t € v, ¢ := 4(¢) for ¢ € 77 and denoting
by K compact operators in B(LP(T)), for t € T we get

+ Oan—k’ ! T
st =250 [ e ar -
_E) [ Geam Yot dr_
w e Goar i) - (Goar o)
X: (o T (T)o(r
X0 [T g st (57 o) -

Uy’ T—0

X2 ) [ xd(n)e(r)dr
oW /F - B(t) + [XTK(xFo)] (1),
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(ﬂ‘/'03ooﬁkIY(T)xg(T)w(T)dT__
r

a2 _ _ Xe
[Xs Sk,n—k—1(Xs 90)] (t) = i (Boan—k=1)(7) — ak(t)

R [ _Goart Vi

wi e (BoarFN ) — (Boar ()

X9 [ WP 4 4 o Kz )] 657 ()=
™ Jp T—¢

_xe () [ xc(M)p(r)dr
oomi /F T —0(t)

+ e Ko 9)] (0),
which proves the first two relations in (15) in view of (14). The second two
relations in (15) are proved analogously, which completes the proof.

By (8), (9) and by Lemmas 5 and 6, we obtain

Corollary 7. If B is the operator (8), then

+ 91 - -1
mre=ter=a |, T al |, -

2-'H  Po -27'g  pf
—-H
—C.PF+C_Pr+27A [g . ] 7 (16)

where H is given by (13), A= Ay — A_, and the matriz functions Cx are
given by

AT A5 A0 45
e =350 ) 0= 40

Let I'0 :=T'\ {to,1}. Passing from I to a segment [0, arg(¢;/to)] C R,
one can prove that there exists an orientation-reversing Lipschitz homeo-
morphism S of T onto B(I") such that ¢, is its fixed point, 8/ € SO(T') N
NC(T°) and the function 3’ — B’ is continuous at the points tg and ¢; and
has zero values there. Let Xf: and x be the characteristic functions of I'

and B(T'). Then, setting o := B(t) for t € I' and extending the orientation-
preserving shift ¢ = 8o 371 : B(I') — B(T) to T \ B(I') as the identity
shift, we infer that ¢’ € SO(T) and therefore, by Theorem 2,

WO [ o) L xdO [ e
/ ﬁr—mod mi AT—awd

™
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i) [ d@en) (o) [ ximen)
L A e

T _ 503—1 o i} T—0
_H@/ﬁ&ﬂ%%;_H@/ﬁWMﬂM:
T Jr ((1)—((o) T Jp T—0

where K € K(LP(T)). Hence Ry ~ Ry, where

(Rop)(t) = i./ A0 g for ter
™ Jr T —B(t)

Thus, we may (and will) assume without loss of generality that the shifts

and ¢ in the operators Ry and R given by (14) have derivatives in SOy, (T")

and SO, (T'), respectively (recall that the operators Ry and Ry have fixed

singularities only at these points).

5. Reduction to Mellin pseudodifferential operators. In what
follows we assume that all the coefficients af,ai_k € PSO(T) of the
operator B given by (8)—(9) admit only finite sets of discontinuities on T,
o/, 8" € SO(T), and to and t; are isolated points of SO discontinuities for
B’ and §' = (o ), respectively.

Let 1 < 7 < ... < Tyu—1 be the finite set of all discontinuities of the
matrix functions Ay € PSO(T) on the arc I'? := T'\ {tg, t1}. Consider the
arc segments vs = [1s-1,7s] C I for s = 1,2,...,m, where 19 = to and
Tm = t1. Without loss of generality we may assume that 8’ € SOy, (71)
and (ao B) € SOy (Ym)-

For every s =0,1,...,m we introduce the operators

0 —H
Hy 0 } ’

