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Given a domain G ( Rn we study the quasihyperbolic and the distance
ratio metrics of G and their connection to the corresponding metrics of a
subdomain D ⊂ G. In each case, distances in the subdomain are always
larger than in the original domain. Our goal is to show that, in several
cases, one can prove a stronger domain monotonicity statement. We also
show that under special hypotheses we have inequalities in the opposite
direction.

1. Introduction. Recently many authors have studied what we call
”hyperbolic type metrics” of a domain G ⊂ Rn [1 — 6]. Some of the exam-
ples are the Apollonian metric, the Möbius invariant metric, the quasihy-
perbolic metric and the distance ratio metric. The term ”hyperbolic type
metric” is for us just a descriptive term, we do not define it. The term is
justified by the fact that the metric is similar to the hyperbolic metric of
the unit ball Bn . In this paper we will study a hyperbolic type metric mG

with the following two properties:

1. if D ⊂ G is a subdomain, then mD(x, y) ≥ mG(x, y) for all x, y ∈ D,

2. sensitivity to the boundary variation: if x0 ∈ G and D = G \ {x0},
then the metrics mG and mD are quite different close to x0 whereas
"far away"from x0 we might expect that they are nearly equal (see
Remark 2.10 (2)).
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In particular, we require that mG is defined for every proper subdomain
of Rn . The purpose of this paper is to study the subdomain monotonicity
property (1) and to prove conditions under which we have a quantitative
refinement of (1).

For a subdomain G  Rn and x, y ∈ G the distance ratio metric jG is
defined by

jG(x, y) = log

(
1 +

|x− y|
min{δG(x), δG(y)}

)
,

where δG(x) denotes the Euclidean distance from x to the boundary ∂G
of G. Sometimes we abbreviate δG by writing just δ . The above form of
the jG metric, introduced in [7], is obtained by a slight modification of a
metric that was studied in [8, 9]. The quasihyperbolic metric of G is defined
by the quasihyperbolic length minimizing property

kG(x, y) = inf
γ∈Γ(x,y)

ℓk(γ), ℓk(γ) =

∫
γ

|dz|
δG(z)

,

where Γ(x, y) represents the family of all rectifiable paths joining x and y
in G, and ℓk(γ) is the quasihyperbolic length of γ (cf. [9]). For a given pair
of points x, y ∈ G, the infimum is always attained [8], i.e., there always
exists a quasihyperbolic geodesic JG[x, y] which minimizes the above inte-
gral, kG(x, y) = ℓk(JG[x, y]) and furthermore with the property that the
distance is additive on the geodesic: kG(x, y) = kG(x, z) + kG(z, y) for all
z ∈ JG[x, y]. If the domain G is emphasized we call JG[x, y] a kG-geodesic.
In this paper, our main work is to refine some inequalities between kG
metric, jG metric and the Euclidean metric. Both the distance ratio and
the quasihyperbolic metric qualify as hyperbolic type metrics because

• both are defined for every proper subdomain of Rn ,

• for the case of the unit ball Bn both are comparable to the hyperbolic
metric of Bn , see Section 2 below,

• it is well-known that both metrics satisfy the above properties (1)
and (2).

These metrics have recently been studied, e.g., in [1, 3, 5]. We mainly study
the following three problems and our main results will be given in Section
2, Section 3 and Section 4, respectively.
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Problem 1.1. For some special domains, can we obtain certain upper
estimates for the quasihyperbolic metric in terms of the distance ratio
metric?

Indeed, inequalities of this type were used to characterize so called φ-
domains in [7].

Problem 1.2. Is there some relation between k metric and the Eu-
clidean metric? The same question can be asked for j metric and the
Euclidean metric?

Let G1 and G2 be proper subdomains of Rn. It is well know that if
G1 ⊂ G2 then for all x, y ∈ G1,

jG1(x, y) ≥ jG2(x, y)

and
kG1(x, y) ≥ kG2(x, y).

We expect some better results to hold for some special class of domains.
This motivates the following question.

