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We discuss some norm estimations for integrated representations. We use
the covariant transform to extend Howe’s method from the Heisenberg
group to general nilpotent Lie groups.

1. Introduction. Let G be a locally compact group, a left-invariant
(Haar) measure on G is denoted by dg. Let ρ be a bounded representation
of the group G in a vector space V . The representation can be extended
to a function k ∈ L1(G, dg) though integration:

ρ(k) =

∫
G

k(g) ρ(g) dg. (1)

It is a homomorphism of the convolution algebra L1(G, dg) to an algebra
of bounded operators on V .

There are many important classes of operators described by (1), no-
tably pseudodifferential operators (PDO) and Toeplitz operators [1 — 4].
Thus, it is important to have various norm estimations of ρ(k). We already
mentioned a straightforward inequality ∥ρ(k)∥ ≤ C ∥k∥1 for k ∈ L1(G, dg),
however, other classes are of interest as well.

If G is the Heisenberg group and ρ is its Schrödinger representation,
then ρ(â) is a PDO a(X,D) with the symbol a [1, 5, 4]. Here, â is the
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Fourier transform of a, as usual. The Calderón–Vaillancourt theorem [6,
Ch. XIII] estimates ∥a(X,D)∥ by L∞-norm of a finite number of partial
derivatives of a.

In this paper we revise the method used in [1, § 3.1] to prove the
Calderón–Vaillancourt estimations. It was described as “rather magical”
in [5, § 2.5]. We hope, that a usage of the covariant transform dispel the
mystery without undermining the power of the method.

2. Preliminaries. Through the paper G denotes an exponential Lie
group. For a square integrable irreducible representation ρ of G in a Hilbert
space V and a fixed admissible mother wavelet ϕ ∈ V , the wavelet trans-
form Wϕ : V → Cb(G) is [7, 3, 4]:

[Wϕv](g) :=
⟨
ρ(g−1)v, ϕ

⟩
= ⟨v, ρ(g)ϕ⟩ , g ∈ G, v ∈ V. (2)

For an unimodular G, the left Λ(g) : f(g′) 7→ f(g−1g′) and the right
R : f(g′) 7→ f(g′g) regular representations of G are unitary operators on
L2(G, dg). The covariant transforms intertwines the left and right regular
representations of G with the following actions of ρ:

Λ(g)Wϕ = Wϕρ(g) and R(g)Wϕ = Wρ(g)ϕ for all g ∈ G. (3)

For a fixed admissible vector ψ ∈ V , the integrated representation (1)
produces the contravariant transform Mψ : L1(G) → V , cf. [3, 4]:

Mρ
ψ(k) = ρ(k)ψ, where k ∈ L1(G). (4)

The contravariant transform Mρ
ψ intertwines the left regular representa-

tion Λ on L2(G) and ρ:

Mρ
ψ Λ(g) = ρ(g)Mρ

ψ. (5)

Combining with (3), we see that the composition Mρ
ψ◦W

ρ
ϕ of the covariant

and contravariant transform intertwines ρ with itself. For an irreducible
square integrable ρ and suitably normalised admissible ϕ and ψ, we use
the Schur’s lemma [7, Lem. 4.3.1], [8, Thm. 8.2.1] to conclude that:

Mρ
ψ ◦Wρ

ϕ = ⟨ψ, ϕ⟩ I. (6)

Let H be a subgroup of G and X = G/H be the respective homoge-
neous space (the space of right cosets) with a (quasi-)invariant measure
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dx [8, § 9.1]. There is the natural projection p : G → X. We usually fix a
continuous section s : X → G [8, § 13.2], which is a right inverse to p. We
also define an operator of relative convolution on V [2, 4], cf. (1):

ρ(k) =

∫
X

k(x) ρ(s(x)) dx, (7)

with a kernel k defined on X = G/H.

3. Norm Estimations. We start from the following lemma, which has
a transparent proof in terms of covariant transform, cf. [1, § 3.1] and [5,
(2.75)]. For the rest of the paper we assume that ρ is an irreducible square
integrable representation of an exponential Lie group G in V and mother
wavelet ϕ, ψ ∈ V are admissible.

Lemma 1. Let ϕ ∈ V be such that, for Φ = Wϕϕ, the reciprocal Φ−1

is bounded on G or X = G/H. Then, for the integrated representation (1)
or relative convolution (7), we have the inequality:

∥ρ(f)∥ ≤
∥∥Λ ⊗R(fΦ−1)

∥∥ , (8)

where (Λ ⊗R)(g) : k(g′) 7→ k(g−1g′g) acts on the image of Wϕ.
Proof. We know from (6) that Mϕ ◦Wρ(g)ϕ = ⟨ϕ, ρ(g)ϕ⟩ I on V , thus:

Mϕ ◦Wρ(g)ϕ ◦ ρ(g) = ⟨ϕ, ρ(g)ϕ⟩ ρ(g) = Φ(g)ρ(g).