B.=CWPt+c¥pr (s=1,2,...,m—1),

By =CV Pt +cV P 4271 A [

By, =C{VPE +c™ Py +27tAM { 131 gl] (17)
in B(LE, (T')), where
Ry 0 ... 0 0 0 0 ... 0 R
0 0 0 R 0 0 R, 0
Hy= |0 0 Ry 0| p — : (18)
: 0 R 0 0
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Here the matrix functions Cf) € PSO(T') are continuous on I' \ {75},
admit PSO discontinuities at the points 75, equal I, on (I'\ v1) Uy,
I\ (Vs Usg1)) U (tr,_, Uur, ) and (I'\ vy, ) Uu,,, , respectively, for s = 0,
s=1,2,...,m—1and s = m, where u,, C I are some open neighborhoods
of points 75, and

VM () =cu(t) forall teqy, (s=1,2,...,m). (19)

For all s = 0,1,...,m the matrix functions A®) € PSO(T)NC(T'\ {7}
coincide with A4 on u,, and equal zero matrix on I'\ v1, I'\ (75 U7s+1) and
I'\ ¥, respectively, for s =0, s=1,2,...,m — 1 and s = m.

Under these conditions we infer that Br ~ [].-, Bs, where the mul-
tiples commute to within compact operators. Hence, the operator Br
is Fredholm on the space LY (T') if and only if all the operators Bj

(s=0,1,...,m) are Fredholm on this space, and
Ind Bp = » Ind B;. (20)
s=0

In its turn, we may consider the operators B on the spaces LP(~yq), LP(~y,U
Uvs+1) and LP(v,,) instead of LP(T') for s = 0, s = 1,2,...,m — 1 and
s = m, respectively.
For every s = 1,2,...,m we introduce the diffeomorphisms
Ns:[0,1] = v, =+ exp {z’[argTS,l + 0s(z)(arg s — arg Ts,l)]}, (21)
s :[0,1] = 75, @+ exp {i[arg s — 05(z)(arg 75 — arg 75-1)] },

where 0 is a diffeomorphism of I := [0, 1] onto itself such that
0,(0) =0, 0,(1)=1, 0.(0) = (argr, —argr,_1)" ' >0. (22

Such 6, exists. Indeed, let ¢ := (argTs — arg7,_1) ' and take 04(z) =
=cr+(1—c)a*, where py > 1lifc<land 1 < p<e¢/(c—1)if ¢ > 1. Then
(22) holds and ¢.(z) = ¢+ pu(l — c)z*~1 > 0 for z € I. Thus, 65 : I — L is
an orientation-preserving diffeomorphism, and

n.(0) =its_1, 75(0) = —iTs. (23)

Further, for s = 0 and s = m we introduce the isomorphisms

Yo: L5, (1) — L5, (I), fr> fom,
Ty : Lgn(’Ym) - Lgn(1)7 f= fonm,
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where 77 and 7j,,, are given by (21). Take the diffeomorphism
M0 :[0,1] = B(m), =~ exp{i[argTo — Oo(x)(argmo — arg f(11))] },

where 6y is a diffeomorphism of I onto itself such that
00(0) =0, 6o(1) =1, 6y(0) = (argTo — argB(11))

Then the map 7 : [-1,1] — B(v1) U~ given by

o) — no(—z) if z€[-1,0],
n(@) = {771(30) if ze]l0,1],

-1

is a diffeomorphism. Consequently, for ¢ € I we infer that

(ToRoTo ) (1) = % /1 n1<77)h£7<)5@£21><t> e

_ 1 / 77’(2)_?(7) dr —
mi Jyn(r) = nl=@ " o B om)(t)]

_ e
- / O A+ (KR,

where K is a compact operator and ﬁ =1y lopBo 71 is an orientation-
preserving map of I onto itself. Thus, ToRo T L'~ Ry, where

(Eogo) )= 73@/17% dr for tel, (24)

and we may assume without loss of generality that 3’ (1) =0.
Analogously, take the diffeomorphism 7,41 : [0,1] = §(7m) given by

m+1 (x) = €Xp {7/ [ arg Ty, + 9m+1 (-T) ( arg 6(Tm71) —arg Tm)] }7
where 6,11 is a diffeomorphism of I onto itself such that
Os1(0) =0, Oppi1(1) =1, 6,,,(0) = (argd(rm_1) —argmn) -
Then the map 7 : [—1,1] = 6(¥m) U Y given by