Problem 1.3. Let G1 ⊂ G2 be two proper subdomains in Rn such that
∂G1 ∩ ∂G2 is either ∅ or a discrete set. Does there exist a constant c > 1
such that for all x, y ∈ G1, the following holds:

mG1(x, y) ≥ cmG2(x, y), (1.4)

where mGi ∈ {jGi , kGi} for i = 1, 2.

Our main results for Problem 1.1 are Theorems 2.5 and 2.9, for Problem
1.2 Theorems 3.3 and 3.4 and for Problem 1.3 Theorems 4.3 and 4.6. We
also formulate some open problems and conjectures. Finally, it should be
pointed out that there are many more metrics for which the above problems
could be studied. For some of these metrics, see [10].

2. Results concerning Problem 1.1. In this section, we study Prob-
lem 1.1 and our main results are Theorems 2.5 and 2.9. The following
proposition, which will be used in the proof of Theorems 2.5, gathers to-
gether several basic well-known properties of the metrics kG and jG, see
for instance [9, 11]. The motivation comes from the well-known inequality

kG(x, y) ≥ log

(
1 +

L

min{δ(x), δ(y)}

)
≥ jG(x, y) , (2.1)

for a domain G  Rn, x, y ∈ G, where L = inf{ℓ(γ) : γ ∈ Γ(x, y)} . One
can ask: when do both the metrics jG and kG (or ρBn) coincide ?
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Proposition 2.2.

1. For x ∈ Bn, we have

kBn(0, x) = jBn(0, x) = log
1

1 − |x|
.

2. Moreover, for b ∈ Sn−1 and 0 < r < s < 1, we have

kBn(br, bs) = jBn(br, bs) = log
1 − r

1 − s
.

3. Let G  Rn be a domain and z0 ∈ G. Let z ∈ ∂G be such that
δ(z0) = |z0 − z|. Then for all u, v ∈ [z0, z], we have

kG(u, v) = jG(u, v) =

∣∣∣∣log
δ(z0) − |z0 − u|
δ(z0) − |z0 − v|

∣∣∣∣ =

∣∣∣∣log
δ(u)

δ(v)

∣∣∣∣ .
4. For x, y ∈ Bn we have

jBn(x, y) ≤ ρBn(x, y) ≤ 2jBn(x, y)

with equality on the right hand side when x = −y .

Proof. (1) We see from (2.1) that

jBn(0, x) = log
1

1 − |x|
≤ kBn(0, x) ≤

∫
[0,x]

|dz|
δ(z)

= log
1

1 − |x|

and hence [0, x] is the kBn -geodesic between 0 and x.
The proof of (2) follows from (1) because the quasihyperbolic length is

additive along a geodesic

kBn(0, bs) = kBn(0, br) + kBn(br, bs) .

The proof of (3) follows from (2).
The proof of (4) is given in [12, Lemma 7.56].

The hyperbolic geometry of Bn serves as model for the quasihyperbolic
geometry and we will use below a few basic facts of the hyperbolic metric
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ρBn of Bn . These facts appear in standard textbooks of hyperbolic geom-
etry and also in [11, Section 2]. For the case of Bn, we make use of an
explicit formula [11, (2.18)] to the effect that for x, y ∈ Bn

sinh
ρBn(x, y)

2
=

|x− y|
t

, t =
√

(1 − |x|2)(1 − |y|2) . (2.3)

It is readily seen that

ρBn ≤ 2kBn ≤ 2ρBn

and it is well-known by [12, Lemma 7.56] that a similar inequality also
holds for jBn

jBn ≤ ρBn ≤ 2jBn .

Remark 2.4. The proofs of Proposition 2.2 (1) and (2) show that
the diameter (−e, e), e ∈ Sn−1, of Bn is a geodesic of kBn and hence the
quasihyperbolic distance is additive on a diameter. At the same time we
see that the j metric is additive on a radius of the unit ball but not on the
full diameter because for x ∈ Bn \ {0}

jBn(−x, x) < jBn(−x, 0) + jBn(0, x) .

In order to obtain certain upper estimates for the quasihyperbolic met-
ric, in terms of the distance ratio metric, we present the following theorem.

Theorem 2.5.