On the other hand, the intertwining properties (3) of the wavelet transform
imply:

Mϕ ◦Wρ(g)ϕ ◦ ρ(g) = Mϕ ◦ (Λ ⊗R)(g) ◦Wϕ.

Integrating the identity Φ(g)ρ(g) = Mϕ◦(Λ⊗R)(g)◦Wϕ with the function
fΦ−1 and use the partial isometries Wϕ and Mϕ we get the inequality.

The Lemma is most efficient if Λ ⊗ R act in a simple way. Thus, we
give he following

Definition 1. We say that the subgroup H has the complemented
commutator property, if there exists a continuous section s : X → G such
that:

p(s(x)−1gs(x)) = p(g), for all x ∈ X = G/H, g ∈ G. (9)

For a Lie groupG with the Lie algebra g define the Lie algebra h = [g, g].
The subgroup H = exp(h) (as well as any larger subgroup) has the com-
plemented commutator property (9). Of course, X = G/H is non-trivial
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if H ̸= G and this happens, for example, for a nilpotent G. In particular,
for the Heisenberg group, its centre has the complemented commutator
property.

Note, that the complemented commutator property (9) implies:

Λ ⊗R(s(x)) : g 7→ gh, for the unique h = g−1s(x)−1gs(x) ∈ H. (10)

For a character χ of the subgroup H, we introduce an integral transfor-
mation ˜ : L1(X) → C(G):

k̃(g) =

∫
X

k(x)χ(g−1s(x)−1gs(x)) dx, (11)

where h(x, g) = g−1s(x)−1gs(x) is in H due to the relations (9). This
transformation generalises the isotropic symbol defined for the Heisenberg
group in [1, § 2.1].

Proposition 1. Let a subgroup H of G has the complemented com-
mutator property (9) and ρχ be an irreducible representation of G induced
from a character χ of H, then∥∥ρχ(f)

∥∥ ≤
∥∥∥f̃Φ−1

∥∥∥
∞
, (12)

with the sup-norm of the function f̃Φ−1 on the right.
Proof. For an induced representation ρχ [8, § 13.2], the covariant

transform Wϕ maps V to a space Lχ2 (G) of functions having the prop-
erty F (gh) = χ(h)F (g) [4, § 3.1]. From (10), the restriction of Λ ⊗ R to
the space Lχ2 (G) is, see:

Λ ⊗R(s(x)) : ψ(g) 7→ ψ(gh) = χ(h(x, g))ψ(g).

In other words, Λ ⊗ R acts by multiplication on Lχ2 (G). Then, integrat-
ing the representation Λ ⊗ R over X with a function k we get an op-
erator (L ⊗ R)(k), which reduces on the irreducible component to mul-
tiplication by the function k̃(g). Put k = fΦ−1 for Φ = Wϕϕ. Then,
from the inequality (8), the norm of operator ρχ(f) can be estimated by∥∥Λ ⊗R(fΦ−1)

∥∥ =
∥∥∥f̃Φ−1

∥∥∥
∞

.

For a nilpotent step 2 Lie group, the transformation (11) is almost
the Fourier transform, cf. the case of the Heisenberg group in [1, § 2.1].
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This allows to estimate
∥∥∥f̃Φ−1

∥∥∥
∞

through
∥∥∥f̃∥∥∥

∞
, where f̃ is in the

essence the symbol of the respective PDO. For other groups, the expression
g−1s(x)−1gs(x) in (11) contains non-linear terms and its analysis is more
difficult. In some circumstance the integral Fourier operators [6, Ch. VIII]
may be useful for this purpose.

References
[1] Howe R. Quantum mechanics and partial differential equations // J. Funct.

Anal. — 1980. — 38, № 2. — P. 188—254.

[2] Kisil V.V. Relative convolutions. I. Properties and applications // Adv.
Math. — 1999. — 147, № 1. — P. 35—73; E-print: arXiv:funct-an/9410001,
On-line. Zbl933.43004.

[3] Kisil V.V. Wavelets in Banach spaces // Acta Appl. Math. — 1999. — 59,
№ 1. — P. 79—109; E-print: arXiv:math/9807141, On-line.

[4] Kisil V.V. Calculus of operators: Covariant transform and relative convo-
lutions, 2013. E-print: arXiv:1304.2792.

[5] Folland G.B. Harmonic analysis in phase space // Annals of Mathematics
Studies. — 122. — Princeton University Press, Princeton, NJ, 1989.

[6] Taylor M.E. Pseudodifferential operators. — Princeton Mathematical Se-
ries. — 34. — Princeton University Press, Princeton, N.J., 1981.

[7] Ali S. T., Antoine J. P., Gazeau J. P. Coherent States, Wavelets
and Their Generalizations. — Graduate Texts in Contemporary Physics.
Springer-Verlag, New York, 2000.

[8] Kirillov A.A. Elements of the theory of representations. — Translated
from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wis-
senschaften, Band 220. — Springer-Verlag, Berlin, 1976.


