UDC 514.17+517.55

## T. M. Osipchuk

(Institute of Mathematics of NASU, Kyiv)

## Analytical conditions of local linear convexity in the space $\mathbb{H}^n_{\alpha,\beta}$

otm82@mail.ru

Dedicated to memory of Professor Promarz M. Tamrazov

Встановлено необхідні, а також достатні умови локальної лінійної опуклості областей з гладкою межею в багатовимірному узагальнено кватерніонному просторі  $\mathbb{H}^n_{\alpha,\beta}$   $(n\geq 2).$ 

The necessary and sufficient conditions of local linear convexity of domains with smooth boundary in multidimensional generalized quaternion space  $\mathbb{H}^n_{\alpha,\beta}$   $(n\geq 2)$  are found.

The paper ([1]) presents analytical conditions of local linear convexity of domains with smooth boundaries in a multidimensional quaternion space  $\mathbb{H}^n$  in terms of some special linear form of the second order. The aim of this work is to establish similar conditions for the case of generalized quaternion algebra  $\mathbb{H}_{\alpha,\beta}$  ([2, 3], see also [4]).

Let  $\mathbb{H}_{\alpha,\beta}$  be the algebra of generalized quaternions (further quaternions)

$$a = a_0 + a_1e_1 + a_2e_2 + a_3e_3$$

where  $a_0, a_1, a_2, a_3 \in \mathbb{R}$ , and  $1, e_1, e_2, e_3$  satisfy the following multiplication table:

|       | 1     | $e_1$        | $e_2$        | $e_3$            |
|-------|-------|--------------|--------------|------------------|
| 1     | 1     | $e_1$        | $e_2$        | $e_3$            |
| $e_1$ | $e_1$ | $-\alpha$    | $e_3$        | $-\alpha e_2$    |
| $e_2$ | $e_2$ | $-e_3$       | $-\beta$     | $\beta e_1$      |
| $e_3$ | $e_3$ | $\alpha e_2$ | $-\beta e_1$ | $-\alpha\beta$ , |

where  $\alpha, \beta$  are real nonzero numbers.

Let us consider the vector space  $\mathbb{H}^n_{\alpha,\beta} := \underbrace{\mathbb{H}_{\alpha,\beta} \times \mathbb{H}_{\alpha,\beta} \times \ldots \times \mathbb{H}_{\alpha,\beta}}_{n \geq 2}$  with

elements  $z := (z_1, z_2, \dots, z_n) \in \mathbb{H}^n_{\alpha, \beta}$ , where

$$z_j := x_0^j + x_1^j e_1 + x_2^j e_2 + x_3^j e_3 \in \mathbb{H}_{\alpha,\beta}, \ \ j = \overline{1,n}, \quad \|z\| = \sqrt{\sum_{j=1}^n \sum_{k=0}^3 \left(x_k^j\right)^2}.$$

The neighborhood U(w) of a point  $w = (w_1, w_2, \dots, w_m) \in \mathbb{H}^n_{\alpha,\beta}$  is an opened ball  $U(w) = \{z : ||z - w|| < \rho_0\}.$ 

Since the algebra  $\mathbb{H}_{\alpha,\beta}$  is non-commutative with respect to the multiplication, the equations  $\sum\limits_{j=1}^n a_jz_j=0, \quad \sum\limits_{j=1}^n z_ja_j=0, \quad a_j,z_j\in\mathbb{H}_{\alpha,\beta}$ , define geometrically different hyperplane of 4n-4 dimension, in general case. In addition, we may consider  $2^n-2$  intermediate cases between two mentioned hyperplanes for which equations contain the alternated summands  $a_jz_j,\ z_ja_j$ . For a concreteness, in the following definition we use the case where variables are multiplied by constants from the left only.