1. For 0 < s < 1 and x, y ∈ Bn(s), we have

jBn(x, y) ≤ kBn(x, y) ≤ (1 + s) jBn(x, y).

2. Let G  Rn be a domain, w ∈ G , and w0 ∈ (∂G) ∩ Sn−1(w, δ(w)) .
If s ∈ (0, 1) and x, y ∈ Bn(w, sδ(w)) ∩ [w,w0], then we have

kG(x, y) ≤ (1 + s)jG(x, y) .

Proof. (1) Fix x, y ∈ Bn(s) and the geodesic γ of the hyperbolic metric
joining them. Then γ ⊂ Bn(s) and for all w ∈ Bn(s) we have

1

1 − |w|
<

1 + s

2

2

1 − |w|2
.
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Therefore, by Proposition 2.2 (4)

kBn(x, y) ≤
∫
γ

|dw|
1 − |w|

≤ 1 + s

2

∫
γ

2|dw|
1 − |w|2

≤ 1 + s

2
ρBn(x, y) ≤

≤ (1 + s)jBn(x, y)

for x, y ∈ Bn(s). The inequality jBn(x, y) ≤ kBn(x, y) follows from (2.1).
For the proof of (2) set B = Bn(w, δ(w)) . Then by part (1)

kG(x, y) ≤ kB(x, y) ≤ (1 + s)jB(x, y) ≤ (1 + s)jG(x, y) .

This completes the proof of the theorem.
Remark 2.6. Theorem 2.5 (1) refines the well-known inequality in

[13, Lemma 2.11] and [11, Lemma 3.7(2)] for the case of Bn. We have
been unable to prove a similar statement for a general domain. However,
a similar result for Rn \ {0} is obtained in the sequel (see Theorem 2.9).
To obtain this, we collect some basic properties.

Martin and Osgood [14] proved the following explicit formula: for x, y ∈
∈ Rn \ {0}

kRn\{0}(x, y) =

√
α2 + log2(|x|/|y|) , (2.7)

where α = ](x, 0, y).
We here introduce a lemma which is a modification of [15, Lemma 4.9].

Lemma 2.8. Let z ∈ G = Rn \ {0} and kG(x, z) = kG(y, z) with
|z| ≤ |x|, |y|. Then ](x, z, 0) < ](y, z, 0) implies |x− z| < |y − z|.

Proof. Let kG(x, z) = r. By (2.7) the angle ](x, z, 0) determines the
point x uniquely up to a rotation about the line through 0 and z. By
symmetry and similarity it is sufficient to consider only the case n = 2 and
z = e1. We will show that the function

f(s) = |x(s) − e1|2

is strictly increasing on (0,min{r, π}), where

x(s) = (es cosϕ(s), es sinϕ(s)) with φ(s) =
√

min{r, π}2 − s2 .

For s ∈ [0,min{r, π}], a simple calculation gives

f(s) = |x(s)|2 + 1 − 2|x(s)| cosϕ(s) = e2s + 1 − 2es cosϕ(s)
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and hence
f ′(s) = 2es

(
es − cosϕ(s) − s sinϕ(s)

ϕ(s)

)
.

If s ∈ (0,min{r, π}), then we see that

es − cosϕ(s) − s sinϕ(s)

ϕ(s)
≥ es − cosϕ(s) − s ≥ es − 1 − s > 0

and hence f ′(s) > 0 implies the assertion.

Theorem 2.9. Let G = Rn \ {0}. Then

1. for α ∈ (0, π] and x, y ∈ G with ](x, 0, y) ≤ α

kG(x, y) ≤ α

log(1 + 2 sin(α/2))
jG(x, y) ≤ (1 + α) jG(x, y).

2. for ε > 0, x ∈ G and y ∈ Bn(|x|/t) ∪ (Rn \B(t|x|))

kG(x, y) ≤ (1 + ε) jG(x, y),

where t = exp((1 + 1/ε) log 3).

Proof. (1) We may assume that |y| ≥ |x|. Fix kG(x, y) = c > 0.
Now jG(x, y) = log(1 + |x − y|/|x|) and by Lemma 2.8 the quantity
kG(x, y)/jG(x, y) attains its maximum when α is maximal, which is equiv-
alent to |y| = |x|. Thus,

kG(x, y)

jG(x, y)
≤ α

log
(

1 + 2|x| sin(α/2)
|x|

) =
α

log
(
1 + 2 sin α

2

)
and the first inequality follows.