Alz) — an(—x) if xe [—1,0],
() {ﬁm(x) if ze€]0,1],
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is a diffeomorphism. Consequently, for ¢ € I we deduce that

v L i)
(T T ) (0 = = /Iﬁm(T) —@onm®l
o 7/(7) o(r) i
i Ju (1) = 0l—=(n1 © 6 0 1) (£)]
L fe)
- / e O R0,

where K is a compact operator and § = 77;111 0§ o1, is an orientation-
preserving map of I onto itself. Thus, T,, R ;! ~ Ry, where

(Rip) (t) = —;/I% dr for tel, (25)

where again without loss of generality we may assume that o’ (1)=0.
It follows from (17), (18) that
_ o 0 —H,
YoBoTy' =~ (€ om) B + (€2 om) P +271 (A o) lﬁ 0 0],
0

Yo B Xk = (€U 0 i) By + (CU 0 77) Py +

_ _ 0 —H
+27 1AM o 7y) | : 26
( 0 7m) oo (26)
where

Ry 0 0 0 0 0 ... 0 Ry
0 0 0 R 0 0 R, 0

Ho= |0 0 o R O f=|: @)
s . 0 R, ... 0 0
0 Ry ... 0 0 R, 0 ... 0 0

and the operators Ro, Ry € B(LP(I)) with fixed singularities at 0 are given

by (24) and (25), respectively.
For s =1,2,...,m — 1, we introduce the isomorphisms
o
TS : Lgn(’ysufys+l)_>Lin<I)7 f’_> {ff :;’7—:1}
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Then for these s we infer from (17) that

. s s . P+ O
TsBsrs_lzdlag{ci)on&i—laci)ons} { 6 P]—l—
I

. S S ~ P_ O
+d1ag{c(7) O Ms+1, CE) 0773} |: 5 PJr} +
1

S

+
+ 27 diag{D®) 0,41, D o7, } {TO TO ] ,

where D) = C_(f) — C(_S)7 Ts:IE = diag{ési}zigl, and the operators
RE € B(LP(I)) are given by

By — L [ @ e
(REQW) =~ [ =05

S 1 [ el
(Rs W)(t) Com /1773+1(T) - ﬁs(t) ar.

i
In its turn, applying (23), we can easily obtain the relation

]T?;t:ZFRI forall s=1,2,...,m—1,

where

1 o(7)
= — - f I.
(Rro)(t) ; /I . dr for te

Thus, for s =1,2,...,m — 1,

Y B Y e diag{C ony i1, CPo i} Pi+diag{C o nyyr, €1 07, Pt

1 s s ~1 10 =T
+2 1d1ag{D( ) o Nst1, D) o 7]5} [T 0 } , (28)
. 2n—1
where T := dlag{RI k0 *
Taking Y,Bs Y1 given for s = 0,1,...,m by (26) and (28), let
Es = XITSBST;IXII + (I —x1)! € B(Lﬁs (Ry)), (29)

where x1 is the characteristic function of I, ng = n,, = 2n and ny = 4n
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for s=1,2,...,m — 1. Hence Es ~ ES, where
Bo=COBt +CVpy 42140 |0 ~Hs 30
0o=C r, FC R+ Hy 0 | (30)

B, = diag{C”, CW} Py + diag{C", C} Py +
-T

s < 0
2 diag{D®), D& | =
+ 1ag{ } 7 0

(32)

By =C"Pg +C{M Py, +27 A [ 0 H‘S} :

H; 0

the operator matrices Hg and Hs are given by (27) with Ry and R, re-
placed by Rg and Rs, respectively,

T ding(R)},, (R = [ X0 s for 1eR,

0’ i R, T+
1 el A e,
Eso0=5 |, o im o 0= [ e
S B if tel ~ ey if tel,
B(t)_{l it teR,\I, 6(75)_{1 if teR,\L

The matrix coefficients in (30) — (32) are defined as follows.