**Definition.** Domain  $\Omega \subset \mathbb{H}^n_{\alpha,\beta}$  is said to be *locally linearly convex* if for every boundary point  $w=(w_1,w_2,\ldots,w_n)$  of the domain there is a hyperplane  $\sum\limits_{j=1}^n a_j\,(z_j-w_j)=0,\quad a_j\in\mathbb{H}_{\alpha,\beta},\,z=(z_1,z_2,\ldots,z_n)\in\mathbb{H}^n_{\alpha,\beta},$  which passes through the point  $w\in\partial\Omega$  and does not intersect  $\Omega$  in some neighborhood of w. If a such intersection is empty, then  $\Omega$  is said to be *linearly convex*.

Let us consider the following quaternions:

$$\begin{array}{rcl} z_j & := & x_0^j + x_1^j e_1 + x_2^j e_2 + x_3^j e_3 \,, \\ z_j^1 & := & x_0^j + x_1^j e_1 - x_2^j e_2 - x_3^j e_3 \,, \\ z_j^2 & := & x_0^j - x_1^j e_1 + x_2^j e_2 - x_3^j e_3 \,, \\ z_j^3 & := & x_0^j - x_1^j e_1 - x_2^j e_2 + x_3^j e_3 \,. \end{array}$$

We express the real variables  $x_k^j$  in terms of the quaternions  $z_j^l$  with respect to non-commutativity of generalized quaternions. So, we get that

$$x_{0}^{j} = 4^{-1} \left( z_{j} + z_{j}^{1} + z_{j}^{2} + z_{j}^{3} \right),$$

$$x_{1}^{j} = 4^{-1} \alpha^{-1} e_{1} \left( -z_{j} - z_{j}^{1} + z_{j}^{2} + z_{j}^{3} \right),$$

$$x_{2}^{j} = 4^{-1} \beta^{-1} e_{2} \left( -z_{j} + z_{j}^{1} - z_{j}^{2} + z_{j}^{3} \right),$$

$$x_{3}^{j} = 4^{-1} (\alpha \beta)^{-1} e_{3} \left( -z_{j} + z_{j}^{1} + z_{j}^{2} - z_{j}^{3} \right)$$

$$(1)$$

or

Let  $\Omega=\{z: \rho(z)<0\}$  be a domain of the space  $\mathbb{H}^n_{\alpha,\beta}$  with the boundary  $\partial\Omega=\{z: \rho(z)=0\}$ , where  $\rho(z)=\rho(z,z^1,z^2,z^3):\mathbb{H}^n_{\alpha,\beta}\to\mathbb{R}$  is a twice continuously differentiable real-valued function in the neighborhood  $U(\partial\Omega),\,z^l=(z^l_1,z^l_2,\ldots,z^l_n)\in\mathbb{H}^n_{\alpha,\beta},\,l=1,2,3,$  and  $\operatorname{grad}\rho\neq 0$  everywhere on  $\partial\Omega$ . Let us consider the total differential of the function  $\rho$  as real function of independent variables  $\{x^j_l\}_{j=1}^n,\,l=\overline{0,4}$  at the point  $w\in U(\partial\Omega)$ :

$$d\rho(w) = \sum_{i=1}^{n} \sum_{l=0}^{3} \frac{\partial \rho(w)}{\partial x_{l}^{j}} dx_{l}^{j}.$$
 (3)

Replacing the variables  $x_l^j$  and  $z_j^l$  in (1) and (2) with their differentials  $dx_l^j$  and  $dz_j^l$ , respectively, and substituting in (3) the expressions of  $dx_l^j$ , we obtain (here and everywhere  $z_j^0 := z_j$ )

$$d\rho(w) = \sum_{i=1}^{n} \sum_{l=0}^{3} \frac{\partial \rho(w)}{\partial z_{j}^{l}} dz_{j}^{l}$$

or

$$d\rho(w) = \sum_{i=1}^{n} \sum_{k=0}^{3} dz_{j}^{k} \frac{\partial \rho(w)}{\partial z_{j}^{k}},$$