Let us next prove the second inequality. We define the functions f and
g by

f(x) = log(1 + x) and g(x) = x/(1 + x/2) .

Because
g′(x) =

4

(2 + x)2
≤ 1

1 + x
= f ′(x),

g′(x) > 0 for x ≥ 0 and f(0) = 0 = g(0), we have g(x) ≤ f(x). Thus,

α

log(1 + 2 sin(α/2))
≤ α

2 sin(α/2)
1+sin(α/2)

=
α

2

(
1 +

1

sin(α/2)

)
.
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The function h(α) = (α/(2) (1 + 1/(sin(α/2))) is convex, since

h′′(α) =
α(3 + cosα) − 4 sinα

16 sin3(α/2)
≥ 0.

Therefore, h(α) ≤ max{h(0), h(π)} = π on [0, π] and h(α) ≤ 1 +
+(1 − 1/π)α ≤ 1 + α both imply the assertion.

(2) We prove that

kG(x,−ux) ≤ (1 + ε)jG(x,−ux),

where u ∈ (0, 1/t] or u > t. We may assume x = e1. Now(
kG(x, y)

jG(x, y)

)2

=
π2 + log2(1/u)

log2((|x| + u|x| + u)/u)
≥ log2(1/u)

log2(3/u)
= A

and A ≥ 1 + ε is equivalent to u ≤ 1/t or u ≥ t. The assertion follows
from (2.7).

Remark 2.10.

1. In Theorem 2.9 (1), the constant h(α) = α/ log(1 + 2 sin(α/2)) ap-
pears with the bound h(α) ≤ 1 + α. This upper bound of h(α)
is not sharp as can be seen from the proof. By computer simula-
tions, we obtained that the sharp upper bounds are h(α) ≤ 1 +
+((1/ log 3)−(1/π))α for α ∈ [0, π] and h(α) ≤ 1+πα/(2 log(1+

√
2))

for α ∈ [0, π/2]. Lindén [4] proved the limiting case α = π of Theo-
rem 2.9 (1) with the constant c0 ≡ π/ log(3) . For c ∈ (1, c0) , some
of the level sets L(c) = {z : kG(z, 1)/jG(z, 1) = c} are displayed in
Figure 1.

2. Let D ⊂ Rn be a domain, and let G = D \ {x0} with x0 ∈ D.
For given x, y ∈ G if there exists some constant c ≥ 1 such that
min{dD(x), dD(y)} ≤ cmin{|x−x0|, |y− y0|}, then by the definition
of j-metric we have jG(x, y) ≤ cjD(x, y). We also see from [7, Lemma
2.53] that kG(x, y) ≤ c1(c)kD(x, y) with c1(c) depending only on c.

3. Results concerning Problem 1.2. In this section, our main goal
is to study Problem 1.2, that is, to compare the Euclidean metric and
the quasihyperbolic metrics defined in a domain. Our main result is The-
orem 3.3.

In the next lemma, we recall a sharp inequality for the hyperbolic metric
of the unit ball proved in [11, (2.27)].
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1.11.5

1.9

2.3

Figure 1: Left: Level sets L(c) = {z : kG(z, 1)/jG(z, 1) = c} for G =
= Rn \ {0} and c = 1.1, 1.5, 1.9, 2.3. Right: Level sets L(c) and angular
domains as in Theorem 2.9 (1) for c = 0.2, 1.4.

Lemma 3.1. For x, y ∈ Bn, let t be as in (2.3). Then

tanh2 ρBn(x, y)

2
=

|x− y|2

|x− y|2 + t2
,

|x− y| 6 2 tanh
ρBn(x, y)

4
=

2|x− y|√
|x− y|2 + t2 + t

,

where equality holds for x = −y.