AO@) = (ADon) (1) if tel, AO@W) =0 if teRy\L

g _ (33)
AM )y = (A™ o, )@ if tel, A™()=0 if teRy\L
Ifs=0,1,...,m —1, then
C()=(Ct o ner1)(t) if tel, CY(t)=1s, if t € Ry \T, ”
DO )=(IC — PV onepr)(t) if t €T, A (1) =0y, if t € Ry \ T;
and if s =1,2,...,m, then
C (t)=(C$ o 77.) (1) if tel, CO(t) =1l if te R\, )

DO )=(1C\) — Do) (t) if t €T, AD(t) =0y, if t € Ry \ T,

where the entries of the matrix functions é\(is), C~$), 73(5), 5(5), j(0)7 Alm)
belong to SOp(R).
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Thus, applying (20), (29) and the relations B, ~ B,, where the opera-
tors By are given by (30) — (32), we arrive at the following assertion.

Lemma 8. Let the matriz coefficients C+, A € PSO(T") of the operator
(16) admait discontinuities only at the points T9,71,...,7m € I, o/, 3" €
€ SO(T), and let ty and t1 be isolated discontinuity points for the deriva-
tives ' and &', respectively. Then the operator Br given by (16) is Fred-
holm on the space LY, (') if and only if the operators By and B,, are Fred-
holm on the space L, (R.) and the operators Es foralls=1,2,... m—1
are Fredholm on the space LY, (R.). In that case

Ind Br = Ind B,. (36)
s=0

Clearly, the functions wg and w; given by

wp(t) == (B) /1), ws(t) :==1n (8()/t) (37)

belong to SOy(R..) along with 3’ and &' (see, e.g. [13, Lemma 2.2]).
Consider the isometric isomorphism

O: LP(Ry) = LP(Ry,dp), (Bf)(8) :=t"/Pf(t) (t€Ry).
Then (see, e.g. [13, Theorem 4.3])
®Pg &' =Op(ps), ®R®'=Op(x) (38)
and, by the proof of [13, Lemma 8.3],
PR® ! = Op(b), PRs;® ' = Op(d), (39)

where the functions py,t, 0,0 € Cp(R4,V(R)) are defined for (¢,z) €
S R+ xR by
pa(t,z) =Pr(x), t(t,x)=ry(x),
Pi(x) := [1 & coth(rz + mi/p)]| /2, rp(x) = 1/sinh(rz + mi/p),
b(t,z) = e WPy (1), (L, z) = e WEHP)p (1),
and the functions wg, ws € SOy(R+) are given by (37). Obviously, px,t €

€ £(R4,V(R)). By analogy with [13, Lemmas 7.3, 7.4] one can prove that
b,0 € E(R4,V(R)) as well.
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Thus, for all s =0,1,...,m we infer from (38) and (39) that

®B,d~! = Op(B,), (40)
where Op(Bo),0p(By) € B(LE, (Ry,du)), Op(B,) € B(LY, (Ry,dn))
forall s =1,2,...,m—1, and the symbols of these operators are given for

(t,.’IJ) €R+ Xﬁby

0 —Hﬁ(t,x)
Hp(t, ) 0 ’

By (t,2) = CO ()P (z) +CV(1)P_(x) + 27 LA (1) {

B, (t,x) = diag{CL (t), C (1)} Py (x) + diag{C (1), C'¥ (1) }P_ (2)+

1 0 _D) ()7 () B
+2 5(8)(t)rp(x) 0 1 (s=1,2,...,m—1), (41)
B, (t,2) =C (8P4 (2) + C™ (8P () +27 LA™ (1) [Ha(?f, x)_%o(t’ "),
where
_b(t, x) 0 O 0 T
0 0 .. 0 b(t, x)
Hp(t, ) 0 0 ... bt o) ’
[0 btw) .. 0 0
[0 0 0 otz)]
0 o(t, x) 0
Hs(t,z) = — : : : : ’
0 o(t,z) ... 0 0
[0(t, ) 0 . 0 0 |

6. A Fredholm criterion for the operator B. Consider the follow-
ing matrix functions:

bt x) 0 0 0
0 0 0 bt @)
My, (€1, 2) = 0 0 ..o b(ET ) 0
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for all (¢,7) € My, (SO(T)) x R, and