where formal derivatives  $\frac{\partial \rho(w)}{\partial z_i^l}$  are calculated with the formulas

$$\frac{\partial \rho(w)}{\partial z_{j}^{0}} = \frac{1}{4} \left( \frac{\partial \rho(w)}{\partial x_{0}^{j}} - \frac{1}{\alpha} \frac{\partial \rho(w)}{\partial x_{1}^{j}} e_{1} - \frac{1}{\beta} \frac{\partial \rho(w)}{\partial x_{2}^{j}} e_{2} - \frac{1}{\alpha \beta} \frac{\partial \rho(w)}{\partial x_{3}^{j}} e^{3} \right), 
\frac{\partial \rho(w)}{\partial z_{j}^{1}} = \frac{1}{4} \left( \frac{\partial \rho(w)}{\partial x_{0}^{j}} - \frac{1}{\alpha} \frac{\partial \rho(w)}{\partial x_{1}^{j}} e_{1} + \frac{1}{\beta} \frac{\partial \rho(w)}{\partial x_{2}^{j}} e_{2} + \frac{1}{\alpha \beta} \frac{\partial \rho(w)}{\partial x_{3}^{j}} e_{3} \right), 
\frac{\partial \rho(w)}{\partial z_{j}^{2}} = \frac{1}{4} \left( \frac{\partial \rho(w)}{\partial x_{0}^{j}} + \frac{1}{\alpha} \frac{\partial \rho(w)}{\partial x_{1}^{j}} e_{1} - \frac{1}{\beta} \frac{\partial \rho(w)}{\partial x_{2}^{j}} e_{2} + \frac{1}{\alpha \beta} \frac{\partial \rho(w)}{\partial x_{3}^{j}} e_{3} \right), 
\frac{\partial \rho(w)}{\partial z_{j}^{3}} = \frac{1}{4} \left( \frac{\partial \rho(w)}{\partial x_{0}^{j}} + \frac{1}{\alpha} \frac{\partial \rho(w)}{\partial x_{1}^{j}} e_{1} + \frac{1}{\beta} \frac{\partial \rho(w)}{\partial x_{2}^{j}} e_{2} - \frac{1}{\alpha \beta} \frac{\partial \rho(w)}{\partial x_{3}^{j}} e_{3} \right).$$
(4)

Let us rewrite the formulas (4) as

$$\frac{\partial \rho(w)}{\partial z_j^l} = \frac{1}{4} \sum_{p=0}^{3} \gamma_{lp} \frac{\partial \rho(w)}{\partial x_p^j} e_p, \quad l = \overline{0, 3},$$

where  $\gamma_{lp}$  are the elements of matrix

$$\Gamma = \begin{pmatrix} 1 & -\frac{1}{\alpha} & -\frac{1}{\beta} & -\frac{1}{\alpha\beta} \\ 1 & -\frac{1}{\alpha} & \frac{1}{\beta} & \frac{1}{\alpha\beta} \\ 1 & \frac{1}{\alpha} & -\frac{1}{\beta} & \frac{1}{\alpha\beta} \\ 1 & \frac{1}{\alpha} & \frac{1}{\beta} & -\frac{1}{\alpha\beta} \end{pmatrix}.$$

And let

$$\frac{\partial^2 \rho(w)}{\partial z_i^k \partial z_j^l} := \frac{1}{16} \sum_{\substack{p,q=0}}^3 \gamma_{lp} \gamma_{kg} \frac{\partial^2 \rho(w)}{\partial x_q^i \partial x_p^j} e_p e_g, \ j, i = \overline{1, n}, \ l, k = \overline{0, 3}.$$