Earle and Harris [16] provided several applications of this inequality
and extended this inequality to other metrics such as the Carathéodory
metric. Notice that Lemma 3.1 gives a sharp bound for the modulus of
continuity

id : (Bn, ρBn) → (Bn, | · | ) .
For a K-quasiconformal homeomorphism

f : (Bn, ρBn) → (Bn, ρBn)

an upper bound for the modulus of continuity is well-known, see [11, The-
orem 11.2]. For n = 2 the result is sharp for each K ≥ 1, see [17, p. 65
(3.6)]. The particular case K = 1 yields a classical Schwarz lemma.
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As a preliminary step we record Jung’s Theorem [18, Theorem 11.5.8]
which gives a sharp bound for the radius of a Euclidean ball containing a
given bounded domain.

Lemma 3.2. Let G ⊂ Rn be a domain with diamG < ∞. Then there
exists z ∈ Rn such that G ⊂ Bn(z, r), where r ≤

√
n/(2n+ 2) diamG.

Theorem 3.3.

1. If x, y ∈ Bn are arbitrary and w = |x− y| e1/2, then

kBn(x, y) ≥ kBn(−w,w) = 2 kBn(0, w) = 2 log
2

2 − |x− y|
≥ |x−y| ,

where the first inequality becomes equality when y = −x. Moreover,
the identity map id : (Bn, kBn) → (Bn, |.|) has the sharp modulus of
continuity ω(t) = 2(1 − e−t/2).

2. Let G  Rn be a domain with diamG < ∞ and r =
=
√
n/(2n+ 2) diamG. Then we have

kG(x, y) ≥ 2 log
2

2 − t
≥ t = |x− y|/r ,

for all distinct x, y ∈ G with equality in the first step when
G = Bn(z, r) and z = (x + y)/2. Moreover, the identity map
id : (G, kG) → (G, |.|) has the sharp modulus of continuity ω(t) =
= 2r(1 − e−t/2).

Proof. (1) Without loss of generality, we may assume that |x| ≥ |y|.
We divide the proof into two cases.

Case I: The points x and y are both on a diameter of Bn.
If 0 ∈ [x, y], by Proposition 2.2 (1) we have

kBn(x, y) = kBn(x, 0) + kBn(0, y) = log
1

(1 − |x|)(1 − |y|)
,

and hence
kBn(−w,w) = 2 log

1

1 − |w|
.

It is easy to verify that kBn(x, y) ≥ kBn(−w,w) is equivalent to
(|x| − |y|)2 ≥ 0 .
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If y ∈ [x, 0], then the proof goes in a similar way. Indeed, in this situa-
tion

kBn(x, y) = log
1 − |y|
1 − |x|

≥ kBn(−w,w)

is equivalent to

(|x| − |y|)
(

1 − 1

1 − |y|

)
≤
(
|x| − |y|

2

)2

,

which is trivial as the left hand term is ≤ 0. Equality clearly holds if
y = −x.

Case II: The points x and y are arbitrary in Bn.
Choose y′ ∈ Bn such that |x − y| = |x − y′| = 2|w| with x and y′ on a
diameter of Bn. Then

kBn(x, y) ≥ kBn(x, y′) ≥ kBn(−w,w) ,

where the first inequality holds trivially and the second holds by Case I.
The sharp modulus of continuity can be obtained by a trivial rearrange-
ment of the first inequality from the statement.

(2) Since G is a bounded domain, by Lemma 3.2, there exists
z ∈ Rn such that G ⊂ Bn(z, r). Denote B := Bn(z, r) . Then the do-
main monotonicity property gives

kG(x, y) ≥ kB(x, y) .

Without loss of generality we may now assume that z = 0. Choose u, v ∈ B
in such a way that u = −v and |u − v| = 2|u| = |x − y|. Hence by (1) we
have

kG(x, y) ≥ kB(x, y) ≥ kB(−u, u) = 2 log
r

r − |u|
.

This completes the proof.
A counterpart of Theorem 3.3 for the distance ratio metric jG can be

formulated in the following form (we omit the proofs, since they are very
similar to the proofs of Theorem 3.3).

Theorem 3.4.