0 0 0 e, 2)
0 0 L) 0
Hh(f_vx):_ .
0 e, m) ... 0 0
(¢, ) 0 0 0

for all (¢,z) € My, (SO(T)) x R, where
b(¢t,x) = [B'(EN)|"" 7/ Pry(z) for (€,2) € My, (SO(T) x R,
e, x) =8 (E7) = YPr () for (€,x)€ M, (SOT)) x R.
By (16), Lemma 8 and (40), the operator B is Fredholm if and only if so
are the operators Op(B;) (s = 0,1,...,m). Applying the matrix version

of Theorem 4 to the Mellin pseudodifferential operators Op(Bs) given by

(40) with matrix symbols (41) that have entries in £(R.., V(R)), we obtain
the following.

Theorem 9. Let the operator B be given by (8), (9), where the co-
efficients af,afﬂc € PSO(T) (k = 0,1,...,n — 1) admit only a finite
set Y of discontinuities on T, Y NT = {r9,71,...,7m}, &/, 8 € SO(T),
and let tg = 19 and t, = 7, be the isolated points of discontinuities for
B € SO(T) and &' € SO(T), respectively. Then the operator B is Fred-
holm on the space LP(T) if and only if the following four conditions are
fulfilled:

(i) the functions detCy are separated from zero on T';
(ii) for every t € (to,t1) and every (&,x) € M (SO(T)) x R, the neat
4dn X 4n matriz is invertible:
By(€,x) == diag{C4(€7),C_(§7) } P4 () + diag{C_(£7),C+(§7) } P—(2)+

-1 0 —(C4(€T) = C(€N))rp(x)] |
T2 lee) — @)@ ' 0 }

(iii) for every (&,x) € My, (SO(T)) x R, the 2n x 2n matriz
By, (§,2) == Co ()P (2) + C-(§7)P-(2)+

_ —H4 (€T,
+ 27 A(ET) Hto(g+,$) E)f a:)]

1s invertible;
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(iv) for every (&,z) € My, (SO(T)) x R, the 2n x 2n matriz
By, (§,x) := C_(§7)P(2) + C1(§7)P-(2)+

1 _ 0 thl(Ef,sc)
+2 A(g ) Htl(givx) 0

is invertible.
Proof. By definition, det (?(is) t) =1 (s = 0,1,....,m — 1) and
detgis)(t) =1(s=1,2,...,m) forallt € Ry \I Hence det B,({,z) =1
for all s = 0,1,...,m and all (£,2) € Mo (SOo(R4)) x R. Then we in-

fer from Theorem 4 that the operator Op(2By) is Fredholm on the space
L8 (R4, du) if and only if

det CV (1) £0 for all t e (0,1, (42)
det Bo(E1,2) #0 for all (&,7) € Mp(SOp(Ry)) x R. (43)

Analogously, for every s = 1,2,...,m—1, the operator Op(*B) is Fredholm
on the space LY, (R, dp) if and only if

det C(t) £ 0, detC(t)#0 forall te (0,1], (44)
det Bs(¢T,2) £0 for all (§,2) € Mo(SOo(Ry)) x R. (45)

Finally, the operator Op(8,,) is Fredholm on the space L5 (R4,du) if
and only if

det Y™ (t) £0 for all t € (0,1], (46)
det B, (€T,2) #£0 forall (§,2) € Mo(SOo(R4)) x R. (47)