Then

$$\begin{split} d^{2}\rho(w) &= \sum_{i,j=1}^{n} \sum_{k,l=0}^{3} \frac{\partial^{2}\rho(w)}{\partial x_{k}^{i} \partial x_{l}^{j}} \, dx_{k}^{j} \, dx_{k}^{i} = \sum_{i,j=1}^{n} \sum_{k,l=0}^{3} \frac{\partial^{2}\rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} \, dz_{i}^{l} \, dz_{i}^{k} = \\ &= \sum_{i,j=1}^{n} \sum_{k,l=0}^{3} dz_{i}^{k} \, \frac{\partial^{2}\rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} \, dz_{j}^{l} = \sum_{i,j=1}^{n} \sum_{k,l=0}^{3} dz_{i}^{k} \, \frac{\partial^{2}\rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} \, . \end{split} \tag{5}$$

We pay attention to the order of multiplication of quaternions in (5).

**Theorem.** If the domain  $\Omega$  is left locally linearly convex, then for every point  $w \in \partial \Omega$  and for all vectors  $s = (s_1, s_2, \ldots, s_n) \in \mathbb{H}^n_{\alpha, \beta}$ , ||s|| = 1, which satisfy the equation

$$\sum_{j=1}^{n} \frac{\partial \rho(w)}{\partial z_j^0} s_j = 0, \tag{6}$$

the following inequalities are true:

$$\sum_{i,j=1}^{n} \sum_{k,l=0}^{3} \frac{\partial^{2} \rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} s_{j}^{l} s_{i}^{k} \ge 0,$$

$$\sum_{i,j=1}^{n} \sum_{k,l=0}^{3} s_{j}^{l} \frac{\partial^{2} \rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} s_{i}^{k} \ge 0,$$

$$\sum_{i,j=1}^n \sum_{k,l=0}^3 s_j^l s_i^k \frac{\partial^2 \rho(w)}{\partial z_i^k \partial z_j^l} \geq 0.$$

If for every point  $w \in \partial \Omega$  and the same vectors s at least one of the inequalities is true

$$\sum_{i,j=1}^{n} \sum_{k,l=0}^{3} \frac{\partial^{2} \rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} s_{j}^{l} s_{i}^{k} > 0,$$

$$\sum_{i,j=1}^{n} \sum_{k,l=0}^{3} s_{j}^{l} \frac{\partial^{2} \rho(w)}{\partial z_{i}^{k} \partial z_{j}^{l}} s_{i}^{k} > 0,$$

$$\sum_{i,j=1}^n \sum_{k,l=0}^3 s_j^l s_i^k \frac{\partial^2 \rho(w)}{\partial z_i^k \partial z_j^l} > 0 \,,$$

then the domain  $\Omega$  is locally linearly convex.

The proof of Theorem is similar to that of Theorem 1 from [1] and Theorem from [5]. We note only that to proof it we need to consider Taylor series in a quaternion form. In addition, the equation (6) defines a hyperplane of the definition for the domain  $\Omega$ .

## References

- [1] OSIPCHUK T. M. Analytic conditions of local linear convexity in  $\mathbf{H}^n$  // Zb. prats of the Inst. of Math. of NASU. 2005. 2, № 3. P. 244—254 (in Ukrainian).
- [2] Dickson L. E. On the Theory of Numbers and Generalized Quaternions // Amer. J. Math. 1924. 46,  $N\!\!\!/$  1. P. 1–16.
- [3] Griffiths L. W. Generalized Quaternion Algebras and the Theory of Numbers // Amer. J. Math. 1928. 50, N 2. P. 303-314.
- [4] Flaut C., Shpakivskyi V. On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions // Advances in Applied Clifford Algebras. 2013. DOI 10.1007/s00006-013-0388-2.
- [5] OSIPCHUK T. M., ZELINSKII Yu. B., TKACHUK M. V. Analytic conditions of local generalized linear convexity in  $\mathcal{C}\ell_{p,q}^m$  // Zb. prats of the Inst. of Math. of NASU. 2010. 7, № 2. P. 393—401 (in Ukrainian).