1. If x, y ∈ Bn are arbitrary and w = |x− y| e1/2, then

jBn(x, y) ≥ jBn(−w,w) = log
2 + t

2 − t
= 2artanh(t/2) ≥ t = |x− y| ,
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where the first inequality becomes equality when y = −x. Moreover,
the identity map id : (Bn, jBn) → (Bn, |.|) has the sharp modulus of
continuity ω(t) = 2 tanh(t/2).

2. Let G  Rn be a domain with diamG < ∞ and r =
=
√
n/(2n+ 2) diamG. Then we have

jG(x, y) ≥ log
2 + t

2 − t
≥ t = |x− y|/r ,

for all distinct x, y ∈ G with equality in the first step when
G = Bn(z, r) and z = (x + y)/2. Moreover, the identity map
id : (G, jG) → (G, |.|) has the sharp modulus of continuity ω(t) =
= 2r tanh(t/2).

4. Results concerning Problem 1.3. In this final section we present
our results on Problem 1.3.

Theorem 4.1. Let G1 = {(x, y) ∈ R2 : |x| + |y| < 1} and G2 =
= {(x, y) ∈ R2 : |x|2 + |y|2 < 1}. Then (1.4) holds for kG metric with
c =

√
2 but there is no constant c > 1 for which (1.4) holds for the jG

metric.
Proof. Obviously, ∂G1 ∩∂G2 = {e1,−e1, e2,−e2} is a discrete set. For

each w ∈ G1, we prove that

δG2(w) ≥
√

2δG1(w). (4.2)

Without loss of generality, we may assume that Re (w) ≥ 0 and Im (w) ≥ 0.
Then Re (w) + Im (w) ≤ 1 and δG1(w) = 1√

2
(1 − Re (w) − Im (w)). Hence,

δG2(w) = 1 −
√

Re (w)2 + Im (w)2 ≥ 1 − Re (w) − Im (w) =
√

2δG1(w),

which proves inequality (4.2).
Given z1, z2 ∈ G1, let γ be a quasihyperbolic geodesic joining z1 and

z2 in G1. Then by (4.2),

kG2(z1, z2) ≤
∫
γ

|dw|
δG2(w)

≤
∫
γ

|dw|√
2δG1(w)

=
1√
2
kG1(z1, z2).

For the jG metric case, let x0 = (1 − ε, 0), y0 = (−1 + ε, 0) where
ε ∈ (0, 1). Then

|x0 − y0| = 2 − 2ε
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and
δG2(x0) = δG2(y0) = ε =

√
2δG1(x0) =

√
2δG1(y0).

Hence,
jG1(x0, y0)

jG2(x0, y0)
=

log(1 +
√
2(2−2ε)
ε )

log(1 + (2−2ε)
ε )

→ 1, ε→ 0.

Theorem 4.3. For 0 < s < 1, let G1 = {(x, y) : |x|s + |y|s < 1} and
G2 = {(x, y) : |x| + |y| < 1}. Then kG1(z1, z2) ≥ 2

1
s−1kG2(z1, z2) for all

z1, z2 ∈ G1.
Proof. We first prove that for all w ∈ G1, δG2(w) ≥ 2

1
s−1δG1(w). Let

w = (a, b) ∈ G1. By symmetry, we only need to consider the case 0 ≤ b ≤ a.
Denote γs = ∂G1 ∩ {(x, y) : x ≥ 0, y ≥ 0}, γ1 = ∂G2 ∩ {(x, y) : x ≥ 0,
y ≥ 0}. Let y1 ∈ γ1 be such that line ℓ0y1 , which goes through 0 and y1, is
perpendicular to γ1. Obviously, ℓ0y1⊥γs, say at the point y2. Let y3 ∈ γ1
be such that [w, y3]⊥γ1, y4 be the intersection point of [w, y3] and γs and
w1 ∈ ℓ0y1 be such that w1, w and e1 are collinear (see Figure 2).

e1

w1

0

w

y4

y3

y1

y2

Figure 2: Points yi, w and w1 used in the proof of Theorem 4.3.