Making use of definitions (33)—(35) of the matrix functions A©® A(m),
é(i's), 618), 13(3), D) and the equalities (19), we deduce that assertion (i)
is equivalent to the fulfilment of all conditions (42), (44) and (46), if as-
sertions (43), (45) and (47) hold. On the other hand, conditions (43), (45)
and (47) are equivalent to assertions (ii) — (iv), because My(SOp(R4)) =
= M, (SO(T)) and hence the matrices B,({,z) for (£,z) €
€ My(SOo(Ry)) x R coincide with matrices B, (£,z) for (£,2) €
€ M, (SO(T)) x R. Finally, if t € T\ {70,71,...,7m} and (£,7) €
€ M;(SO(T)) x R, then detB;(¢,2) = Cy(t)C_(t), and therefore the
invertibility of the matrix B;(, x) is equivalent to the invertibility of both
matrices Cy (t), which completes the proof.
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Remark. Applying results of [13, 14|, one can prove that Theorem 9
remains valid for arbitrary coefficients i € PSO(T) (k =0,1,...,2n—1).
The arguments presented at the end of Section 4 also say that Theorem 9
is true for arbitrary o/, 6’ € SO(T).

7. An index formula for the operator B. Given s = 0,1,...,m and
0<eo<er<1,letly=[eo,e1], Is = [Cs(en, ), Cs(enr)], where (o(t) = t,
Cs(t) = (5 omsomyoms_r0...om b om)(t) for s = 1,2,...,m and
t€10,1], ns =[1 — (—1)%]/2 and n}, = [1 4+ (-1)%]/2.

Theorem 10. If all the conditions of Theorem 9 are fulfilled, then the
index of the Fredholm operator B acting on the space LP(T) is calculated
by the formula

Ind B = lim 1 (-i{argdet%s(g(sns),x)} _+

€0—0, e1—1 2T i z€R
s=

+3 { arg det C_ [ns(t)]}tel -y { arg det C. [ns(t)]}t l ) (48)
s=1 s=1 o €ls—1

Proof. Since Ind B = Ind Br by Corollary 7 and since Ind B, =
= Ind Op(B;) for every s = 0,1,...,m due to (40), we infer from (36)
that

Ind B =Ind Br = » Ind Op(B.). (49)
s=0

Because detCA(is)(t) =1(s =0,1,...,m —1) and detg(is)(t) =1
(s = 1,2,...,m) for all ¢ € [1,00), and therefore detB,(t,z) = 1 for
all s =0,1,...,m and all (¢,z) € [1,00) x R, we deduce from Theorem 4
that the indices of the Mellin pseudodifferential operators Op(2B;) on the
space LP(Ry,du) for s =0,1,...,m are calculated by the formula:

IndOp(B,) =  lim QL { argdet B, (t,z (50)
m

e0—0, e1—1 )}(t,w)ea(ls xR)

where { arg det B, (¢, “T)}(t,z)ea(ls ) denotes the increment of the function
arg det B (¢, z) when the point (¢, z) traces the boundary d(ls xR) of s xR
counter-clockwise. It follows from conditions (ii) — (iv) of Theorem 9 that
in (50) the functions det B;(t,-) given by (41) are separated from zero for
all s =0,1,...,m and all ¢t € (0,¢], where £ > 0 is sufficiently small.
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Consequently, we infer from (41) in view of (33) — (35) that

IndOp(Bp) =  lim [{ arg det(C(_O) om)(t)

c0—0, e1—1 o L }tE[Eoﬁl]

~ {argdet(0 o m)(B)} oy, )~ {erBdetBoen,2)) e | (5D

IndOp(B;) =  lim [{ arg det(C™ o ny41)( }tel

e0—0, e1—1 2’/T

+ { arg det C(g) o 775 }tEl { arg det(c—(:) © T}S‘Fl)(t)}tels -

— {argdet (™ o m)( }tel { arg det %S(Cs(sns),x)}xeﬁ} (52)

fors=1,2,...,m—1, and
Ind Op(B,,) = eo—>})1,nel1—>1 o [{ argdet(C™ o nm)(t)}tam _

- {arg det(cgm) o ﬁm)(t)}telm_ {arg det %m(cm(gnm)vm)}zeﬁ } (53)

Further, by (19), ¢V ®)C)(t) = Co(t) for t € 7, for all s =
=1,2,...,m, and therefore

{argdet €V (1)) Yrer,, — {argdet (¢ Whe, =
= {argdet C4 [, (t)]}tels_l' (54)

Substituting (51) — (53) into (49) and applying (54), we obtain (48), which
completes the proof.
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