We observe first that

δG2(w)

δG1(w)
≥ |w − y3|

|w − y4|
. (4.4)

By similar triangle property, we get

|w − y3|
|w1 − y1|

=
|e1 − w|
|e1 − w1|

≥ |w − y4|
|w1 − y2|

,
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which, together with (4.4) and simple calculation, shows that

δG2(w)

δG1(w)
≥ δG2(w1)

δG1(w1)
≥ δG2(0)

δG1(0)
= 2

1
s−1.

Given z1, z2 ∈ G1, let β be a quasihyperbolic geodesic joining z1 and
z2 in G1. Then

kG2(z1, z2) ≤
∫
β

|dw|
δG2(w)

≤ 2
1
s−1kG1(z1, z2).

We generalize the above two Theorems into the following conjecture.
Conjecture 4.5. For 0 < s < t, let G1 = Gs = {(x, y) : |x|s + |y|s ≤

≤ 1}, G2 = Gt = {(x, y) : |x|t+|y|t ≤ 1}. We conjecture that kG1(z1, z2) ≥
≥ 2

1
s−

1
t kG2(z1, z2) for all z1, z2 ∈ G1.

The following result gives a solution to Problem 1.3.

Theorem 4.6. Let G1 be a bounded subdomain of the domain G2 ( Rn.
Then for all x, y ∈ G1

mG1(x, y) ≥ cmG2(x, y),

where mGi ∈ {jGi , kGi} for i = 1, 2 and c = 1 + 2 dist(G1,∂G2)
diam(G1)

.

Proof. We first prove the jG metric case.
For each x, y ∈ G1, we are going to prove

log

(
1 +

|x− y|
min{δG1(x), δG1(y)}

)
≥

≥
(

1 +
2 dist(G1, ∂G2)

diam(G1)

)
log

(
1 +

|x− y|
min{δG2(x), δG2(y)}

)
.

Since δG2(w) ≥ δG1(w) + dist(G1, ∂G2) holds for all w ∈ G1, then it
suffices to prove

diam(G1) log

(
1 +

|x− y|
min{δG1(x), δG1(y)}

)
≥

≥ (diam(G1) + 2 dist(G1, ∂G2))×

× log

(
1 +

|x− y|
min{δG1(x) + dist(G1, ∂G2), δG1(y) + dist(G1, ∂G2)}

)
.
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Let
f(z) = (d+ 2z) log(1 +

a

b+ z
),

where d = diam(G1), a = |x− y|, b = δG1(x) and z ≥ 0.
Then

f ′(z) = log(1 +
a

z + b
) − a(2z + d)

(z + a+ b)(z + b)
,

and
f ′′(z) =

−2a(z + a+ b)(z + b) + a(2z + d)(2z + 2b+ a)

(z + a+ b)2(z + b)2
.

Let

h(z) = −2a(z + a+ b)(z + b) + a(2z + d)(2z + 2b+ a) .

It is easy to see that

h′(z) = a(2d− 2b− a+ 2z) > 0,

which implies that h(z) > h(0) > 0.
Hence f ′′(z) ≥ 0, which yields

f ′(z) ≤ f ′(∞) = 0

and so the function f(z) is decreasing. Thus the assertion follows.
For the kG metric case, we first prove that for each w ∈ D1, the follow-

ing inequality holds:

δG2(w) ≥ (1 +
2 dist(G1, ∂G2)

diam(G1)
)δG1(w).

In fact, for each w ∈ G1 we have

diam(G1)δG2(w) ≥ diam(G1)(δG1(w) + dist(G1, ∂G2)) ≥
≥ (diam(G1) + 2 dist(G1, ∂G2))δG1(w).

Given x, y ∈ G1, let γ be a quasihyperbolic geodesic joining x and y in
G1. Then

kG2(x, y) ≤
∫
γ

|dw|
δG2(w)

≤
∫
γ

|dw|
cδG1(w)

≤ 1

c
kG1(x, y),
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where c = 1 + 2 dist(G1,∂G2)
diam(G1)

.

Corollary 4.7. Let 0 < r < R and G1 = Bn(x, r), G2 = Bn(x,R).
Then for all x, y ∈ G1

mG1(x, y) ≥ cmG2(x, y),

where mGi ∈ {jGi , kGi} for i = 1, 2 and for c = R/r.
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